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This article describes the structure of the adolescent romantic and
sexual network in a population of over 800 adolescents residing in
a midsized town in the midwestern United States. Precise images
and measures of network structure are derived from reports of re-
lationships that occurred over a period of 18 months between 1993
and 1995. The study offers a comparison of the structural charac-
teristics of the observed network to simulated networks conditioned
on the distribution of ties; the observed structure reveals networks
characterized by longer contact chains and fewer cycles than ex-
pected. This article identifies the micromechanisms that generate
networks with structural features similar to the observed network.
Implications for disease transmission dynamics and social policy are
explored.

INTRODUCTION

This article describes the structure of adolescent romantic and sexual
networks in an American high school, accounts for the emergence of this

1 Data for this article are drawn from the National Longitudinal Study of Adolescent
Health (Add Health), a program project designed by J. Richard Udry and Peter Bear-
man, and funded by a grant from the National Institute of Child Health and Human
Development (HD31921). The authors thank Douglas White, Martina Morris, Mark
Handcock, J. Richard Udry, and the AJS reviewers for helpful comments on previous
drafts of this article. Direct correspondence to Peter Bearman, Institute for Social and
Economic Research and Policy, 814 SIPA Building, Columbia University, New York,
New York 10027. E-mail: psb17@columbia.edu
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structure, and links the observed structure to the diffusion dynamics of
disease. Our goal is to show how local preferences governing partner
choice shape the macrostructures in which individuals are embedded and
hence affect both the potential for disease diffusion and the determinants
of individual risk.2 Because the structure of sexual networks is critical for
understanding the diffusion of sexually transmitted diseases (STDs), it is
surprising that epidemiologists have only a limited idea of what such
networks look like. The insight we do have is generally restricted to that
provided by a set of ego-centered network surveys (Morris and Kretzsch-
mar 1995, 1997; Laumann et al. 1994; Laumann and Youm 1999) and
snowball samples of populations of highest risk to HIV acquisition, such
as male homosexuals (Klovdahl 1985) and IV drug users (Rothenberg,
Potterat, and Woodhouse 1996; Rothenberg et al. 1997; Friedman et al.
1997). While they may reveal much about the characteristics of the local
networks in which individuals are embedded, ego-centered and snowball
samples provide limited information on the global network properties that
determine disease spread.

In this article, we describe extensive partnership patterns and network

2 As background, each year in the United States over 12 million individuals discover
that they carry a sexually transmitted disease (STD). The two leading STDs, herpes
and human papillary virus (HSVT2 and HPV, respectively), are chronic and, although
subject to palliative treatment, not curable. Adolescent STD acquisition rates outpace
those of all other groups, with no change in sight. Roughly 5% of all sexually active
adolescents have acquired chlamydia or gonorrhea (Aral et al. 1999). Among sexually
active black adolescents, 25% are likely to be infected with herpes (CDC 2000), and
probably 40%–50% of all sexually active females have had a previous HPV infection,
now known to account for most cases of adult cervical cancer (Holmes et al. 1999).
The literature identifies three reasons for these gloomy facts. First, one-half of all
adolescents over 15 years old report being sexually active, and a significant proportion
of these adolescents are inconsistent in their use of condoms, therefore heightening
risk of STD acquisition and transmission (Bearman and Brückner 1999). Furthermore,
many adolescents who have not had intercourse are sexually active in a substantively
meaningful (if technically ambiguous) way, and most do not use condoms during non-
coital sex. Specifically, of adolescents who report that they are virgins (i.e., have not
had sexual intercourse) roughly one-third have had genital contact with a partner
resulting in fluid exchange in the past year. Thus virginal status does not mean that
adolescents are not engaging in behaviors that are free of risk for STD transmission.
Second, the majority of adolescents with an STD have no idea that they are infected
(Holmes et al. 1999); consequently, they may fail to protect their partners even if they
would prefer to do so. And third, relative to adults, adolescents tend to form romantic
partnerships of short duration, on average only 15 months, but with a strong skew
toward relationships of extremely short duration (less than four months; Laumann et
al. 1994). Most sex in adolescent relationships occurs, if it is to occur, within the first
two months (Bearman, Hillmann, and Brückner 2001). This combination of short
duration partnerships, inconsistent safe-sex practices, and incorrect assessment of STD
status provides a partial account for the diffusion of STDs among the adolescent
population. As fundamental is the role that sexual contact structures play in STD
transmission dynamics.
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structure for one population of interacting adolescents in a midsized Amer-
ican town, thereby providing detailed images of, and measurement for,
key structural characteristics of a largely complete romantic and sexual
network through which STDs may diffuse. As background, we begin
by describing some models of sexual networks that are implicit in the
existing literature on STDs. We then report the structure of the network
generated by the romantic and sexual partnership nominations provid-
ed by most of the adolescents in the study community. We consider both
cross-sectional and temporal views of this network, and we discuss the
extent to which the cross-sectional view obscures the potential for disease
diffusion. We then turn to how such a structure could emerge. Because
it is theoretically possible that homophily in partner selection—the ten-
dency for individuals with similar attributes, characteristics, or practices
to form partnerships—could generate the network structure we observe,
we explore the determinants of partnership choice and show that the
observed structure is not solely a by-product of preferences for particular
attributes. We subsequently propose a parsimonious micromodel that,
given the determinants of partnership choice, accounts for the structure
we observe. Implications for public policy are considered in the conclusion.

Below, we show that (1) current models of disease diffusion rest on
sexual network structures that differ in fundamental ways from what we
observe, (2) preferences governing partner choice combined with a simple
normative proscription against cycles of length 4 (Don’t date your old
partner’s current partner’s old partner) induce the structure we observe,
(3) partnership preference models that ignore the proscription against
completing cycles of length 4 induce incorrect structural representations,
and (4) consequently, current intervention efforts that assume the existence
of cores may be poorly conceived.

MODELS OF DISEASE DIFFUSION

The fundamental quantity in models of disease diffusion is the basic
reproductive rate 3 When , a self-sustaining epidemic occurs;R . R 1 1o o

when , the disease dies out. In models of disease diffusion, theR ! 1o

reproductive rate is a function of three parameters: the infectivity of the
microbe given contact between an infected and a susceptible (b), average
duration of infectiousness (D), and the structure of disease-relevant contact
within a population (C). The critical sociological parameter is C, the net-
work structure that governs contact.

3 is defined as the number of new infections produced by an infected individualRo

over the duration of infectivity (Anderson and May 1991).
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The simplest epidemiological models assume random mixing among all
members of the population. Under random mixing, the number of new
infections at time t is easily calculated as the number of susceptibles times
the number of infecteds times the proportion of contacts between sus-
ceptibles and infecteds that result in infection. The result of a random
mixing model is the classical S-shaped diffusion curve, where one observes
a slow start, followed by exponential growth, and then a decline, either
from recovery or death (Sattenspiel 1990).4

One can think of random mixing as the statement “people choose part-
ners independent of their characteristics.” For many diseases, random
mixing captures the essential aspects of the diffusion process. The sneeze
of a flu-ridden person on a transatlantic plane sends viral and bacterial
material through the air, potentially infecting all of the passengers, though
those sitting next to the sick person are at greatest risk. Although we may
feel otherwise in our less gracious moments, we know that the airlines
did not select us to sit next to a sneezer and that he or she did not sneeze
on us because of our characteristics. For STDs, however, pure random
mixing provides a poor approximation of the underlying contact
structure.5

As sociologists have long noted, partner-selection processes count. Thus
models that explicitly consider bias in partner choice may more
closely reflect the social and behavioral processes that give rise to disease-
relevant contact structures. For example, the obvious bias relevant for
diseases spread via heterosexual contact is toward partners of the oppo-
site sex. Among two-sex models of disease diffusion, the best-known class
of partner-bias models are preferred-mixing models that assume dispro-
portionately high levels of contact between individuals who share some
attribute (Koopman et al. 1989; Sattenspiel 1990; Jacquez et al. 1988;
Hethcote 2000).6 Based on the homophily principle, these models recognize
that, given opposite-sex partnerships, persons often prefer contact with
those who are similar to themselves with respect to race, religiosity, sexual

4 The S-shaped curve is not specific to random mixing. As noted by a reviewer, the S
shape may result from many different contact structures.
5 This is not to suggest that such models have no utility. For example, as one reviewer
notes, mixing models in which groups are based on the number of sexual partners
show that the probability of having sex with an infected person exceeds the prevalence
of infection in the population. However this would not be a pure random-mixing model.
6 Preferred-mixing models operate on persons classified by attribute rather than by
structural position. The models we develop subsequently identify position as the critical
element, such that attributes of persons are substitutable across positions. But, in an
abstract sense, they are also preferred-mixing models.
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preference, activity level, and so on.7 In such models, leftover contacts
occur between people of different groups proportional to the level of sexual
activity of these groups. Depending on the values of specific mixing pa-
rameters, these preferred-mixing models predict different levels and pat-
terns of disease spread.

