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Introduction
Beginning with the pioneering experiments of Travers and
Milgram in 1969, there is a long and fascinating literature
examining the structural and navigational properties of nat-
ural social networks. Findings range from the now familiar
folklore of “six degrees of separation” to more recent the-
oretical explanations of the heuristics people might employ
to exploit such structure. This line of investigation can be
summarized in computer science terminology: Using rel-
atively local information, distributed human organizations
can collectively compute good approximations to the all-
pairs shortest paths problem.

Given the volume and visibility of this research, it is per-
haps suprising that there is little work on its natural general-
ization — namely, whatother types of distributed optimiza-
tion problems can humans networks solve? In this paper
we describe the preliminary findings of a series of behav-
ioral experiments we have been conducting at the Univer-
sity of Pennsylvania. Human subjects attempt to perform
distributed graph coloring in a setting in which each sub-
ject “plays” a single vertex in a large and potentially com-
plex graph. Players asynchronously update their choice of
color for their vertex in an attempt to avoid or remove color-
ing conflicts. The experimental system allows us to vary the
graph topology, the locality of information given to subjects,
and the incentive scheme1.

System and Experimental Methodology
Both our experiments and system were designed to permit
the investigation of three main variables: the structure or
topology of the graph being colored; the amount and local-
ity of information given to each subject; and the incentive
or payment scheme. Before providing details on the sys-
tem, our procedures, and the values for these experimental
variables, we first comment on our choice of graph coloring
as the optimization problem to examine, for which the main
reasons were threefold.

First, we were interested in choosing a problem which had
a notably different status, from the computer science per-
spective, than the shortest paths problem, which has been
the focus of the long literature that partially inspired this

1As we shall describe, subjects were paid according to perfor-
mance under two different schemes.

research. Thus, whereas shortest paths is known to be a
computationally easy problem for centralized computation,
graph coloring is notoriously hard, since it is NP-hard to
even weakly approximate the chromatic number. Second,
we were interested in a problem that, despite being possibly
challenging to solve, was easy for human subjects with no
special background to quickly understand. Third, we sought
a problem which requires global coordination for its solu-
tion, but in which each subject could locally verify their con-
tribution or hinderance to this solution.

System Description
The system we built for our experiments provides subjects
with a simple browser-based visual interface allowing asyn-
chronous updating of color choice and a view of the cur-
rent experiment’s state. The system permits us to execute a
pre-planned series of graph coloring problems with specified
graph topologies and information views (discussed below).
During a coloring exercise, each subject sees an interface
divided into two panels. The left-hand oraction panelpro-
vides colored buttons that can be used to change the color
of the subject’s vertex. The right-hand orinformation panel
provides varying amounts of information (see below), con-
tinually refreshed, on the color choices of other players, but
always includes at least the color choices of the subject’s im-
mediate neighbors. The information panel always indicates
how many color conflicts there are in the subject’s neighbor-
hood, if any, and graph edges with color conflicts are high-
lighted in bold lines. In addition, the right-hand panel al-
ways includes a “progress bar” at the bottom indicating how
many conflicts remain globally.

The system logs fine-grained temporal data on the exact
sequence of events in each coloring exercise. This log con-
tains every color-change event, indexed by vertex or subject
number, the color selected, and a timestamp with 1-second
resolution. The system also administers and logs entry and
exit questionnaires to each subject.

Experimental Procedures
We now briefly describe or experimental protocol, which
was approved by Penn’s Institutional Review Board process.
Sessions were held in a laboratory containing 38 worksta-
tions, which determined the size of our subject pool for each
session. Subjects were drawn from a Penn undergraduate



computer science class on a related topic with no prerequi-
sites, and were required to attend a preliminary lecture in
which they were instructed about the graph coloring prob-
lem, the workings of the system, and the specifics of what
they would see and how they would be paid.

Each experimental session consisted of a series of 19 con-
secutive graph coloring problems, for which a maximum of
5 minutes each was allocated. The experimental sessions
thus lasted between one and two hours. During the ex-
periments, physical partitions were erected to prevent sub-
jects from glancing at other subjects or their screens. A
timekeeper called out how much of the allowed 5 minutes
was left at various points during each coloring problem.
Subjects were carefully observed throughout the session to
make sure they were violating any protocols, which includ-
ing not speaking or communicating with any other subjects,
attempting to look at the workstations of other subjects, etc.
Each problem ended either after 5 minutes or when a proper
coloring was found by the subjects, whichever occurred first,
and the session proceeded to the next coloring problem. It
is important to note that in each coloring problem, the num-
ber of colors provided to subjects was exactly equal to the
chromatic number of the graph (which was computed in ad-
vance off-line). Thus we deliberately held subjects to the
highest standard of optimal coloring, rather than exploring
approximations.

