Non-Bayesian Social Learning

Presented by Arastoo Fazeli

November 30, 2009

(ロ)、

Learning in Complex Networks: Model and Abstractions

- Each vertex represents an agent
- Each edge represents information flow between two agents
- Agents have access to their neighbors' information

Learning in Complex Networks: Model and Abstractions

- Each vertex represents an agent
- Each edge represents information flow between two agents
- Agents have access to their neighbors' information

 $\begin{array}{lll} \Theta & & \mbox{parameter space} \\ \theta^* \in \Theta & & \mbox{the unobservable true state of the world} \\ s_t = (s_t^1, \ldots, s_t^n) & \mbox{random signals observed by the agents} \end{array}$

Bayesian Learning over Networks

$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

is the information available to agent i up to time t.

Bayesian Learning over Networks

$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

is the information available to agent i up to time t.

Agents need to make rational deductions about everybody's beliefs based on only observing neighbors' beliefs:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Bayesian Learning over Networks

$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

is the information available to agent i up to time t.

Agents need to make rational deductions about everybody's beliefs based on only observing neighbors' beliefs:

Computationally hard!

1. Incomplete network information

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures
- 3. Higher order beliefs matter

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures
- 3. Higher order beliefs matter
- 4. The source of each piece of information is not immediately clear

Intractable and not local.

Need a local and computationally tractable update, which hopefully delivers asymptotic social learning.

Need a local and computationally tractable update, which hopefully delivers asymptotic social learning.

Agent i is

- Bayesian when it comes to her observation
- non-Bayesian when incorporating others information

$$\mathcal{N} = \{1, 2, \dots, n\}$$
 individuals in the society

$$\mathcal{N} = \{1, 2, \dots, n\}$$

 $G = (\mathcal{N}, \mathcal{E})$

individuals in the society social network

$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \\ \theta^* \in \Theta & \text{ the unobservable true state of the world} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \\ \theta^* \in \Theta & \text{ the unobservable true state of the world} \\ s_t &= (s_t^1,\ldots,s_t^n) & s_t^i \text{ is the signal observed by agent } i \text{ at time } t \end{split}$$

$\mathcal{N} = \{1, 2, \dots, n\}$	individuals in the society
$G = (\mathcal{N}, \mathcal{E})$	social network
Θ	finite parameter space
$\theta^*\in\Theta$	the unobservable true state of the world
$s_t = (s_t^1, \dots, s_t^n)$	\boldsymbol{s}_t^i is the signal observed by agent i at time t
$S = S_1 \times S_2 \times \cdots \times S_n$	signal space

$\mathcal{N} = \{1, 2, \dots, n\}$	individuals in the society
$G = (\mathcal{N}, \mathcal{E})$	social network
Θ	finite parameter space
$\theta^*\in\Theta$	the unobservable true state of the world
$s_t = (s_t^1, \dots, s_t^n)$	\boldsymbol{s}_t^i is the signal observed by agent i at time t
$S = S_1 \times S_2 \times \cdots \times S_n$	signal space
$\ell(s heta)$	global signal structure

$\mathcal{N} = \{1, 2, \dots, n\}$	individuals in the society
$G = (\mathcal{N}, \mathcal{E})$	social network
Θ	finite parameter space
$\theta^*\in\Theta$	the unobservable true state of the world
$s_t = (s_t^1, \dots, s_t^n)$	\boldsymbol{s}_t^i is the signal observed by agent i at time t
$S = S_1 \times S_2 \times \cdots \times S_n$	signal space
$\ell(s heta)$	global signal structure
$\ell_i(s^i heta)$	agent i 's signal structure

$\mu_{i,t}(heta)$	time t beliefs of agent i (a probability measure on Θ)
$\mu_{i,0}(heta)$	agent i 's prior belief

$\mu_{i,t}(heta)$	time t beliefs of agent i (a probability measure on Θ)
$\mu_{i,0}(heta)$	agent i 's prior belief
$\mathbb{P}^* = \otimes_{t=1}^\infty \ell(\cdot \theta^*)$	the true probability measure

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

$\mu_{i,t}(heta)$	time t beliefs of agent i (a probability measure on Θ)
$\mu_{i,0}(heta)$	agent i 's prior belief
$\mathbb{P}^* = \otimes_{t=1}^\infty \ell(\cdot \theta^*)$	the true probability measure

Agent i's time t forecasts of the next observation:

$$m_{i,t}(s_{t+1}^i) = \int_{\Theta} \ell_i(s_{t+1}^i|\theta) d\mu_{i,t}(\theta)$$

<□ > < @ > < E > < E > E のQ @

What Do We Mean by Learning?

Definition

The Forecasts of agent i are eventually correct on a path $\{s_t\}_{t=1}^\infty$ if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as $t \to \infty$.

What Do We Mean by Learning?

Definition

The Forecasts of agent i are eventually correct on a path $\{s_t\}_{t=1}^\infty$ if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as $t \to \infty$.

Definition

Agent i asymptotically learns the true parameter θ^* on a path $\{s_t\}_{t=1}^\infty$ if, along that path,

 $\mu_{i,t}(\theta^*) \to 1 \quad \text{as} \quad t \to \infty.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

What Do We Mean by Learning?