Though systematic differences in connectivity patterns have been
shown to have striking implications for disease transmission (Morris 1997;
Newman 2002; Dezso and Barabasi 2002; Moody et al. 2003), preferred-
mixing models do not consider sexual network structure in a direct way.
Yet representing the models as networks is a useful way to reveal their
assumptions about contact patterns.8 Three stylized images of sexual net-
works can be derived from the literature on the diffusion of STDs.9 The
first, and most influential, is that of a core. According to standard models,
a core is a group of high activity-level actors (e.g., those with multiple
partners or who are frequent drug users) who interact frequently and pass
infection to one another (often causing reinfection for treatable STDs),
and diffuse infection out to a less densely connected population (Phillips,
Potterat, and Rothenberg 1980; Hethcote and Yorke 1984a, 1984b; St.
John and Curran 1978). Under the general diffusion model, cores are
predicted to sustain endemic pockets of disease, since the pattern of intense
interaction among members of the core pushes in the core above 1.R0

We represent the network structure implied by a core model in figure
1a; here, circles represent individuals and lines represent (disease-relevant)
relationships. High activity actors (core members) are indicated by black
circles, and the core is circled. Here we do not differentiate by sex:
core membership is determined by activity level, and the core is assum-
ed to contain both males and females. Translating a core-based preferred-

7 Preferred-mixing models need not assume homogeneous mixing within groups. Var-
iants include assortative-matching models that incorporate out-group preferences, e.g.,
age-skewed models that match older males with younger females, or role separation
models. The implications of skewed age matching for HIV diffusion are explored in
Morris (1993).
8 An important development has been the focus on strongly skewed positive degree
distribution in scale-free networks for diffusion dynamics (Newman 2002; Dezso and
Barabasi 2002; Newman et al. 2001; Barabasi and Albert 1999; Watts 2003). As noted
subsequently, the structure we observe is not a scale-free network with a power law
distribution of degree. Moody et al. (2003) show that a large densely connected core
can emerge in populations with low degree, demonstrating that the structural condi-
tions for large epidemics are possible even in populations without skewed partnership
distributions.
9 Each of these models has been refined in the literature to incorporate both theoretical
and empirical advances in our understanding of the process by which sexual part-
nerships are formed. Thus, e.g., there are variants of these models that emphasize role
separation in male homosexual populations, temporal overlap of partnerships (con-
currency), and multiple or complex preference structures in heterogeneous populations.
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mixing model into a network structure highlights specific measurable
properties of the resulting graph. In a core, it is likely that an individual’s
past partner is tied through multiple chains to his or her current or future
partner. Thus if cores exist in a population, cyclicity will be extremely
high in the network, and the length of chains connecting pairs of indi-
viduals in the population (geodesics) will be low.

While core-based models have been used to account for the diffusion
of bacterial STDs like gonorrhea (Hethcote and Yorke 1984a, 1984b; Heth-
cote and van den Driessche 2000; Hethcote and Van Ark 1987; Aral et
al. 1999; St. John and Curran 1978), core models offer a poor description
of sexual contact patterns in many contexts. For example, when a key
mode of transmission is male long-distance truck drivers having sex with
female commercial sex workers (CSWs), members of the groups that con-
stitute possible infection reservoirs (like CSWs) are structurally discon-
nected from one another and do not transmit infection directly to one
another. Capturing such dynamics—which may be more characteristic of
two-sex diffusion processes—requires more complex switching models,
often called inverse core models (Garnett et al. 1996). In an inverse core,
a central group of infected persons pumps disease out to others but does
not pass infection directly among themselves. For instance, prostitutes
might be infected by previously infected johns and then pass infection
on to other johns.

We represent the network associated with an inverse core in figure 1b.
Here we distinguish actors according to their role in the diffusion process
(commercial sex workers are black, sex customers are white; the inverse
core is circled). The key difference between a core and an inverse core
stems from the social organization of sexual relations, since johns are
more likely than other potential carriers to spread infection to individuals
not in the graph (specifically, their regular sex partners). Structurally,
however, the two networks are quite similar; though cores may be smaller
and denser, both structures are associated with high cyclicity and low
path distance between individuals. Since viruses are hardly attentive to
the social details that occupy us, the two structures hold similar potential
for disease diffusion.

A third model in the epidemiological literature describes disease dif-
fusion dynamics as driven by bridging processes (Aral 2000; Gorbach et
al. 2000; Morris et al. 1996). These models posit two populations of persons
engaged in different behaviors (i.e., a high-risk and a low-risk population)
linked by a few individuals who bridge the boundary between each world
(e.g., an IV drug user who shares needles with his drug partners and who
has sex with non-IV-drug users). A network consistent with this model is
shown in figure 1c, where the black circles denote actors who engage in
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high-risk behavior and the white circles denote actors who engage in
lower-risk behavior. Bridges are those who link the two worlds.10

Each of these graphs represents the network foundation of a preferred-
mixing model. In the core and inverse core models, mixing results from
in-group preference with respect to risk status (or some other attribute,
like IV drug use, associated with risk status). Even in the bridging model,
parameters for cross-group contacts are estimated from individual-level
data, and random mixing within groups is presumed. In all cases, disease
potential is contingent upon the extent to which (1) there is at least one
local pocket of densely interconnected persons (connected either via direct
connections as in the core or via short and redundant cycles as in the
inverse core) and (2) the pocket of high density is connected to the re-
mainder of the population through bridging chains that reach into the
periphery of the network. However, these models are useful only to the
extent that any empirically observed network structure matches that im-
plied by the in- and out-group contact parameterization. Obviously, if the
network one actually observes bears little relationship to the structure
implied by these models, we must radically reconsider their usefulness.11

For our data, this is the situation.
Specifically, in the context we study we observe a network structure

that has the appearance of a spanning tree; that is, a long chain of in-
terconnections that stretches across a population, like rural phone wires
running from a long trunk line to individual houses (Hage and Harary
1996, 1983). The global structure of a chainlike spanning tree is char-
acterized by a graph with few cycles, low redundancy, and consequently
very sparse overall density.12 The shortest distance between any two ran-
domly selected individuals (geodesic) is significantly higher than that ob-
served in either the core or inverse core structures.13 A typical spanning
tree structure is represented as figure 1d.

Random-mixing dynamics and positive preferences for partners do not

10 This graph expands on the triads linking the core to the periphery in the core and
inverse core networks, though this image draws attention to the fact that the bridging
triad is embedded in a macrostructure different from either of these other two models.
11 Recent work on the structure of large networks—e.g., those linking nodes on the
World Wide Web—reveals starlike nodes with very high degree. Such a structure is
not replicated in the data we observe.
12 Here and throughout we refer to chainlike structures that are not dominated by
cycles or small numbers of highly central nodes as spanning trees, though technically
a spanning tree is any connected noncycle graph.
13 A super star graph is technically a spanning tree, but is associated with short geodesics
(Barabasi and Albert 1999).
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produce spanning tree structures.14 Rather, this network structure appears
when formal or informal rules preclude the enactment of specific relations.
In the language of kinship structures, spanning trees are the product of
negative proscriptions: sets of rules about whom one cannot be in a re-
lationship with. Consequently, they are most frequently observed in large
and complex generalized exchange systems, as in the exchange of valu-
ables in the Kula ring (Hage and Harary 1996; Schweizer and White
1998).

As noted above, the extant models of sexually transmitted disease dif-
fusion implicitly assume network structures that correspond to one of the
first three images in figure 1. Yet we have essentially no complete pop-
ulation data from which to conclude that any of these models are em-
pirically appropriate. Fundamental at this point is the need to learn more
about actual networks and the structural characteristics that are relevant
for disease diffusion. In this article, we describe these characteristics in
an observed romantic and sexual network in a population of adolescents.
The network structure we find closely approximates a spanning tree. Since
such structures are the result of rules restricting partnership choice, we
focus on identifying a parsimonious rule that could produce the structure
we observe empirically. Conditional on simple homophily preferences in
partnership choice, the structural properties of networks simulated ac-
cording to this rule closely correspond to what we observe.

CONTEXT AND DATA

Data for this article are drawn from the wave 1 component of the National
Longitudinal Study of Adolescent Health (hereafter, Add Health), a lon-
gitudinal study of adolescents in grades 7–12. In 1994, in-school ques-
tionnaires were administered to approximately 90,000 students in 140
schools. Almost a year later, a nationally representative sample of over
20,000 of these students completed extensive interviews in their homes.
In 14 saturated field settings composed of two large ( ;N p 1,000 N p

) and 12 small ( ) schools, Add Health attempted home in-1,800 N ! 300
terviews with all enrolled students. The two large schools were selected
with the intent of capturing typical high school experiences in urban and
less urban communities. The adolescent in-home interview was conducted
using audio-CASI technology for all sensitive health status and health
risk behavior questions. Adolescents listened to the questions through
earphones and directly entered their responses into a computer, thereby

14 One reviewer suggests that if sex “has an element of contagion in which only sexually
experienced actors recruit new participants,” the resulting graph would be a spanning
tree. See app. C for our response to this suggestion.
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eliminating interviewer or parental effects on their responses (Turner et
al. 1998). Adolescents were asked to identify their sexual and romantic
partners from a roster of other students attending their school. Conse-
quently, in the saturated field settings, we have almost complete sexual
and romantic network data.