By choosing 6 different graph topologies, 3 different in-
formation views, and 2 different incentive schemes, we gen-
erated a total of6� 3� 2 = 36 unique experimental condi-
tions. All 18 corresponding to one of the incentive schemes
were conducted on the evening of January 24, 2005, and the
18 corresponding to the other incentive scheme were given
the following evening. The order of problems within each
session were chosen randomly. In addition, to examine po-
tential “learning” effects, each evening ended with the iden-
tical problem it began with, for a total of 19 coloring prob-
lems per session.

We now proceed to describe our choices of values for our
three main experimental variables, beginning with the graph
topologies used.

Graph Topologies
The space of possible graph topologies is obviously im-
mense. Given our interest in contrasting behavioral graph
coloring with the aforementioned literature on social net-
work theory and navigation, our choices were closely guided
by the generative models proposed in that line of research.
However, since it was an open question whether human sub-
jects could solve these kinds of problem efficiently under
any conditions, we also desired a certain breadth of ap-
proach. For these reasons, we drew topologies from two
recent but rather different stochastic models for network for-
mation.

The first of these was the so-called “small worlds” family,
in which a simple cycle is augmented with a variable num-
ber of randomly chosen chords. Larger numbers of chords
are known to dramatically decrease the (average or worst-
case) diameter, and are meant to model long-distance rela-
tionships in social networks arising from chance encounters

and the like. We examined three topologies from this fam-
ily: a simple 38-cycle with no chords, a graph consisting of
a cycle with 5 chords, and a cycle with 20 chords. Rather
than choosing the chords uniformly at random, we selected
them at random from among all chords that would not in-
crease the chromatic number beyond the 2 colors required
for the simple cycle2. This has the advantage of allowing us
to model long-distance connections (and thus reduce diame-
ter) while in a mathematical sense make the problem strictly
harder (since we have simply added constraints without re-
quiring more colors).

The second model we examined is known aspreferential
attachment. In this model, a graph is built incrementally
by adding one new vertex at a time. A new vertex is given
a fixed number� of edges to the existing graph; but rather
than these edges being chosen uniformly at random, they are
directed to an existing vertex with a probability proportional
to its current degree. Among other properties, this stochas-
tic model is known to generate heavy-tailed distributions of
degrees (modeling the social phenomenon of “connectors”)
as well as small diameter.

Finally, we created one topology in the cycle family in-
tended to experiment with more “engineered” or hierarchical
structures, such as one might find in corporations or the mil-
itary. In this graph, a 36-cycle is augmented by two “leader”
vertices, one of which is connected to all even vertices on the
cycle, the other to all the odd vertices. The leaders are also
connected to each other. The resulting graph remains two
colorable, but now has very low diameter and two vertices
with very high degree.

Information Views

Our system can be configured to provide three different in-
formation views in the right-hand panel of the user inter-
face; as has been mentioned, each of the 6 graph topologies
was presented to the population under all three information
views, as well as under both incentive schemes discussed
below. We emphasize that while the information view var-
ied from problem to problem, in any given exerciseall 38
participantswere given the same view. We have not experi-
mented with different subjects having different views.

In the low information view, subjects could see only the
chosen color of their own vertex, and the colors of their im-
mediate neighbors in the graph. Themediuminformation
view is identical to the low, except now each neighbor is
annotated with the (static) value of its degree. This view
was motivated by the desire to provide subjects with some
minimal additional information on the local structure that
suggested which of their neighbors might have a more dif-
ficult coloring task. In thehigh information view, each sub-
ject could see the entire graph of 38 vertices as well as the
dynamic color choices. In all three information views, the
display was continually refreshed to provide subjects with
the latest color choices.

2This amounts to restricting to chords between vertices whose
indices have opposite parity.



Incentive Schemes
In line with the standards of behavioral economics and re-
lated fields, we paid subjects according to their performance,
but examined two different schemes for doing so. In thecol-
lectiveincentive scheme (which was used on the first of two
evenings of experiments), for each of the 19 coloring prob-
lems, each subject was paid $5 for each graph that was prop-
erly colored (no coloring conflicts anywhere in the graph
within 5 minutes). If even a single conflict remained after 5
minutes, none of the 38 subjects received any payment for
that problem. In theindividual incentive scheme (used the
second evening), each subject was paid $5 if at the conclu-
sion of a problem (either due to proper coloring or the end
of the 5 minutes) iftheyparticipated in no color conflicts,
regardless of the global outcome.

These two schemes were introduced to allow the study
of possible behavioral differences between a “team” and
“greedy” incentive mechanism. A natural question to ask
is whether such differences can arise in a problem such as
coloring, where a subject’s contribution to the global solu-
tion is already locally determined.


