Structural Properties of Networks: Introduction

Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

- A network (or graph) is:
 - a collection of individuals or entities, each called a vertex or node
 - a list of pairs of vertices that are neighbors, representing edges or links
- Examples:
 - vertices are mathematicians, edges represent coauthorship relationships
 - vertices are Facebook users, edges represent Facebook friendships
 - vertices are news articles, edges represent word overlap
- Networks can represent any binary relationship over individuals
- Often helpful to visualize networks with a diagram
- But to us, the network is the list of edges, not the visualization
 - same network has many different visualizations

- We will use N to denote the number of vertices in a network
- Number of possible edges:

$$N(N-1)/2 \approx N^2/2$$

• The degree of a vertex is its number of neighbors

- The distance between two vertices is the length of the shortest path connecting them
- This assumes the network has only a single component or "piece"
- If two vertices are in different components, their distance is undefined or infinite
- The diameter of a network is the average distance between pairs
- It measures how near or far typical individuals are from each other

- So far, we have been discussing undirected networks
- Connection relationship is symmetric:
 - if vertex u is connected to vertex v, then v is also connected to u
 - Facebook friendship is symmetric/reciprocal
- Sometimes we'll want to discuss directed networks
 - I can follow you on Twitter without you following me
 - web page A may link to page B, but not vice-versa
- In such cases, directionality matters and edges are annotated by arrows

Illustrating the Concepts

- Example: scientific collaboration
 - vertices: math and computer science researchers
 - links: between coauthors on a published paper
 - <u>Erdos numbers</u> : distance to Paul Erdos
 - Erdos was definitely a *hub* or *connector;* had 507 coauthors
 - MK's Erdos number is 3, via Kearns \rightarrow Mansour \rightarrow Alon \rightarrow Erdos
 - how do we *navigate* in such networks?
- Example: "real-world" acquaintanceship networks
 - vertices: people in the world
 - links: have met in person and know last names
 - hard to measure
 - let's examine the results of our own last-names exercise

average = 24.6 std = 17.7 min = 1 max = 94

of last names known

Structure, Dynamics, and Formation

Network Structure (Statics)

- Emphasize purely *structural* properties
 - size, diameter, connectivity, degree distribution, etc.
 - may examine statistics across many networks
 - will also use the term *topology* to refer to structure
- Structure can reveal:
 - community
 - "important" vertices, centrality, etc.
 - robustness and vulnerabilities
 - can also impose *constraints* on dynamics
- Less emphasis on what actually occurs *on* network
 - web pages are linked... but people surf the web
 - buyers and sellers exchange goods and cash
 - friends are connected... but have specific interactions

Network *Dynamics*

- Emphasis on what *happens* on networks
- Examples:
 - spread of disease/meme/fad in a social network
 - computation of a proper coloring
 - computation in the brain
 - spread of wealth in an economic network
- Statics and dynamics often closely linked
 - rate of disease spread (dynamic) depends critically on network connectivity (static)
 - distribution of wealth depends on network topology
- Dynamics of *transmission* most often studied
- What about dynamics with self-interest, deliberation, rationality?

Network Formation

- Why does a particular structure emerge?
- Plausible processes for network formation?
- Generally interested in processes that are
 - decentralized
 - distributed
 - limited to local communication and interaction
 - "organic" and growing
 - consistent with (some) measurement
- The Internet versus traditional telephony