Context: “Jefferson High”

In this article we report data from the 832 respondents who attended a
school we identify as “Jefferson High School,” one of the two large high
schools where Add Health attempted in-home interviews with all students.
Jefferson High is an almost all-white high school of roughly 1,000 students
located in a midsized midwestern town. Jefferson is the only public high
school in the town. The town, “Jefferson City,” is over an hour’s drive
from the nearest large city. While densely settled, Jefferson City is sur-
rounded by beautiful countryside and is home to many agricultural en-
terprises. At one time the town served as a resort for city dwellers, drawing
an annual influx of summer visitors, though this is no longer the case,
and many of the old resort properties show signs of decay. At the time
of the fieldwork, students were reacting to the deaths of two girls killed
in an automobile accident. Despite this, fieldwork proceeded exceptionally
well. Adolescents frequently approached interviewers wearing yellow Add
Health buttons and asked when they would be invited to participate in
the study.15 In all, 90% of the students on the school roster participated
in the in-school survey, and over the course of the interview period, 83%
of all students in the school completed in-home interviews.

Jefferson is a close-knit, insular, predominantly working-class com-
munity, which offers few activities for young people. In describing the
events of the past year, many students report that there is absolutely
nothing to do in Jefferson. For fun, students like to drive to the outskirts
of town and get drunk. For our purposes, the relative isolation of the
community is an important factor, significant for the patterns of romantic
partnership and sexual partnership choices we observe. The context pro-
vides a good setting in which to look for the networks suggested by
preferred-mixing models, for if redundant structures (and therefore, cores)
exist, they are most likely to appear in island populations not permeated
by the currents of larger, more cosmopolitan settings.

Table 1 describes the tenth-to twelfth-grade students at Jefferson High
across a broad spectrum of characteristics.16 It also contains comparisons

15 Adolescents were given $20 in appreciation for completing the interview. Just before
Mothers’ Day and the prom, many adolescents were eager to be interviewed.
16 Additional information about these measures is provided in app. A.
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with all other high schools in the sample (col. 2); all disproportionately
white schools (over 75% white; col. 3); high schools of comparable size
(col. 4); and finally, the small set of other disproportionately white high
schools of similar size in Add Health (col. 5).

Sign tests reveal that, in general, Jefferson High is similar to other U.S.
schools across most of the comparison variables.17 However, Jefferson
students earn lower grades, are suspended more often, feel less attached
to school, and come from poorer families than those at comparable schools.
They are more likely than students in other high schools to have trouble
paying attention, and they have lower self-esteem, pray more, have fewer
expectations about college, and are more likely to have a permanent tattoo.
Compared to other students in large, disproportionately white schools,
adolescents at Jefferson High are more likely to drink until they are drunk.
In schools of comparable race and size, on average 30% of tenth-to-twelfth
grade students smoke cigarettes regularly, whereas in Jefferson that figure
is 36%. Drug use is moderate, comparable to national norms. More than
half of all students report having had sexual intercourse, a rate comparable
to the national average and only slightly higher than observed for schools
similar with respect to race and size. Jefferson is not Middletown, but it
looks an awful lot like it.

Romantic Partnerships and Sexual Partnerships

During the in-home interview, adolescents were asked if they were in or
had been involved in a special romantic relationship at some point during
the past 18 months. Adolescents in such relationships were asked to de-
scribe their three most recent relationships, including any current rela-
tionships.18 In addition, adolescents were asked to identify up to three

17 Reviewers suggested a nonparametric test for these comparisons. Following Conover
(1980), we use a sign test to compare the median value of each of these characteristics
at Jefferson to each of the four subsets of other schools. The assessment is quite
sensitive, especially with respect to col. 5, where the N of comparison schools is small.
The differences between Jefferson and other schools in the sample can be qualitatively
described simply: Jefferson is an all-white school that is largely working class; most
all-white schools in the country are composed of upper-middle-class adolescents who
reside in segregated suburbs. Consequently, social class predominantly drives differ-
ences in behavior, academic orientation, and achievement.
18 Adolescents who did not identify that they had a special relationship were asked if
in any relationship over the past 18 months they had “held hands, kissed, or told
someone that they liked or loved them.” If an adolescent was in such a relationship,
then they were asked to identify their partner and describe their relationship. Both
self-identified and behavior-induced “partnerships” could, but did not necessarily, in-
volve sexual intercourse. Of adolescents who reported being a virgin (i.e., had not had
sexual intercourse) one-third had had genital contact with a partner resulting in fluid
exchange in the past year (Schuster, Bell, and Kanouse 1996). Thus not having inter-
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individuals with whom they had a nonromantic sexual relationship in
the past 18 months. A nonromantic sexual relationship was defined as a
relationship involving sexual intercourse that the respondent did not iden-
tify as special and in which the partners did not kiss, hold hands, or say
that they liked each other. A large number of sexual, nonromantic rela-
tionships were reported. For the vast majority of reported partnerships,
start and end dates for all romantic and nonromantic sexual partnerships
were collected. Slightly less than one-quarter of all Jefferson students
reported no romantic or nonromantic sexual relationship during the pre-
ceding 18 months.

After collecting detailed information about partnerships, respondents
were asked if their partner attended their school (or the middle school
that fed students into the high school). If their partner attended either
school, respondents were asked to identify their partner from a roster by
a unique ID. Through this process we collected data on 477 partnerships
between respondents at Jefferson High and one of the two sampled schools
in Jefferson.19 We use these partnerships to generate a snapshot of the
network of romantic and sexual relations among adolescents attending
high school in Jefferson—the first such image that does not rely solely on
egocentric reports from a small fraction of the relevant population.

OBSERVED ROMANTIC AND SEXUAL NETWORKS AT JEFFERSON
HIGH

Figure 2 maps the actual network structure that links the 573 students
involved in a romantic or sexual relationship with another student at
Jefferson High.20 Circles denote individual students; romantic or sexual
relations are flows between nodes. Time is suppressed in this
representation.

course does not mean refraining from behaviors that are risky for HIV or STD trans-
mission (although the noncoital fluid-exchange behaviors they do engage in carry less
risk for both partners than intercourse).
19 Nominations to students account for 51.2% of all romantic nominations and 39.4%
of all nonromantic sexual partnership nominations. These partnerships involve roughly
75% of all students who reported having a romantic relationship. In the other large
saturated field setting in the Add Health sample, which is located in an ethnically
heterogeneous metropolitan area, only 11% of all partnership nominations were di-
rected toward other students. Thus in Jefferson, the school community provides the
key focal context (Feld 1981) for adolescent social and sexual relations. Given the
relative isolation of the community, this orientation is expected.
20 In fig. 2, and in all discussions presented here, all romantic and sexual relationship
nominations linking students are included, whether or not the nomination from i to j
was reciprocated with a nomination from j to i.
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We begin by examining the distribution of components in this network.21

A component is a subgraph of a network in which all nodes are reachable
from other nodes in the subgraph (Wasserman and Faust 1994). Com-
ponents are significant for disease transmission, since individuals who are
not in the same component of a sexual network cannot infect each other
with sexually transmitted diseases. A few simple components occur with
some frequency in Jefferson High. For example, the simple dyadic struc-
ture (two individuals whose only partnership is with each other) occurs
63 times at Jefferson. Thus 126 students are involved in isolated dyadic
relations. It is important to note, however, that far more than 126 students
at Jefferson report only one relationship; many of the more complex com-
ponents also include students with only one partner. However, the partners
of these students have other partners. This illustrates the importance of
collecting data extending beyond ego-centric networks, for it is only by
learning directly about the behavior of partners’ partners that we can
map the structure of connectivity through which disease must flow.22

Components involving three students are also fairly prevalent at Jef-
ferson. Triads composed of one male and two females occur 12 times, and
triads composed of one female and two males occur nine times. All told,
a total of 189 students at Jefferson (35% of the romantically active stu-
dents) are embedded in sexual and romantic network components con-
taining three or fewer students. There are very few components of inter-
mediate size (4–15 students).

The most striking feature of the network is the existence of a very large
component involving 52% ( ) of the romantically involved studentsn p 288
at Jefferson. While this large component involves the vast majority of
individuals with multiple partners, it has numerous short branches. Fur-
ther, it is very broad: the two most distant individuals are 37 steps apart.
Most surprising, it is characterized by the almost complete absence of
short cycles. Thus the network closely approximates a chainlike spanning
tree.

