## Non-Bayesian Social Learning

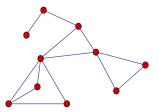
Presented by Arastoo Fazeli

November 30, 2009

(ロ)、

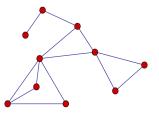
# Learning in Complex Networks: Model and Abstractions

- Each vertex represents an agent
- Each edge represents information flow between two agents
- Agents have access to their neighbors' information



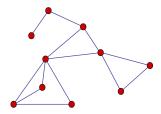
# Learning in Complex Networks: Model and Abstractions

- Each vertex represents an agent
- Each edge represents information flow between two agents
- Agents have access to their neighbors' information



 $\begin{array}{lll} \Theta & & \mbox{parameter space} \\ \theta^* \in \Theta & & \mbox{the unobservable true state of the world} \\ s_t = (s_t^1, \ldots, s_t^n) & \mbox{random signals observed by the agents} \end{array}$ 

## Bayesian Learning over Networks



$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

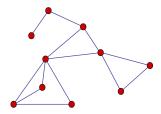
where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

is the information available to agent i up to time t.

## Bayesian Learning over Networks



$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

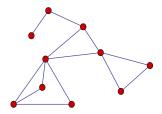
$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

is the information available to agent i up to time t.

Agents need to make rational deductions about everybody's beliefs based on only observing neighbors' beliefs:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

# Bayesian Learning over Networks



$$\mu_{i,t}(\theta) = \mathbb{P}\left[\theta = \theta^* | \mathcal{F}_{i,t}\right]$$

where

$$\mathcal{F}_{i,t} = \sigma\left(s_1^i, \dots, s_t^i, \{\mu_{j,k} : j \in \mathcal{N}_i, k \le t\}\right)$$

is the information available to agent i up to time t.

Agents need to make rational deductions about everybody's beliefs based on only observing neighbors' beliefs:

Computationally hard!

1. Incomplete network information

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures
- 3. Higher order beliefs matter

- 1. Incomplete network information
- 2. Incomplete information about other agents' signal structures
- 3. Higher order beliefs matter
- 4. The source of each piece of information is not immediately clear

Intractable and not local.

Need a local and computationally tractable update, which hopefully delivers asymptotic social learning.

Need a local and computationally tractable update, which hopefully delivers asymptotic social learning.

Agent i is

- Bayesian when it comes to her observation
- non-Bayesian when incorporating others information

$$\mathcal{N} = \{1, 2, \dots, n\}$$
 individuals in the society

$$\mathcal{N} = \{1, 2, \dots, n\}$$
  
 $G = (\mathcal{N}, \mathcal{E})$ 

individuals in the society social network



$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \\ \theta^* \in \Theta & \text{ the unobservable true state of the world} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathcal{N} &= \{1,2,\ldots,n\} & \text{ individuals in the society} \\ G &= (\mathcal{N},\mathcal{E}) & \text{ social network} \\ \Theta & \text{ finite parameter space} \\ \theta^* \in \Theta & \text{ the unobservable true state of the world} \\ s_t &= (s_t^1,\ldots,s_t^n) & s_t^i \text{ is the signal observed by agent } i \text{ at time } t \end{split}$$

| $\mathcal{N} = \{1, 2, \dots, n\}$            | individuals in the society                                           |
|-----------------------------------------------|----------------------------------------------------------------------|
| $G = (\mathcal{N}, \mathcal{E})$              | social network                                                       |
| Θ                                             | finite parameter space                                               |
| $\theta^*\in\Theta$                           | the unobservable true state of the world                             |
| $s_t = (s_t^1, \dots, s_t^n)$                 | $\boldsymbol{s}_t^i$ is the signal observed by agent $i$ at time $t$ |
| $S = S_1 \times S_2 \times \cdots \times S_n$ | signal space                                                         |

| $\mathcal{N} = \{1, 2, \dots, n\}$            | individuals in the society                                           |
|-----------------------------------------------|----------------------------------------------------------------------|
| $G = (\mathcal{N}, \mathcal{E})$              | social network                                                       |
| Θ                                             | finite parameter space                                               |
| $\theta^*\in\Theta$                           | the unobservable true state of the world                             |
| $s_t = (s_t^1, \dots, s_t^n)$                 | $\boldsymbol{s}_t^i$ is the signal observed by agent $i$ at time $t$ |
| $S = S_1 \times S_2 \times \cdots \times S_n$ | signal space                                                         |
| $\ell(s 	heta)$                               | global signal structure                                              |

