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The Navigation Problem

You are an individual (vertex) in a very large social network
You want to find a (short) chain of friendships to another individual
You don't have huge computers and a global/bird's-eye view
All you (hopefully) know is who your neighbors/friends are

- ..and perhaps information about them (age, interests, religion, address, job,...)
You can ask your friends to make introductions, which lead to more
How would you do it?

Also known as search in networks and the "small world problem”

Small diameter is necessary but not sufficient!
- ..navigation is an algorithmic problem

Related to the problem of routing data packets in the Internet




Small Worlds and the Law of the Few

Travers & Milgram 1969: classic early social network study
- destination: a Boston stockbroker; lived in Sharon, MA
- sources: Nebraska stockowners; Nebraska and Boston "randoms”
- forward letter to a first-name acquaintance "closer” to target
- target information provided:

* hame, address, occupation, firm, college, wife's name and hometown
* navigational value?

Basic findings:
- 64 of 296 chains reached the target

average length of completed chains: 5.2
» interaction of chain length and navigational difficulties

main approach routes: home (6.1) and work (4.6)
Boston sources (4.4) faster than Nebraska (5.5)
no advantage for Nebraska stockowners



The Connectors to the Target

T & M found that many of the completed chains passed through a very
small number of penultimate individuals

- Mr. G, Sharon merchant: 16/64 chains

- Mr. D and Mr. P: 10 and 5 chains
Connectors are individuals with extremely high degree

- why should connectors exist?

- how common are they?

- how do they get that way? (see Gladwell for anecdotes)
Connectors can be viewed as the “hubs” of social traffic
Note: no reason target must be a connector for small worlds
Two ways of getting small worlds (low diameter):

- truly random connection pattern - dense network

- a small number of well-placed connectors in a sparse network



Small Worlds: A Modern Experiment

The Columbia Small Worlds Project:

- considerably larger subject pool, uses email

- subject of Dodds et al. assigned paper

Basic methodology:

- 18 targets from 13 countries

- on-line registration of initial participants, all fracking electronic
- 99K registered, 24K initiated chains, 384 reached targets
Some findings:

- < 5% of messages through any penultimate individual

- large "friend degree"” rarely (< 10%) cited

- Dodds et al: = no evidence of connectors!

* (but could be that connectors are not cited for this reason...)

- interesting analysis of reasons for forwarding

- interesting analysis of navigation method vs. chain length
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The Strength of Weak Ties

Not all links are of equal importance
Granovetter 1974: study of job searches
- B56% found current job via a personal connection
- of these, 16.7% saw their contact “often”
- the rest saw their contact “occasionally” or “rarely”
Your "closest"” contacts might not be the most useful
- similar backgrounds and experience
- they may not know much more than you do
- connectors derive power from a large fraction of weak ties
Further evidence in Dodds et al. paper
T&M, Granovetter, Gladwell: multiple "spaces” & "distances”
- geographic, professional, social, recreational, political,...
- we can reason about general principles without precise measurement



The Magic Number 150

Social Chan.nel capacity . Neocortex size and group size in primates
- correlation between neocortex size
and group Size 100[»/Iean Group Size 1
- Dunbar’s equation: neocortex ratio - :
group size

10

Clear implications for many kinds of
social networks

Again, a topological constraint on
typical degree

From primates to military units to T

Neocortex Ratio

G o r‘ e - ex Figure 1. Group size plotted against neocortex ratio for nonhuman primates (redrawn from Dunbar 1992a).




Summary,and a Mathematical Digression

So far:
- large-scale social networks reliably have high-degree vertices
- large-scale social networks have small diameter

- furthermore, people can find or navigate the short paths from only local,
distributed knowledge

- these properties are true of other types of networks, too

But there must be some limits to degrees
- can't be “close friends" with too many people (150? 1000?)
Large N, small diameter and limited degrees are in tension
- not all combinations are possible
Let N be population size, A be the maximum degree, and D be the diameter
If A =2 then must have D ~ N/4 (>> 6, > log(N))



Summary,and a Mathematical Digression

The relationship between A, D and N has been studied mathematically
For fixed A and D, largest N can be is

N < A°

For example: if N = 300M (U.S. population) and A = 150, get constraint on D:

300,000,000 =< (150)”
log(300,000,000) = Dlog(150)
D=39

So calculation consistent with reality (whew!)
More generally: multiple structural properties may be competing



Two Aspects of Navigation

* Inorder for people (or machines) to find short paths in networks:
- short paths must exist (structural; small diameter)
- people must be able to find the short paths via only local forwarding (algorithmic)

+  The algorithmic constraints are strong (Travers & Milgram)
- only know your neighbors in the network
- limited information about the target/destination (physical location, some background)

- Look at a model incorporating structural and algorithmic constraints




Kleinberg's Model

Start with an k by k grid of vertices (so N = k" 2)

- each vertex connected to compass neighbors

- add a few random “long-distance” connections to each vertex

probability p(d) of connecting to a vertex at grid distance d:
p(d) o« (1/d)",r =0

- large r: heavy bias towards "more local” long-distance connections

small r: approach uniformly random

distributions ~ (11d)" for varying r
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Kleinberg's Question

Which values of r:

p(d) « (1/d) ,r =0

permit efficient navigation?
Efficient: number of hops << N, e.g. log(N)
Algorithmic assumption:

vertices know the grid addresses of their neighbors
vertices know the grid address of the target (Sharon, MA)

vertices always forward the message to neighbor closest to the
target in grid distance

no "backwards” steps, even if helpful
purely geographic information
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Kleinberg's Result

»  Intuition:
- if ris foo /arge (strong local bias), then "long-distance” connections never help much;
short paths may not even exist

- if ris too small (no local bias), we may quickly get close to the target; but then we'll
have to use grid links to finish

- effective search requires a delicate mixture of link distances

*  The result (informally): as N becomes large:
- r =2 is the only value that permits rapid navigation (~log(N) steps)
- a "knife's edge” result; very sensitive

- Note: locality of information crucial to this argument
- At r<=2, will have small diameter, but local algorithms can't find the short paths

distributions ~ (11d)" for varying r
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Population: Cp, Reports: Cy Initial entry: Cy
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Best-fit value of r = 1.59



Navigation via Identity

Watts et al.:

- we don't navigate social networks by purely "geographic” information
- we don't use any single criterion; recall Dodds et al. on Columbia SW
- different criteria used at different points in the chain

Represent individuals by a vector of attributes
- profession, religion, hobbies, education, background, etc...

- attribute values have distances between them (tree-structured)
- distance between individuals: minimum distance in any attribute

- only need one thing in common to be close!
Algorithm: Geientists

- given attribute vector of target C_¢s D |

- forward message to neighbor closest to target @

Let’s look a bit at the paper @
Permits fast navigation under broad conditions

- not as sensitive as Kleinberg's model




Summary

Efficient navigation has both structural and algorithmic requirements
Kleinberg's model and question captures both

Result predicts delicate mixture of connectivity for success

Not too far from reality? (Where's George? data)

Watts et al. provide more “sociological” model

More complex, but less sensitive