The size of the large component of connected nodes identifies the worst-
case scenario for potential disease diffusion within the population. While
one-third of all students are embedded in small, disjoint dyads and triads,

21 A number of readers have asked whether the observed network is a scale-free net-
work with a power law distribution of degree. See app. fig. C1 for an illustration of
our response.
22 Even if each respondent had simply reported on their number of partners in the
past 18 months, without their having selected them from a roster of possible partners,
we would not have been able to generate this structure, for we would not have known
how—or whether—these partnerships connected into a macrostructure. Attribute-
based matching schemes are similarly unable to specify the interrelationship of part-
ners’ partners.
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in an 18-month period more than 50% of the students at Jefferson were
chained together through romantic and sexual relationships that could
have involved the exchange of fluids. Recall that there are many indi-
viduals at the end of small branches in the large component who have
only one partner. While these adolescents have only had one partner, their
risk for contracting an STD may be significantly greater than an indi-
vidual with multiple partners who is embedded in a smaller, disjoint
component. Consequently, STD risk is not simply a matter of number of
partners.

While it is reasonable to think that an individual might have some
sense of their own partners’ relationships, the structure of the larger com-
ponents, and certainly the largest component, is not likely to be visible,
or meaningful, to the students at Jefferson. These structures reflect re-
lationships that may be long over, and they link individuals together in
chains far too long to be the subject of even the most intense gossip and
scrutiny. Nevertheless, they are real: like social facts, they are invisible
yet consequential macrostructures that arise as the product of individual
agency.

Temporal Unfolding

Figure 2 depicts the direct relationship structure linking individuals to-
gether. Disease transmission, however, rests on temporally ordered rela-
tionships, and these determine the indirect pathways that can put indi-
viduals at risk for disease. Thus if A and B are partners at time 1, and
B and C are partners at time 2, from a viral or bacterial perspective a
meaningful directed path with the capacity to transmit disease exists be-
tween A and C. In contrast, given this pattern of relationships, disease
cannot flow from C to A. Taking into account data describing the temporal
ordering of relationships, figure 3 reports all indirect and direct ties that
could potentially transmit disease within the major component of the
Jefferson network.23 Note that compared to the direct graph in figure 2,
the indirect graph is quite dense and contains many regions with inter-
acting adolescents. As a comparison, consider figure 4, the graph of a
simulated network containing the fewest possible indirect relations derived
from the original component. This is the minimal arrangement from a
disease perspective; the difference in density between figure 3 and figure
4 suggests the extent to which the actual dynamic unfolding of partner-
ships at Jefferson increases the potential for widespread disease diffusion
(Moody 2002).

23 A “movie” of the Jefferson network unfolding through time is available at http://
www.columbia.edu/iserp/people/bearman/chains.
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Fig. 3.—Temporally ordered ties in the Jefferson High partnership network

Structural Fragility

Examining the pattern of indirect ties reveals the level of connectivity
and redundancy of the network through which disease could travel. While
figure 3 reveals the existence of clusters of romantically involved students,
it does not reveal how robustly connected these clusters are to one another.
In general, structures like spanning trees are considered structurally fragile
because the deletion of a single tie or a single node can break a large
component into disconnected subgraphs.24 Consider again the analogy to
phone lines: if phone lines are laid out as a spanning tree, a break in the
major trunk line separates a single component into two disjoint compo-
nents and prevents calls from traveling from one component to the other.
Engineers protect against such failure by adding lines that build redun-
dancy into the system. The essential structural fragility of spanning trees
reveals how subtle changes in local network structure (deleting or adding
a relationship, e.g.) can have profound effects at the macrolevel.

Building from the temporally ordered indirect network shown in figure
3, figure 5 reveals how the structure of indirect ties breaks into a set of
smaller, mutually reachable sets when cut-points (single pathways be-
tween nodes) are eliminated. While each of the remaining smaller com-
ponents appears to be dense and corelike, simply removing ties at the
cut-points fractures the structure into separate components. For sexual

24 Structural fragility is also referred to as “1-connectedness” in the technical literature
on graphs.
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Fig. 4.—Simulated minimal temporal connectivity in the Jefferson High partnership
network.

networks, redundant lines provide the foundation for cores, the incubators
of epidemics. Thus in a sparse treelike contact structure with many cut-
points, failure to transmit disease within a partnership that happens to
be a cut-point can break the larger connected components into separate,
unconnected subcomponents, thereby fragmenting the potential epidemic.

GENERATING THE STRUCTURE: COMPARISON TO SIMULATED
NETWORKS

Data describing the complete structural mapping of a romantic/sexual
network in an interacting population has not been previously collected,
so there is no obvious baseline against which to evaluate whether what
we observe is unusual. Further, the distributional properties of many of
the network statistics we are interested in are not well known. Thus while
the graph of the observed network at Jefferson appears to stand in clear
contrast to the structures implied by most epidemiological models, there
is some possibility that it is simply a stochastic realization of one of the
random or preferred-mixing models. To test against these alternatives, we
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Fig. 5.—Temporally ordered partnerships: cutpoints removed

simulate 1,000 networks consistent with various constraints characteristic
of these other models and examine whether the relevant structural char-
acteristics of the Jefferson network are statistically likely, given the dis-
tribution of simulated networks.

We begin with the simplest model: Jefferson students select their part-
ners at random.25 To test this, we simulate 1,000 random networks with
the same size and degree as observed in Jefferson,26 and then we consider
where the network at Jefferson falls relative to the distribution of sim-
ulated networks.

Figure 6 presents box plots comparing the Jefferson High network to
the simulated networks across six measures relevant for STD diffusion
dynamics: density at maximum reach, centralization, mean geodesic

25 The idea seems far-fetched, but, as one reviewer notes, the context is already essen-
tially homophilous with respect to age, education, race, social class, citizenship, religious
orientation, and ethnicity—the major determinants of partnership choice for adults.
Given this, random choice makes sense as a baseline.
26 Specifically, we generate 1,000 networks with the same number of nodes and the
same distribution of number of partners as observed in the Jefferson net, with ties
assigned randomly between nodes. Details about the algorithm used to generate these
conditional random graphs can be found in Moody 1998.
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length, maximum geodesic length, skew of reach distribution, and number
of cycles. The values for each network measure are standardized
( ). The crosshatch within each box plot reports themean p 0; SD p 1
median value from the simulated nets; the interquartile range is shaded.
A dark circle indicates the value we observe for Jefferson High. Not
surprisingly, across all of these basic measures of network structure, the
sexual and romantic network in Jefferson is an outlier relative to the
simulated networks generated by random mixing. We discuss each mea-
sure in turn.

The first measure, density at maximum reach, assesses the extent to
which the overall network is connected. Here, we measure the density of
the network that arises when ties link all pairs of ever-reachable indi-
viduals.27 All things being equal, heightened connectivity is associated
with more efficient disease spread. Compared to the 1,000 simulated net-
works, the Jefferson network is highly connected. This means that stu-
dents at Jefferson are more likely to have partners at school who have
other partners at school who have other partners at school. The alternative
is many dyads, or other small groups of linked adolescents, that are ul-
timately disjoint from the rest of the population: for example, a core
disconnected from a set of smaller components. The highly connected
structure at Jefferson, therefore, poses a greater disease risk than would
exist if the partnerships were formed at random.

We next consider network centralization, a measure of the inequality
of the centrality of persons in the network. We calculate centralization
using Bonacich’s centrality algorithm with a negative beta value (Bon-
acich 1987). This parameterization gives extra weight to individuals who
connect otherwise unconnected individuals and less weight to those whose
bridges are redundant to other bridges in the network. Compared to
simulated networks with the same degree distribution, the Jefferson net-
work is highly centralized, suggesting that some actors play a central role
in linking disjoint clusters.

Continuing to move from left to right, the next box plot compares the
mean geodesic length of the Jefferson network to the simulated networks.
A geodesic is the shortest path between two connected persons in a net-
work: mean geodesic length is the mean of the shortest path between
every connected pair in the network. Large geodesics are characteristic
of spanning trees, the sparse chainlike structures with few alternate paths

27 Alternatively, one could represent this measure as the mean number reachable in a
network. Likewise, from the same framework one can assess whether the maximum
reach of the largest component, in our case involving roughly one-half of all students
in the school, is to be expected by chance. Relative to the simulated samples, the largest
component is almost 2 SDs greater than expected by a random-mixing model.
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directly connecting persons. In contrast, holding connectivity constant,
networks containing redundant links between actors (cycles, a core, or
starlike structures) will have smaller mean geodesic lengths. With respect
to STD diffusion, the absence of redundancy places pressure on the values
of the b (probability of transmission given contact) and D (duration of
infectiousness) parameters discussed previously. If b and/or D are low,
spanning trees are inefficient structures for diffusion of STDs. Compared
to the simulated networks, the network at Jefferson High has very long
mean geodesics. This is the result of the extremely large component and
the overall absence of “short-cuts,” or redundant ties, within the large
component.