| $\mathcal{N} = \{1, 2, \dots, n\}$            | individuals in the society                                           |
|-----------------------------------------------|----------------------------------------------------------------------|
| $G = (\mathcal{N}, \mathcal{E})$              | social network                                                       |
| Θ                                             | finite parameter space                                               |
| $\theta^*\in\Theta$                           | the unobservable true state of the world                             |
| $s_t = (s_t^1, \dots, s_t^n)$                 | $\boldsymbol{s}_t^i$ is the signal observed by agent $i$ at time $t$ |
| $S = S_1 \times S_2 \times \cdots \times S_n$ | signal space                                                         |
| $\ell(s 	heta)$                               | global signal structure                                              |
| $\ell_i(s^i 	heta)$                           | agent $i$ 's signal structure                                        |

| $\mu_{i,t}(	heta)$ | time $t$ beliefs of agent $i$<br>(a probability measure on $\Theta$ ) |
|--------------------|-----------------------------------------------------------------------|
| $\mu_{i,0}(	heta)$ | agent $i$ 's prior belief                                             |

| $\mu_{i,t}(	heta)$                                           | time $t$ beliefs of agent $i$ (a probability measure on $\Theta$ ) |
|--------------------------------------------------------------|--------------------------------------------------------------------|
| $\mu_{i,0}(	heta)$                                           | agent $i$ 's prior belief                                          |
| $\mathbb{P}^* = \otimes_{t=1}^\infty \ell(\cdot   \theta^*)$ | the true probability measure                                       |

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

| $\mu_{i,t}(	heta)$                                           | time $t$ beliefs of agent $i$ (a probability measure on $\Theta$ ) |
|--------------------------------------------------------------|--------------------------------------------------------------------|
| $\mu_{i,0}(	heta)$                                           | agent $i$ 's prior belief                                          |
| $\mathbb{P}^* = \otimes_{t=1}^\infty \ell(\cdot   \theta^*)$ | the true probability measure                                       |

Agent i's time t forecasts of the next observation:

$$m_{i,t}(s_{t+1}^i) = \int_{\Theta} \ell_i(s_{t+1}^i|\theta) d\mu_{i,t}(\theta)$$

<□ > < @ > < E > < E > E のQ @

## What Do We Mean by Learning?

#### Definition

The Forecasts of agent i are eventually correct on a path  $\{s_t\}_{t=1}^\infty$  if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as  $t \to \infty$ .

# What Do We Mean by Learning?

#### Definition

The Forecasts of agent i are eventually correct on a path  $\{s_t\}_{t=1}^\infty$  if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as  $t \to \infty$ .

#### Definition

Agent i asymptotically learns the true parameter  $\theta^*$  on a path  $\{s_t\}_{t=1}^\infty$  if, along that path,

 $\mu_{i,t}(\theta^*) \to 1 \quad \text{as} \quad t \to \infty.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

# What Do We Mean by Learning?

#### Definition

The Forecasts of agent i are eventually correct on a path  $\{s_t\}_{t=1}^\infty$  if, along that path,

$$m_{i,t}(\cdot) \to \ell_i(\cdot | \theta^*)$$
 as  $t \to \infty$ .

#### Definition

Agent i asymptotically learns the true parameter  $\theta^*$  on a path  $\{s_t\}_{t=1}^\infty$  if, along that path,

$$\mu_{i,t}(\theta^*) \to 1 \quad \text{as} \quad t \to \infty.$$

Asymptotic learning, in this setup, is stronger.

$$\mu_{i,t+1}(\theta) = a_{ii} \operatorname{BU}(\mu_{i,t}; s_{t+1}^i)(\theta) + \sum_{j \in \mathcal{N}_i} a_{ij} \mu_{j,t}(\theta)$$

where

$$BU(\mu_{i,t}; s_{t+1}^i)(\theta) = \mu_{i,t}(\theta) \frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)}$$
$$a_{ij} \ge 0 \quad , \quad \sum_{i \in \mathcal{N}_i} a_{ij} = 1$$

- Individuals rationally update their beliefs after observing the signal
- exhibit a bias towards the average belief in the neighborhood

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

Does not require knowledge about the network.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i\neq j}a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.

・ロト・日本・モート モー うへぐ

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.

・ロト・日本・モート モー うへぐ

The update is local and tractable.

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.
- The update is local and tractable.
- If signals are uninformative, reduces to the model of DeGroot(1974).

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i \neq j} a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

- Does not require knowledge about the network.
- Does not require deduction about the beliefs of others.
- Does not require knowledge about other agents' signal structures.
- The update is local and tractable.
- If signals are uninformative, reduces to the model of DeGroot(1974).
- Reduces to the benchmark Bayesian case if agents assign weight zero to the beliefs of their neighbors.

