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The Navigation Problem 
•  You are an individual (vertex) in a very large social network 
•  You want to find a (short) chain of friendships to another individual 
•  You don’t have huge computers and a global/bird’s-eye view 
•  All you (hopefully) know is who your neighbors/friends are 

–  …and perhaps information about them (age, interests, religion, address, job,…) 
•  You can ask your friends to make introductions, which lead to more 
•  How would you do it? 
•  Also known as search in networks and the “small world problem” 
•  Small diameter is necessary but not sufficient! 

–  …navigation is an algorithmic problem 
•  Related to the problem of routing data packets in the Internet 



Small Worlds and the Law of the Few 
•  Travers & Milgram 1969: classic early social network study 

–  destination: a Boston stockbroker; lived in Sharon, MA 
–  sources: Nebraska stockowners; Nebraska and Boston “randoms” 
–  forward letter to a first-name acquaintance “closer” to target 
–  target information provided: 

•  name, address, occupation, firm, college, wife’s name and hometown 
•  navigational value? 

•  Basic findings: 
–  64 of 296 chains reached the target 
–  average length of completed chains: 5.2 

•  interaction of chain length and navigational difficulties 
–  main approach routes: home (6.1) and work (4.6) 
–  Boston sources (4.4) faster than Nebraska (5.5) 
–  no advantage for Nebraska stockowners 



The Connectors to the Target 
•  T & M found that many of the completed chains passed through a very 

small number of penultimate individuals 
–  Mr. G, Sharon merchant: 16/64 chains 
–  Mr. D and Mr. P: 10 and 5 chains 

•  Connectors are individuals with extremely high degree 
–  why should connectors exist? 
–  how common are they? 
–  how do they get that way? (see Gladwell for anecdotes)  

•  Connectors can be viewed as the “hubs” of social traffic 
•  Note: no reason target must be a connector for small worlds 
•  Two ways of getting small worlds (low diameter): 

–  truly random connection pattern  dense network 
–  a small number of well-placed connectors in a sparse network 



Small Worlds: A Modern Experiment 
•  The Columbia Small Worlds Project: 

–  considerably larger subject pool, uses email 
–  subject of Dodds et al. assigned paper 

•  Basic methodology: 
–  18 targets from 13 countries 
–  on-line registration of initial participants, all tracking electronic 
–  99K registered, 24K initiated chains, 384 reached targets 

•  Some findings: 
–  < 5% of messages through any penultimate individual 
–  large “friend degree” rarely (< 10%) cited 
–  Dodds et al:  no evidence of connectors! 

•  (but could be that connectors are not cited for this reason…) 
–  interesting analysis of reasons for forwarding 
–  interesting analysis of navigation method vs. chain length 
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Navigational Analysis from Dodds et al.



The Strength of Weak Ties 
•  Not all links are of equal importance 
•  Granovetter 1974: study of job searches 

–  56% found current job via a personal connection 
–  of these, 16.7% saw their contact “often” 
–  the rest saw their contact “occasionally” or “rarely” 

•  Your “closest” contacts might not be the most useful 
–  similar backgrounds and experience 
–  they may not know much more than you do 
–  connectors derive power from a large fraction of weak ties 

•  Further evidence in Dodds et al. paper 
•  T&M, Granovetter, Gladwell: multiple “spaces” & “distances” 

–  geographic, professional, social, recreational, political,… 
–  we can reason about general principles without precise measurement 



The Magic Number 150 

•  Social channel capacity 
–  correlation between neocortex size 

and group size 
–  Dunbar’s equation: neocortex ratio  

group size 
•  Clear implications for many kinds of 

social networks 
•  Again, a topological constraint on 

typical degree 
•  From primates to military units to 

Gore-Tex 



Summary,and a Mathematical Digression 
•  So far: 

–  large-scale social networks reliably have high-degree vertices 
–  large-scale social networks have small diameter 
–  furthermore, people can find or navigate the short paths from only local, 

distributed knowledge 
–  these properties are true of other types of networks, too 

•  But there must be some limits to degrees 
–  can’t be “close friends” with too many people (150? 1000?) 