While the Jefferson network is highly connected, this connectivity is
the result of very long chains. It follows that as the mean geodesic length
is large, that the maximum geodesic length—a measure that captures the
number of steps between the most distant pair of connected persons—
will also be large. And compared to the simulated networks, the most
distant pairs of connected individuals in Jefferson are quite distant from
one another. In fact, they are not likely to know that they are involved
in the same romantic web, which exists as a social fact beyond the reach
of ordinary cognition.

By definition, every person in both the simulated and observed net-
works is connected to at least one other person (their romantic relationship
partner). In addition to their own direct relations, however, they may be
indirectly connected to others through the relations of their partners and
their partners’ partners. Extending this logic, we can calculate for each
actor an individual-level measure of the number of “reachable” alters in
the network. We then can consider the skew of the reach distribution —
how unequally the number of reachable partners is distributed across the
population. If most of the population were in isolated dyads, the distri-
bution would show a strong positive skew, and the structure would con-
tain few efficient pathways for disease transmission. In contrast, a network
that includes a very large component would show a strong negative skew.
This is the case in Jefferson. Negatively skewed reach distributions are
a trace of contact structures with heightened potential for disease spread.

Among the most structurally characteristic feature of the graph of the
Jefferson network is the pronounced absence of short cycles. The absence
of short cycles guarantees that we do not observe a densely interconnected
core that has the capacity to function as a disease reservoir. In comparison
to the simulated networks, the romantic and sexual network at Jefferson
is characterized by significantly fewer cycles than occur when partnerships
are chosen randomly. Consequently, STD models that assume a core or
inverse core structure are not appropriate here. Using such models in
contexts such as Jefferson could result in underestimation of the potential
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for disease spread—especially if b or D is moderately high, as is the case
when treatment rates are low or asymptomatic cases are frequent.

Compared to randomly simulated networks of similar size and degree,
the empirical sexual network we observe is quite distinctive. The Jefferson
network is dominated by an extraordinarily large component that connects
more than half of all the students who are romantically and sexually
active in the school. Yet while this component ties individuals together
into long chains of potential infectivity, it is extremely fragile. This fragility
is largely due to the striking absence of cycles (redundant paths) in the
large component.

PREFERENCES FOR PARTNERS

Because the spanning tree structure we observe is extremely unlikely to
be the result of random mixing, some other set of processes governing
partnership selection must account for it. It is obvious that, when indi-
viduals choose partners, they do not base their choice on its contribution
to the global macrostructure. Put most starkly, adolescents do not account
for their partner choice by saying, “By selecting this partner, I maximize
the probability of inducing a spanning tree.” First, they cannot see the
global structure, and second, they do not care about it. They do care,
however, about the more immediate local structure in which the part-
nership is embedded, and they care about the attributes their potential
partner has.

One possibility is that there is a simple micropreference governing
choice that, if followed by most individuals, would naturally produce a
spanning tree. This is the solution we ultimately consider. We propose a
specific rule that, if followed, induces the macrostructure we observe,
given the conditions of partnership preference in Jefferson. Later in this
article we provide reasons for thinking that this preference is enacted,
even if adolescents do not articulate it. Getting to this point requires
examining the empirical determinants of partnership choice at Jefferson,
which we consider immediately below.

Attribute-Based Selection Preferences

Everyday experience, a cursory glance at personal advertisements in the
classified section of any newspaper, a brief inquiry into the underlying
logic of dating or matchmaking services, and a wide body of research all
suggest that individuals select partners on the basis of characteristics, and
that persons tend to prefer partners who are similar to them. While the
number of attributes and behaviors that could provide a foundation for
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preferential partnership selection is enormous, in table 2 we report the
level of homophily across a set of attributes and behaviors that might
reasonably be expected to govern partnership formation among adoles-
cents.28 To assess the extent of homophily on selected attributes within
romantic partnerships in Jefferson, we generated 500 permutations of the
attribute distance/matching matrix with the romantic relation matrix, and
then we used QAP to evaluate the difference in attribute means between
actual romantic pairs and the randomly simulated partnerships.29 For
continuous variables, the test statistic compares the mean of the difference
in the absolute value of the attribute measure for romantic pairs with the
mean of the difference between the randomly assigned pairs.30 Thus, for
example, the 0.367 value for grade means that, on average, romantic pairs
are about a third of a grade closer to each other than are randomly
assigned pairs. For categorical variables (i.e., smoking), the test compares
matching scores between real and randomly assigned pairs ( ifX p 1ij

where X is the matching indicator, x is the attribute, and i and jx p xi j

are the members of the pair). The difference formula is then the proportion
of nonromantic pairs that match minus the proportion of romantic pairs
that match. Thus the value of �.11 for smoking means that the proportion
of similar-smoking-status romantic pairs is .11 larger than that for ran-
domly assigned pairs.

Table 2 demonstrates clear evidence of homophily in romantic part-
nerships.31 Adolescents at Jefferson tend to select partners with similar
socioeconomic status, grade point average, college plans, attachment to
school, trouble in school, drinking behavior, IQ, and grade. With respect
to categorical attributes, partners tend to be similar in terms of sexual
experience, suspension from school, and smoking. Less important is re-
ligious denomination. Evidently, students who smoke prefer other stu-
dents who smoke. Alternatively, students who smoke induce smoking in
their partners, perhaps because only smokers can tolerate kissing smokers.

28 Obviously, judgment is required here. Adolescents may select partners on the basis
of unobserved characteristics (or unobserved to us) that vary across individuals in a
completely unsystematic way. This is, in one sense, what the idea of romantic love
suggests. Our strategy is to identify a set of characteristics that are observable, common,
and have face validity as salient attributes. We consider homophily on these, and then
simulate the global structure that would arise, should these elements provide the basis
for choice. We do not include one of the most salient attributes for partnership choice,
race, since Jefferson is all white.
29 We thank an AJS reviewer for suggesting a nonparametric analysis strategy (QAP)
in this context.
30 Specifically, mean[abs(X � X )Fij p 0] � mean[abs(X � X )Fij p 1].i j i j

31 It is important to recall that the context is already quite homogeneous. So, among
white students of roughly the same social class, ethnicity, citizenship, and so on, these
are the salient determinants of partnership choice.



Chains of Affection

69

TABLE 2
Homophily in Student Pairs

Variable

QAP Mean Differencea

Full Network Cross-Sex Only

Family SES . . . . . . . . . . . . . . . . . . . . . .299*** .295***
Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331*** .367***
GPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .096** .102***
Expect to graduate college . . . . .202*** .222***
School attachment . . . . . . . . . . . . . . .118*** .132***
Trouble in school . . . . . . . . . . . . . . . .029 .019
Gets drunk . . . . . . . . . . . . . . . . . . . . . . .180*** .195***
Delinquencyb . . . . . . . . . . . . . . . . . . . . �.058 �.070
Hours watching TV . . . . . . . . . . . . �.149 �.027
Religiosity (praying) . . . . . . . . . . . . �.006 �.012
Popularity (in-degree) . . . . . . . . . . �.377* �.211
Self-esteem . . . . . . . . . . . . . . . . . . . . . . .004 .008
Autonomy . . . . . . . . . . . . . . . . . . . . . . . .008 .002
Expect to get HIV . . . . . . . . . . . . . .003 �.007
Expect to marry by 25 . . . . . . . . . .025 .020
Attractiveness . . . . . . . . . . . . . . . . . . . .013 .047
Vocabulary (AH_PVT) . . . . . . . . . 1.508*** 1.671***
Religion . . . . . . . . . . . . . . . . . . . . . . . . . �.034* �.043*
Sexually active . . . . . . . . . . . . . . . . . . �.100*** �.124***
Smoking . . . . . . . . . . . . . . . . . . . . . . . . . �.087*** �.110***
School suspension . . . . . . . . . . . . . . �.028 �.066**
Tattoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . �.003 �.016

a Significance reflects exact P-test comparison to 500 permutations of the attribute distance/
matching matrix with the romantic relation matrix.

b Delinquency is standardized by gender and age.
* P ! .05.
** P ! .01.
*** P ! .001.