## First Result: Correct Forecasts

$$\mu_{i,t+1}(\theta) = a_{ii}\mu_{i,t}(\theta)\frac{\ell_i(s_{t+1}^i|\theta)}{m_{i,t}(s_{t+1}^i)} + \sum_{i\neq j}a_{ij}\mu_{j,t}(\theta) \qquad \forall \theta \in \Theta$$

### Proposition

Suppose that

- (i) social network is strongly connected,
- (ii) all agents have strictly positive self-confidence,
- (iii) there exists an agent with strictly positive prior belief on  $\theta^*$ .

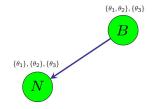
Then, all agents eventually forecast their private observations accurately with  $\mathbb{P}^*\text{-}\mathsf{probability}$  one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

# Why Strong Connectivity?

What if the network has a directed spanning tree but is not strongly connected?

$$\mathcal{N} = \{B, N\}$$
$$\mathcal{O} = \{\theta_1, \theta_2, \theta_3\}$$
$$\mathcal{O} = \{\theta_1, \theta_2, \theta_3\}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Why Strong Connectivity?

What if the network has a directed spanning tree but is not strongly connected?

N is mislead by listening to the less informed agent B.

# Convergence of Beliefs & Agreement

### Proposition

Under the assumptions of previous proposition, the beliefs of all agents converge with  $\mathbb{P}^*\text{-probability}$  one.

### Corollary

Under the assumptions of the proposition, all agents have asymptotically equal beliefs  $\mathbb{P}^*\text{-}\mathsf{almost}$  surely.

# Convergence of Beliefs & Agreement

### Proposition

Under the assumptions of previous proposition, the beliefs of all agents converge with  $\mathbb{P}^*\text{-probability}$  one.

#### Corollary

Under the assumptions of the proposition, all agents have asymptotically equal beliefs  $\mathbb{P}^*\text{-}\mathsf{almost}$  surely.

Consensus!

Social Learning: Information Aggregation

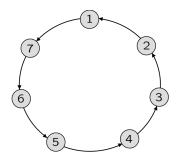
#### Theorem

Suppose that

- (i) social network is strongly connected,
- (ii) all agents have strictly positive self-confidence,
- (iii) there exists an agent with strictly positive prior on  $\theta^*$ .
- (iv) for any agent i there exists a signal  $\hat{s}^i \in S_i$  such that  $\frac{l_i(\hat{s}^i|\theta)}{l_i(\hat{s}^i|\theta^*)} < 1$  $\forall \theta \notin \bar{\Theta}_i$  where  $\bar{\Theta}_i = \{\theta \in \Theta : l_i(s^i|\theta) = l_i(s^i|\theta^*), \forall s^i \in S^i\}$
- (v) there is no state  $\theta \neq \theta^*$  that is observationally equivalent to  $\theta^*$  from the point of view of all agents in the network, i.e.,  $\bar{\Theta}_1 \cap \ldots \cap \bar{\Theta}_n = \{\theta^*\}$

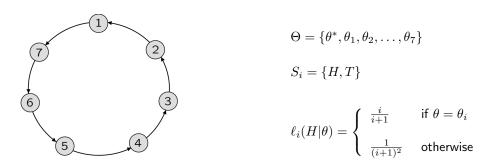
Then, all agents in the social network learn the true state of the world  $P^*$  almost surely; that is,  $\mu_i(\theta^*) \to 1$  with  $P^*$  probability  $1 \forall i \in \mathcal{N}$ 

Information Aggregation: An Example



$$\Theta = \{\theta^*, \theta_1, \theta_2, \dots, \theta_7\}$$
$$S_i = \{H, T\}$$
$$\ell_i(H|\theta) = \begin{cases} \frac{i}{i+1} & \text{if } \theta = \theta_i\\ \frac{1}{(i+1)^2} & \text{otherwise} \end{cases}$$

Information Aggregation: An Example



Agents learn as if they had access to all information and updated their beliefs rationally.

# Summary and Potential Future Directions

A non-Bayesian social learning model:

- Local and tractable
- No information about network topology or signal structures required
- Can handle repeated interactions and information flow over time

Remaining questions:

- The effect of network topology on the learning
- What if actions are observable, and not beliefs?

# Summary and Potential Future Directions

A non-Bayesian social learning model:

- Local and tractable
- No information about network topology or signal structures required

Can handle repeated interactions and information flow over time

Remaining questions:

- The effect of network topology on the learning
- What if actions are observable, and not beliefs?