•  Large N, small diameter and limited degrees are in tension 
–  not all combinations are possible 

•  Let N be population size, Δ be the maximum degree, and D be the diameter 
•  If Δ = 2 then must have D ~ N/4 ( >> 6, >> log(N)) 

€ 



Summary,and a Mathematical Digression 
•  The relationship between Δ, D and N has been studied mathematically 
•  For fixed Δ and D, largest N can be is  

•  For example: if N = 300M (U.S. population) and Δ = 150, get constraint on D: 

•  So calculation consistent with reality (whew!) 
•  More generally: multiple structural properties may be competing 

€ 

N ≤ ΔD

€ 

300,000,000 ≤ (150)D

log(300,000,000) ≤ Dlog(150)
D ≥ 3.9



Two Aspects of Navigation 
•  In order for people (or machines) to find short paths in networks: 

–  short paths must exist (structural; small diameter) 
–  people must be able to find the short paths via only local forwarding (algorithmic) 

•  The algorithmic constraints are strong (Travers & Milgram) 
–  only know your neighbors in the network 
–  limited information about the target/destination (physical location, some background) 

•  Look at a model incorporating structural and algorithmic constraints 



Kleinberg’s Model 
•  Start with an k by k grid of vertices (so N = k^2) 

–  each vertex connected to compass neighbors 
–  add a few random ”long-distance” connections to each vertex 
–  probability p(d) of connecting to a vertex at grid distance d: 

–  large r: heavy bias towards “more local” long-distance connections 
–  small r: approach uniformly random 

€ 

p(d)∝ (1/d)r,r ≥ 0



Kleinberg’s Question 
•  Which values of r: 

    permit efficient navigation? 
•  Efficient: number of hops << N, e.g. log(N) 
•  Algorithmic assumption: 

–  vertices know the grid addresses of their neighbors 
–  vertices know the grid address of the target (Sharon, MA) 
–  vertices always forward the message to neighbor closest to the 

target in grid distance 
–  no “backwards” steps, even if helpful 
–  purely geographic information 

€ 

p(d)∝ (1/d)r,r ≥ 0



Kleinberg’s Result 
•  Intuition: 

–  if r is too large (strong local bias), then “long-distance” connections never help much; 
short paths may not even exist 

–  if r is too small (no local bias), we may quickly get close to the target; but then we’ll 
have to use grid links to finish 

–  effective search requires a delicate mixture of link distances 
•  The result (informally): as N becomes large: 

–  r = 2 is the only value that permits rapid navigation (~log(N) steps) 
–  a “knife’s edge” result; very sensitive 

•  Note: locality of information crucial to this argument 
–  At r <= 2, will have small diameter, but local algorithms can’t find the short paths 



From Brockmann, Hufnagel, Geisel (2006) Best-fit value of r = 1.59 



Navigation via Identity 
•  Watts et al.:  

–  we don’t navigate social networks by purely “geographic” information 
–  we don’t use any single criterion; recall Dodds et al. on Columbia SW 
–  different criteria used at different points in the chain 

•  Represent individuals by a vector of attributes 
–  profession, religion, hobbies, education, background, etc… 
–  attribute values have distances between them (tree-structured) 
–  distance between individuals: minimum distance in any attribute 
–  only need one thing in common to be close! 

•  Algorithm: 
–  given attribute vector of target 
–  forward message to neighbor closest to target 

•  Let’s look a bit at the paper 
•  Permits fast navigation under broad conditions 

–  not as sensitive as Kleinberg’s model 

all jobs 
scientists athletes 

chemistry CS 

baseball 
tennis 



Summary 
•  Efficient navigation has both structural and algorithmic requirements 
•  Kleinberg’s model and question captures both 
•  Result predicts delicate mixture of connectivity for success 
•  Not too far from reality? (Where’s George? data) 
•  Watts et al. provide more “sociological” model 
•  More complex, but less sensitive 