While homophily is strong, the preference for similarity does not extend
to all characteristics, most obviously sex and age. Almost every single
reported romantic relationship at Jefferson is a cross-sex relationship, and
as is true in most high schools, girls at Jefferson tend to be involved with
older boys. Ninth grade girls tend to be in relationships with ninth and
tenth grade boys, tenth grade girls with boys in the tenth and eleventh
grades, and so on. Among all partnerships involving Jefferson students,
we observe a mean grade difference of .9, less than expected if relation-
ships were formed independent of age (mean difference p 1.23 in the
randomly assigned pairs), but evidence of a female preference for older
boys (or male preference for younger girls).32

32 Recall that not all partners, sexual or romantic, are drawn from school. On average,
out-of-school partners were 3.21 years older than the respondent at the start of their
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Homophily in Partnership Experience

Even given these revealed preferences for attributes, adolescents have a
great deal of leeway in terms of selecting potential romantic partners.
Among adults, we know that experienced partners prefer experienced
partners (homophily on experience), a preference that can give rise to
cores (Laumann et al. 1994). Visual inspection of the graph shown in
figure 2 suggests that many of the differences between the Jefferson sexual
and romantic network and the simulated networks may be the result of
the large number of isolated dyads we observed in Jefferson. Thus we
ask whether the single large component involving half of all students is
a mathematical byproduct of homophily on this one partnership char-
acteristic: the number of previous partners an individual has had. If a
majority of the individuals with only one partner are involved with in-
dividuals who also have only one partner, it would follow that those with
multiple partners are constrained to be involved with persons who have
also had previous partners. The catenation of these individuals should,
all things being equal, generate large interconnected components.

To test this idea, we again simulate 1,000 networks with fixed size and
degree distribution, this time removing the 63 isolated dyads (involving
the 126 persons whose single partner has only a single partner) and pro-
hibiting the creation of new isolated dyads. We then compare the large
component from the Jefferson network to the structural characteristics of
network simulated with the prohibition against isolated dyads. Adding
this single additional constraint has a stunning impact on the structure
of our simulated networks. Specifically, the mean size of the largest com-
ponent in the simulated networks is now very close to the size of the large
component in the Jefferson network (mean of 283 nodes vs. 288 nodes in
Jefferson). As suspected, homophily in partnership selection among less
experienced partners (those with only a single romantic involvement) pro-
vides an efficient micromechanism for the generation of a large component.
Thus homophily on experience is a key element in generating the structure
we observe.33

relationship, although we observe a pronounced skew in the age-difference distribution.
For example, one out-of-school sexual partner of two girls was 39 years old. Aside
from a few exceptions like this, most of the students involved in out-of-school rela-
tionships have partners slightly older than themselves. Together with other evidence
in the survey describing where the respondents met their partners, we conclude that
many of these out-of-school partners attended Jefferson prior to our survey, and most
continue to live in the same neighborhood.
33 We have also estimated p* models that simultaneously evaluate the effect of hom-
ophily and structural characteristics on the likelihood of a graph. Because we are
skeptical about the interpretability of parameters from p* models of our data, we do
not discuss them in the text. However, we report and discuss these models in app. B.
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To consider network features other than component size, we again
compare the simulated networks with the Jefferson network across the
set of network measures salient for disease diffusion previously discussed
in figure 6. These results are shown in figure 7.

As before, values are standardized ( ). The crosshatchmean p 0; SD p 1
within each box plot reports the median value, and the inter-quartile range
is shaded. Dark circles indicate the values we observe for Jefferson. Across
all six network measures, the structure of the Jefferson sexual network
remains significantly different than expected, although less so than under
the less constrained simulations, where we did not prohibit isolated dyads.
The improved fit results from smaller variances in the simulated networks.

Although homophily on experience appears to account for the size of
the largest component, the structural characteristics of the observed Jef-
ferson network are still unusual relative to the simulated networks. Thus
this micromechanism is not sufficient to reproduce the structural prop-
erties of the observed network. The main differences between the sim-
ulated and real networks, in mean geodesic length, network centralization,
reach, and skew of maximum reach, are the product of the absence of
cycles. Thus while preferential selection on partnership experience level
provides an efficient foundation for generating large components in ad-
olescent sexual networks, it fails to generate a spanning tree. Among
romantically active students, random mixing produces more redundant
ties than exist in Jefferson. As a consequence, the simulated networks
reveal core structures rather than spanning trees.

UNCOVERING GOVERNING NORMS

Our analyses thus far demonstrate that the macrolevel network structure
at Jefferson is neither the simple product of random mixing nor of in-
dividual preferences for partners with particular attributes. Because we
find many cycles of length 4 in the simulated networks, but few in Jef-
ferson, we believe that there must be a prohibition against partnerships
that involve the creation of short cycles.

We adopt a new strategy to investigate just how unusual short cycles
are at Jefferson. Earlier we showed that while spanning trees may be
efficient for disease transmission, they are structurally fragile. Whereas
our investigation of structural fragility was based on the consequences of
removing relationships from the graph, we now consider the effects of
random rewiring of the network. That is, we randomly reassign partner-
ships from one pair of nodes to another pair. Since the new partnerships
we introduce are formed at random, they are insensitive to any existing
norms or preferences that may govern partner choice at Jefferson. By
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analogy, consider the existence of an incest taboo that restricts available
partners to those who are a culturally agreed upon distance from ego.
“Rewiring” the resulting marriage graph means that some relations pro-
hibited by this rule will be added to the network, and therefore some
structural properties of the new graph may no longer match the original
data structure. Structural features of the rewired graph that deviate from
the original graph help us identify behavioral rules that govern that spe-
cific parameter.

To rewire the empirically observed graph, we select 5% of the rela-
tionships at random and reassign them conditional only on the degree
distribution of the original graph. In this way, we ensure that individuals
with many partners continue to have many partners and that individuals
with few partners do not suddenly gain partners. Table 3 reports the effect
of rewiring and is based on a comparison of the observed network with
1,000 rewired graphs.

Compared with our earlier simulations, the rewired graphs are quite
similar to the observed network. This is what we would expect, since we
change only 5% of the ties at random, while holding the distribution
constant. Consequently, all of the network centralization measures are fit
well, as are the reach measures. The difference between the observed
number of components in Jefferson and those arising from the simulations
is trivial. The only statistic that is fit poorly is the number of cycles. The
rewired networks have almost twice as many cycles as are observed in
Jefferson. Since we observe a spanning tree in the Jefferson network, it
is not surprising that rewiring produces redundant ties, which appear here
as cycles. Thus rewiring isolates the single structural feature we have to
account for—in this case, the absence of cycles. Thus the only puzzle is,
Why are they absent?

The Basis for a Spanning Tree Structure: Unarticulated Partnership
Prohibitions

To explain why cycles are absent at Jefferson, recall that spanning trees
are theoretically produced by negative proscriptions. What kinds of re-
lationships are prohibited? The simple answer is that the prohibited re-
lationships are those that induce short cycles. The smallest possible het-
erosexual cycle has a length of 4. Consider four individuals, Bob, Carol,
Ted, and Alice. Imagine that Bob and Carol were once partners, but that
Carol left Bob for Ted. Further imagine that Ted and Alice were partners,
but that Ted dumped Alice for Carol. Should Bob and Alice date? From
Bob’s perspective, Alice was his former partner’s current partner’s part-
ner, or the former “lover” of his former girlfriend’s current lover. Alice
looks at Bob with the same lens. Her former boyfriend is dating the girl
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TABLE 3
Robustness of the Observed Statistics to Random Rewiring

Variable

Observed
Network*

Random
Rewire

Distribution

Coefficient P Coefficient SD

Density at maximum reach . . . .42 .34 .43 .06
Network centralization . . . . . . . . .024 .23 .023 .003
Mean geodesic length . . . . . . . . . . 15.94 .10 13.8 1.71
Maximum geodesic length . . . . . 37 .30 34.9 5.52
Reach distribution skew . . . . . . . �.61 .34 �.67 .21
N of cycles . . . . . . . . . . . . . . . . . . . . . . 5 .04 9.03 2.26

Note.—N of rewired nets p 1,000.
* Excludes isolated dyads.

who left Bob.34 These scenarios can be summarized by a graph, as in
figure 8, where lines indicate a relationship between nodes (here, persons),
yielding a potential cycle of length 4.

Using the simulation strategy introduced earlier, we can operationalize
a normative rule that persons do not date the former (or current) partner
of their former (or current) partner by prohibiting all cycles of length 4.
We simulate 1,000 random networks, this time conditional on the follow-
ing constraints: fixed degree distributions matching those observed at
Jefferson, no isolated dyads, and a single parameter that prohibits cycles
of length 4. The question is whether this set of constraints generates graphs
with structural features similar to those observed at Jefferson. Figure 9
shows that they do: on all the structural parameters we consider, the
Jefferson network is quite close to the central tendency of the distributions
generated by the simulated networks.

Comparison of the internal structure of these random networks and
the observed Jefferson network shows that they are essentially isomorphic.
This similarity is illustrated in figure 10, which shows graphs of the largest
components from four randomly selected networks simulated by this
model. One immediately sees network structures strikingly similar to the
structure observed in Jefferson. Given fixed degree and homophily in
experience, the sufficient condition for generating a spanning tree is the
prohibition against cycles of length 4. Such a prohibition may operate in
Jefferson.