Definition

The Forecasts of agent i are eventually correct on a path $\{s_t\}_{t=1}^\infty$ if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as $t \to \infty$.

Definition

Agent i asymptotically learns the true parameter θ^* on a path $\{s_t\}_{t=1}^\infty$ if, along that path,

$$\mu_{i,t}(\theta^*) \to 1 \quad \text{as} \quad t \to \infty.$$

Asymptotic learning, in this setup, is stronger.

$$\mu_{i,t+1}(\theta) = a_{ii} \operatorname{BU}(\mu_{i,t}; s_{t+1}^i)(\theta) + \sum_{j \in \mathcal{N}_i} a_{ij} \mu_{j,t}(\theta)$$

where

$$BU(\mu_{i,t}; s_{t+1}^i)(\theta) = \mu_{i,t}(\theta) \frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)}$$
$$a_{ij} \ge 0 \quad , \quad \sum_{i \in \mathcal{N}_i} a_{ij} = 1$$

- Individuals rationally update their beliefs after observing the signal
- exhibit a bias towards the average belief in the neighborhood

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

Does not require knowledge about the network.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i\neq j}a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.

・ロト・日本・モート モー うへぐ

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.

・ロト・日本・モート モー うへぐ

The update is local and tractable.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.
- The update is local and tractable.
- If signals are uninformative, reduces to the model of DeGroot(1974).

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.
- The update is local and tractable.
- If signals are uninformative, reduces to the model of DeGroot(1974).
- Reduces to the benchmark Bayesian case if agents assign weight zero to the beliefs of their neighbors.

First Result: Correct Forecasts

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i\neq j}a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

Proposition

Suppose that

- (i) social network is strongly connected,
- (ii) all agents have strictly positive self-confidence,
- (iii) there exists an agent with strictly positive prior belief on θ^* .

Then, all agents eventually forecast their private observations accurately with $\mathbb{P}^*\text{-}\mathsf{probability}$ one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Why Strong Connectivity?

What if the network has a directed spanning tree but is not strongly connected?

$$\mathcal{N} = \{B, N\}$$
$$\mathcal{O} = \{\theta_1, \theta_2, \theta_3\}$$
$$\mathcal{O} = \{\theta_1, \theta_2, \theta_3\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Why Strong Connectivity?

What if the network has a directed spanning tree but is not strongly connected?

N is mislead by listening to the less informed agent B.

Convergence of Beliefs & Agreement

Proposition

Under the assumptions of previous proposition, the beliefs of all agents converge with $\mathbb{P}^*\text{-probability}$ one.

Corollary

Under the assumptions of the proposition, all agents have asymptotically equal beliefs $\mathbb{P}^*\text{-}\mathsf{almost}$ surely.

Convergence of Beliefs & Agreement

Proposition

Under the assumptions of previous proposition, the beliefs of all agents converge with $\mathbb{P}^*\text{-probability}$ one.

Corollary

Under the assumptions of the proposition, all agents have asymptotically equal beliefs $\mathbb{P}^*\text{-}\mathsf{almost}$ surely.

Consensus!

Social Learning: Information Aggregation

Theorem

Suppose that

- (i) social network is strongly connected,
- (ii) all agents have strictly positive self-confidence,
- (iii) there exists an agent with strictly positive prior on θ^* .
- (iv) for any agent i there exists a signal $\hat{s}^i \in S_i$ such that $\frac{l_i(\hat{s}^i|\theta)}{l_i(\hat{s}^i|\theta^*)} < 1$ $\forall \theta \notin \bar{\Theta}_i$ where $\bar{\Theta}_i = \{\theta \in \Theta : l_i(s^i|\theta) = l_i(s^i|\theta^*), \forall s^i \in S^i\}$
- (v) there is no state $\theta \neq \theta^*$ that is observationally equivalent to θ^* from the point of view of all agents in the network, i.e., $\bar{\Theta}_1 \cap \ldots \cap \bar{\Theta}_n = \{\theta^*\}$

Then, all agents in the social network learn the true state of the world P^* almost surely; that is, $\mu_i(\theta^*) \to 1$ with P^* probability $1 \forall i \in \mathcal{N}$

Information Aggregation: An Example

$$\Theta = \{\theta^*, \theta_1, \theta_2, \dots, \theta_7\}$$
$$S_i = \{H, T\}$$
$$\ell_i(H|\theta) = \begin{cases} \frac{i}{i+1} & \text{if } \theta = \theta_i\\ \frac{1}{(i+1)^2} & \text{otherwise} \end{cases}$$

Information Aggregation: An Example

Agents learn as if they had access to all information and updated their beliefs rationally.

Summary and Potential Future Directions

A non-Bayesian social learning model:

- Local and tractable
- No information about network topology or signal structures required
- Can handle repeated interactions and information flow over time

Remaining questions:

- The effect of network topology on the learning
- What if actions are observable, and not beliefs?

Summary and Potential Future Directions

A non-Bayesian social learning model:

- Local and tractable
- No information about network topology or signal structures required

Can handle repeated interactions and information flow over time

Remaining questions:

- The effect of network topology on the learning
- What if actions are observable, and not beliefs?