Navigation in Networks

Networked Life NETS 112 Fall 2013 Prof. Michael Kearns

The Navigation Problem

- You are an individual (vertex) in a very large social network
- You want to find a (short) chain of friendships to another individual
- You don't have huge computers and a global/bird's-eye view
- All you (hopefully) know is who your neighbors/friends are
 - ...and perhaps information about them (age, interests, religion, address, job,...)
- You can ask your friends to make introductions, which lead to more
- How would you do it?
- Also known as search in networks and the "small world problem"
- Small diameter is necessary but not sufficient!
 - …navigation is an algorithmic problem
- Related to the problem of routing data packets in the Internet

Small Worlds and the Law of the Few

- Travers & Milgram 1969: classic early social network study
 - destination: a Boston stockbroker; lived in Sharon, MA
 - sources: Nebraska stockowners; Nebraska and Boston "randoms"
 - forward letter to a first-name acquaintance "closer" to target
 - target information provided:
 - name, address, occupation, firm, college, wife's name and hometown
 - navigational value?
- Basic findings:
 - 64 of 296 chains reached the target
 - average length of *completed* chains: 5.2
 - interaction of chain length and navigational difficulties
 - main approach routes: home (6.1) and work (4.6)
 - Boston sources (4.4) faster than Nebraska (5.5)
 - no advantage for Nebraska stockowners

The Connectors to the Target

- <u>T & M</u> found that many of the completed chains passed through a very small number of penultimate individuals
 - Mr. G, Sharon merchant: 16/64 chains
 - Mr. D and Mr. P: 10 and 5 chains
- Connectors are individuals with extremely high degree
 - why should connectors exist?
 - how common are they?
 - how do they get that way? (see Gladwell for anecdotes)
- Connectors can be viewed as the "hubs" of social traffic
- Note: no reason *target* must be a connector for small worlds
- Two ways of getting small worlds (low diameter):
 - truly random connection pattern \rightarrow dense network
 - a small number of well-placed connectors in a sparse network

Small Worlds: A Modern Experiment

- The Columbia Small Worlds Project:
 - considerably larger subject pool, uses email
 - subject of Dodds et al. assigned paper
- Basic methodology:
 - 18 targets from 13 countries
 - on-line registration of initial participants, all tracking electronic
 - 99K registered, 24K initiated chains, 384 reached targets
- Some findings:
 - < 5% of messages through any penultimate individual
 - large "friend degree" rarely (< 10%) cited
 - Dodds et al: \rightarrow no evidence of connectors!
 - (but could be that connectors are not cited for this reason...)
 - interesting analysis of reasons for forwarding
 - interesting analysis of <u>navigation method vs. chain length</u>

The Strength of Weak Ties

- Not all links are of equal importance
- Granovetter 1974: study of job searches
 - 56% found current job via a personal connection
 - of these, 16.7% saw their contact "often"
 - the rest saw their contact "occasionally" or "rarely"
- Your "closest" contacts might not be the most useful
 - similar backgrounds and experience
 - they may not know much more than you do
 - connectors derive power from a large fraction of weak ties
- Further evidence in Dodds et al. paper
- T&M, Granovetter, Gladwell: multiple "spaces" & "distances"
 - geographic, professional, social, recreational, political,...
 - we can reason about general principles without precise measurement

The Magic Number 150

- Social channel capacity
 - correlation between neocortex size and group size
 - Dunbar's equation: neocortex ratio → group size
- Clear implications for many kinds of social networks
- Again, a topological constraint on typical degree
- From primates to military units to Gore-Tex

Neocortex size and group size in primates

Summary, and a Mathematical Digression

- So far:
 - large-scale social networks reliably have high-degree vertices
 - large-scale social networks have small diameter
 - furthermore, people can find or navigate the short paths from only local, distributed knowledge
 - these properties are true of other types of networks, too
- But there must be some limits to degrees
 - can't be "close friends" with too many people (150? 1000?)
- Large N, small diameter and limited degrees are in tension
 - not all combinations are possible
- Let N be population size, Δ be the maximum degree, and D be the diameter
- If $\Delta = 2$ then must have D ~ N/4 ($\gg 6$, $\gg \log(N)$)

Summary, and a Mathematical Digression

- The relationship between Δ , D and N has been studied mathematically
- For fixed Δ and D, largest N can be is

$$N \leq \Delta^{D}$$

• For example: if N = 300M (U.S. population) and $\Delta = 150$, get constraint on D:

 $300,000,000 \le (150)^{D}$ $\log(300,000,000) \le D\log(150)$ $D \ge 3.9$

- So calculation consistent with reality (whew!)
- More generally: multiple structural properties may be *competing*

Two Aspects of Navigation

- In order for people (or machines) to find short paths in networks:
 - short paths must exist (structural; small diameter)
 - people must be able to find the short paths via only local forwarding (algorithmic)
- The algorithmic constraints are strong (Travers & Milgram)
 - only know your neighbors in the network
 - limited information about the target/destination (physical location, some background)
- Look at a model incorporating structural and algorithmic constraints

Kleinberg's Model

- Start with an k by k grid of vertices (so N = k²)
 - each vertex connected to compass neighbors
 - add a few random "long-distance" connections to each vertex
 - probability p(d) of connecting to a vertex at grid distance d:

 $p(d) \propto (1/d)^r, r \ge 0$

- large r: heavy bias towards "more local" long-distance connections
- small r: approach uniformly random

Kleinberg's Question

• Which values of r:

 $p(d) \propto (1/d)^r, r \ge 0$

permit efficient navigation?

- Efficient: number of hops << N, e.g. log(N)
- Algorithmic assumption:
 - vertices know the grid addresses of their neighbors
 - vertices know the grid address of the target (Sharon, MA)
 - vertices always forward the message to neighbor closest to the target in grid distance
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 <l
 - no "backwards" steps, even if helpful
 - purely geographic information

Kleinberg's Result

- Intuition:
 - if r is too large (strong local bias), then "long-distance" connections never help much; short paths may not even exist
 - if r is too small (no local bias), we may quickly get close to the target; but then we'll have to use grid links to finish
 - effective search requires a delicate mixture of link distances
- The result (informally): as N becomes large:
 - r = 2 is the only value that permits rapid navigation (~log(N) steps)
 - a "knife's edge" result; very sensitive
- Note: locality of information crucial to this argument
 - At r <= 2, will have small diameter, but local algorithms can't find the short paths

From Brockmann, Hufnagel, Geisel (2006) Best-fit value of r = 1.59

Navigation via Identity

- Watts et al.:
 - we don't navigate social networks by purely "geographic" information
 - we don't use any *single* criterion; recall Dodds et al. on Columbia SW
 - different criteria used at different points in the chain
- Represent individuals by a *vector* of attributes
 - profession, religion, hobbies, education, background, etc...
 - attribute values have distances between them (tree-structured)
 - distance between individuals: minimum distance in any attribute

all jobs

(athletes)

baseball

scientists

chemistry

tennis

CS

- only need one thing in common to be close!
- Algorithm:
 - given attribute vector of target
 - forward message to neighbor closest to target
- Let's look a bit at the <u>paper</u>
- Permits fast navigation under broad conditions
 - not as sensitive as Kleinberg's model

Summary

- Efficient navigation has both structural and algorithmic requirements
- Kleinberg's model and question captures both
- Result predicts delicate mixture of connectivity for success
- Not too far from reality? (Where's George? data)
- Watts et al. provide more "sociological" model
- More complex, but less sensitive