34 Here preferences for partner attributes break down: if Carol is attracted to both Bob
and Ted, then they must be similar with respect to attributes, and yet clearly Carol
and Alice are not equivalent substitutes from Bob’s perspective.
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Fig. 8.—Hypothetical cycle of length 4

Status Dislocation and Closeness

Given the conditions of homophily described previously, figures 9 and 10
show that a simple rule—the prohibition against dating (from a female
perspective) one’s old boyfriend’s current girlfriend’s old boyfriend—ac-
counts for the structure of the romantic network at Jefferson. Why might
this negative proscription operate in a medium-sized community of es-
sentially homogenous adolescents?

The explanation we offer only makes sense for short cycles. From the
perspective of males or females (and independent of the pattern of “re-
jection”), a relationship that completes a cycle of length 4 can be thought
of as a “seconds partnership,” and therefore involves a public loss of
status.35 Most adolescents would probably stare blankly at the researcher
who asked boys: Is there a prohibition in your school against being in a
relationship with your old girlfriend’s current boyfriend’s old girlfriend?
It is a mouthful, but it makes intuitive sense. Like adults, adolescents
choose partners with purpose from the pool of eligible partners. But be-
yond preferences for some types of partners over others—for example,
preferences for partners interested in athletics, who do not smoke, or who
will skip school to have more fun—adolescents prefer partners who will
not cause them to lose status in the eyes of their peers. In the same way
that high-status students avoid relationships with low-status students, by
selecting partners on the basis of the characteristics that have resonance

35 The status-loss hypothesis competes with other potential micromechanisms, e.g.,
“jealousy” or the avoidance of too much “closeness,” a sentiment perhaps best described
unscientifically as the “yuck factor.” The status-loss hypothesis involves significant
scope limitations: namely, status loss is limited to contexts where actors by virtue of
their relational density can watch each other relatively closely. By contrast, the “yuck
factor”—which is essentially individualized—could operate in more diffuse contexts.



76

F
ig

.
9.

—
S

im
u

la
te

d
n

et
w

or
k

s
p

re
se

rv
e

ob
se

rv
ed

d
eg

re
e,

is
ol

at
ed

d
ya

d
d

is
tr

ib
u

ti
on

,
an

d
fo

u
r-

cy
cl

e
co

n
st

ra
in

t



77

F
ig

.
10

.—
S

im
u

la
te

d
n

et
w

or
k

s
p

re
se

rv
e

ob
se

rv
ed

d
eg

re
e,

is
ol

at
ed

d
ya

d
d

is
tr

ib
u

ti
on

,
an

d
cy

cl
e

co
n

st
ra

in
t



American Journal of Sociology

78

for the local determination of prestige, students avoid relationships whose
structure would lower their status in the eyes of their peers. In a large
and essentially homogenous school like Jefferson, the pool of potential
partners with the “right” mix of attributes is relatively large, so students
can fairly easily avoid taking “seconds” and still preserve their basic at-
tribute or experience preferences. More generally, in intact communities
where observation of temporally proximate partnerships is possible, we
should expect to see successful avoidance of relationships that complete
cycles of length 4. Such avoidance should not, however, extend to larger
cycles, since larger cycles typically involve relationships in the distant
romantic past that cannot be systematically observed.36

For adolescents, the consequence of this prohibition is of little interest:
what concerns them is avoiding status loss. But from the perspective of
those interested in understanding the determinants of disease diffusion,
the significance of a norm against relationships that complete short cycles
is profound. The structural impact of the norm is that it induces a span-
ning tree, as versus a structure characterized by many densely connected
pockets of activity (i.e., a core structure). As a consequence this prohi-
bition, combined with existing homophily preferences, both shapes the
potential for local disease diffusion and affects what social policy inter-
ventions will be effective at stemming disease spread.

DISCUSSION

Disease diffusion is widespread among adolescent populations. The stan-
dard models that epidemiologists use to describe the dynamics of diffusion
carry implicit ideas about the contact structure through which disease
travels. These ideas are associated with distinct structural features of
sexual networks. The most critical feature in STD epidemiology is the
idea of a core, which is associated with cycles in networks. Moody et al.
(2003) have demonstrated that very low average degree networks can give
rise to densely interconnected cores, characterized by high cyclicity. In
our data, we find that this key structural feature is largely absent. We
have proposed a reason for its absence, specifically a norm against seconds
partnerships. From this norm, combined with basic homophily prefer-
ences, we generate networks that are structurally isomorphic to the one
we observe empirically. This suggests that in adolescent society—where

36 In a sense the prohibition against cycles of length 4 suggests shifting from the cross-
sectional perspective considered in fig. 2 and focusing instead on the temporally ordered
graph shown in fig. 3, since a cycle unfolds over time. The picture is made somewhat
more complex by instances in which relationships are concurrent. While not uncommon
at Jefferson, concurrency appears to be more common among adults than adolescents.
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partner choice is salient for local status—it seems reasonable to think that
such a rule operates.37

Nonetheless, the scope conditions for this article are implied in the
central finding and the mechanism we claim accounts for it. Specifically,
our mechanism presumes that actors can watch each other, that they are
capable of recording immediately prior partnerships, and that they are
susceptible to collective assessment of their personal choices. One can only
fear losing status in the eyes of others if the others are watching and if
one cares about their assessments.

These conditions may be absent for adults who are embedded in worlds
larger and more disjoint than adolescents. More than adolescents, adults
may be capable of segregating audiences across the various settings in
which they are embedded (work, leisure, play, school, etc.) and are there-
fore less subject to the scrutiny and sanctioning of their peers than are
adolescents. While entering into a partnership that completes a cycle of
length 4 may result in a loss of face for an adult, it is more likely that
among adults such cycles are generated without anyone ever knowing.
This is unlikely in a high school, where much social energy is devoted to
understanding who is going out with whom.38 All this suggests we would
be less likely to observe spanning trees among adult populations than
among adolescents.

In theory, spanning trees are among the most efficient structures for
diffusion since the absence of redundant lines maximizes reach at lowest
density. Yet their efficiency is counteracted by their fragility: spanning
trees are highly susceptible to breaks in transmission. Electric provision
systems would be set up as spanning trees if service providers did not
worry about failing to deliver power to some customers. But since they
worry about small breaks in the line, they establish more densely con-
nected power grids. It follows that for highly infectious diseases with long

37 We note again that not all of the sexual partnerships in Jefferson are directed toward
other students. It is possible that the spanning tree structure we observe is a by-product
of missing data on the prior partnerships of the out-of-school partners. We consider
this unlikely for three reasons. First, adolescents with any out-of-school partners are
disproportionately older and more likely to be female than are those with only in-
school partnerships. Second, those with out-of-school partners are less likely than those
with in-school partners to have other in-school partnerships. And third, analysis of
temporal sequencing indicate that most out-of-school partnerships are temporally sub-
sequent to in-school partnerships, should there be any. Consequently, their impact on
the structure of the observed network is necessarily modest, since if present, they do
not link (from a viral/bacterial perspective) nodes in the in-school graph we consider.
38 Because out-of-school partnerships tend to be more privatized—i.e., involve seeing
less of friends—the scope conditions are relevant here as well, as privatized relation-
ships are less likely to be observed and hence could, theoretically, not be subject to
the four-cycle constraint.
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periods of infectivity, transmission is also quite efficient under a spanning
tree. Yet if the duration of infectivity is short, or if the disease is not
particularly infectious, the probability of transmission within any given
partnership is low. From the perspective of disease spread, failure to
transmit disease within a given partnership is effectively a structural break
in the network (Watts 2003). Since the natural infectivity and duration
of infectiousness varies across STDs, we believe the most effective strategy
for reducing disease diffusion rests on creating structural breaks.

We might then ask a new question: What kinds of policy intervention
will be most effective at inducing structural breaks in the sexual networks
of adolescents? Here the answer is exceedingly simple. Assume that some
proportion of actors who are “reached” through an intervention decide to
change their behavior. Under core and inverse core structures, it matters
enormously which actors are reached, while under a spanning tree struc-
ture the key is not so much which actors are reached, just that some are.
This is because given the dynamic tendency for unconnected dyads and
triads to attach to the main component, the structure is equally sensitive
to a break (failure to transmit disease) at any site in the graph. In this
way, relatively low levels of behavior change—even by low-risk actors,
who are perhaps the easiest to influence—can easily break a spanning
tree network into small disconnected components, thereby fragmenting
the epidemic and radically limiting its scope. Obviously, similarly low
levels of change in cores will have little impact.

This example highlights how having an accurate sense of the real struc-
ture of a network matters for the effectiveness of an intervention. If cores
exist, one develops interventions that target core members. But if there
are no actual structural cores, interventions targeted primarily at high-
risk individuals will do less to stem the overall spread of disease than
will broadcast interventions directed toward all actors. Ironically, early
HIV prevention strategies that utilized broadcast diffusion techniques
may have been more effective at reducing overall incidence of disease
than more recent interventions focused on isolating those seen as being
at a higher risk for infection (though these targeted interventions may
reduce risk of disease acquisition at the individual level).

Epidemiologists, unable to observe or measure directly the structure of
sexual networks, have tended to latch onto a single idea: specifically, the
idea that the number of partners matters for STD diffusion dynamics. If,
as their models assume, the real contact structures are well approximated
by core or inverse core network structures, degree distributions are mean-
ingful, and the number of partners will be a key parameter. But this need
not be the case theoretically, and, as we empirically show, it is not likely
the case for adolescents. The fact that the relevant contact structure is a
spanning tree explains why the rates of bacterial STDs have been so high
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among adolescents in the past decade, and why most social policy, which
focuses on high-risk individuals within the adolescent community, has
failed to stem the flood of new infections. Our data suggest that a shift
in social policy toward comprehensive STD education for all adolescents,
not just those at highest risk, would be significantly more effective than
current intervention models.
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APPENDIX B

Building Macrostructure from Homophily on Partner Preferences: A P*
Approach

Here we consider p* estimates for the Jefferson sexual and romantic net-
works. The p* modeling framework has been proposed as a statistical
modeling tool for network data. Statistical modeling of social networks
is difficult, since the basic assumption of case independence is violated.
The p* modeling framework assumes that dependencies in the network
can be modeled as a Markov process (Anderson et al. 1999; Wasserman
and Pattison 1996), where dependencies are specified based on particular
(usually local) network patterns, such as the number of two-stars or com-
plete triads found in the network. When the p* assumptions are met,
pseudolikelihood logit models can be used to estimate parameters and
statistical significance by constructing a set of structural change statistics
around the dependencies in the model and regressing the presence of a
tie on changes in structural parameters due to the presence of that tie.
Among the most useful aspects of p* modeling is the ability to model
homophily parameters while simultaneously accounting for (at least some
of) the structural dependencies in the network.

While promising, the p* modeling framework is not uncontroversial,
and the practical application of such models is limited. First, small vio-
lations of the Markov assumptions can create biased pseudolikelihood
estimates, making it difficult to interpret both parameter estimates and
significance tests. Second, the structural change variables used in the logit
model estimation are often highly collinear, creating parameter instability
and wildly fluctuating model fit. This is a problem we encounter with
these data, where some of the structural variables correlate at greater
than 0.9. Nevertheless, we consider the analysis strategy here.39 In the
tables below, we estimate p* models for the Jefferson High School ro-
mantic network based on homophily parameters and network structure.

39 One reviewer suggests that we use Snijders’ SIENNA algorithm for dynamic p*
modeling (Snijders 1991). The principal rationale for the decision to not use SIENNA
is that the program was not designed for a bipartite graph (which our strong hetero-
sexual network gives us). In addition, SIENNA is not designed for graphs of this size.
Even limiting the network to just the largest component (which would be selection
on the dependent variable) results in a graph of 288 nodes. Finally, the time features
of our graph would result in very sparse networks for any given time window, which
means the structural parameters we can include would be too thin and estimation
unreliable. The key temporal element that one ought to focus on, we believe is the
time-dependent nature of cycles. We have examined this issue descriptively and note
that there are never any cycles existing at a particular moment in time. As noted in
the text, readers interested in viewing the time ordered evolution of the largest com-
ponent can request a “movie” of the evolution of the network.
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We treat the graph as strictly heterosexual, removing the small number
of homosexual relations. We note that while there are few of these, they
are important for the observed structure of the graph, since one of these
relations is part of the large cycle evident in the center of figure 2. The
effects of removing these cases are a reduction from five to three cycles,
a slight decrease in the size of the largest component (from 288 to 287
nodes), and an increase in the diameter of the graph (from 37 to 43). We
follow standard practice and build models from a simple random graph
to more complex structures. We include the four pairwise attribute mea-
sures that provide the best model fits (grade in school, smoking status,
popularity, and attractiveness) as well as structural change statistics as-
sociated with two paths, two stars, three stars, three paths, and four
cycles.40 To fit the model we construct a male-female dyad data set and
estimate the probability of a tie conditional on both individual charac-
teristics and the structural change statistics. For the models that include
attributes, cases with missing data on any of the attribute measures are
dropped from the network. This, of course, changes the network
composition.

The overall model fits for each model we estimate are reported in table
B1; the parameter estimates of the attribute mixing for model 12, the
model that best approximates the observed data, are reported in table
B2.

40 We do not report results from introduction of the four-cycle term. The coefficient,
rather than being negative, is positive, which implies a tendency in the network for
four cycles to form. This is empirically incorrect. In fact, this result is picking up the
three observed four cycles that come from one high-degree male star. As such, the
basic “homogeneity” assumption of the model is not met. If one runs a model either
(a) without this node in the underlying graph or (b) with an interaction that separates
out cycles through this one actor, the parameter is negative.
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TABLE B2
Parameter Fits

Variable Estimate

Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.020***
2-stars (MrF) . . . . . . . . . . . . . . . . . . . . . . . �2.477***
2-stars (FrM) . . . . . . . . . . . . . . . . . . . . . . . �3.864***
3-stars (MrF) . . . . . . . . . . . . . . . . . . . . . . . .910***
3-stars (FrM) . . . . . . . . . . . . . . . . . . . . . . . 1.679***
3-paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .021
Isolated dyads . . . . . . . . . . . . . . . . . . . . . . �.948***
Grade difference . . . . . . . . . . . . . . . . . . . . .092*
Attractiveness difference . . . . . . . . . . . �.156**
Both smoke . . . . . . . . . . . . . . . . . . . . . . . . . .841***
Popularity difference . . . . . . . . . . . . . . . �.076*

* P ! .05.
** .P ! .001
*** P ! .0001.

The homophily effects can be seen with attractiveness and smoking.
Similarly attractive students (or, similarly unattractive students) are dis-
proportionately drawn into pairs; on the other hand, smokers and non-
smokers do not pair up often. However, the structural coefficients are
incoherent, which suggests that while individuals have preferences, almost
any structure is available for their expression. The relative independence
of preference to structure provides insight into why such preferences can
exist in the first place. If preferences could find expression in only a single
structure, most people would be without partners. The fluidity of struc-
tures relative to preferences allows all partnerships to be the product of
choice, even if the choices and preferences that underlie them are, in a
fundamental sense, completely arbitrary, or, alternatively, highly
individuated.

APPENDIX C

Q&A

Question 1. One reviewer suggests that if sex “has an element of contagion
in which only sexually experienced actors recruit new participants,” the
resulting graph would be a spanning tree. This model would necessarily
imply disassortative mixing by degree. Although interesting, such a model
does not correspond to the empirical reality we observe. The simplest
way to examine this is to consider the degree distribution for our data
(table C1) and compare the observed mixing matrix by degree to the
expected mixing matrix (table C2).
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TABLE C1
Observed Degree

Distribution

Degree Frequency

1 338
2 139
3 59
4 28
5 6
6 1
9 1

TABLE C2
Mixing Matrix by Degree

Mixing Matrix
1 2 3 4 5�

Observed:
1 . . . . . . . . . . . . . . . . . . . . . . . 126 101 54 38 19
2 . . . . . . . . . . . . . . . . . . . . . . . 101 78 49 34 16
3 . . . . . . . . . . . . . . . . . . . . . . . 54 49 38 29 7
4 . . . . . . . . . . . . . . . . . . . . . . . 38 34 29 8 3
5� . . . . . . . . . . . . . . . . . . . . . 19 16 7 3 0

Expected:
1 . . . . . . . . . . . . . . . . . . . . . . . 120 98.9 63.0 39.8 16.0
2 . . . . . . . . . . . . . . . . . . . . . . . 98.9 81.4 51.8 32.8 13.2
3 . . . . . . . . . . . . . . . . . . . . . . . 63.0 51.8 33.0 20.9 8.38
4 . . . . . . . . . . . . . . . . . . . . . . . 39.8 32.8 20.9 13.2 5.31
5� . . . . . . . . . . . . . . . . . . . . . 16.0 13.2 8.38 5.31 2.13

The observed values (table C1) are quite close to the expected values
(the lower half of table C2). Consequently, there is little evidence for
disassortative mixing. A simple measure of assortative mixing would be
the correlation between actor i’s degree and actor j’s degree. In our net-
work, the correlation is �.03 ( ), when using the full degree dis-P p 0.53
tribution, and �.02 ( ) for the collapsed data reported above. HereP p 0.68
also, there is no evidence for disassortative mixing or assortative mixing;
in short, while interesting, there is no evidence that a contagion model
fits the data we observe.

Question 2. A number of readers have asked whether the observed
network is a scale-free network with a power law distribution of degree.
We have considered this in a log-log plot in figure C1. The slope of the
fitted line (the exponent for the power law) has a value of �2.9. While a
casual glance suggests that the fitted line mirrors the degree distribution,
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following Jones and Handcock (2003), we consider it unlikely that the
observed degree distribution is in fact scale free.

Fig. C1.—The observed degree distribution is not scale free
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