Models of Network Formation

Networked Life
NETS 112
Fall 2014
Prof. Michael Kearns
Roadmap

• Recently: typical large-scale social and other networks exhibit:
 - heavy-tailed degree distributions
 - small diameter
 - high clustering coefficient
 - small number of connected components; giant component

• These are empirical phenomena

• What could “explain” them?

• One form of explanation: simple models for network formation or growth that give rise to these structural properties

• Next several lectures:
 - Erdös-Renyi (random graph) model
 - “Small Worlds” models
 - Preferential Attachment

• Discussion of structure exhibited (or not) by each
Models of Network Formation

I. The Erdös-Renyi (Random Graph) Model
The Erdös-Renyi (Random Graph) Model

- Really a randomized algorithm for generating networks
- Begin with N isolated vertices, no edges
- Add edges gradually, one at a time
- Randomly select two vertices not already neighbors, add edge
- So edges are added in a random, unbiased fashion
- About the simplest (dumbest?) formation model possible
- But what can it already explain?
The Erdős-Renyi (Random Graph) Model

- After adding \(E \) edges, edge density is
 \[
p = \frac{E}{\left(N(N - 1)/2\right)}\]
 \[
 p = E /\left(N(N - 1)/2\right)
 \]
- As \(E \) increases, \(p \) goes from 0 to 1
- Q: What are the likely structural properties at density \(p \)?
 - e.g. as \(p = 0 \to 1 \), small diameter occurs; single connected component
- At what values of \(p \) do “natural” structures emerge?
- We will see:
 - many natural and interesting properties arise at rather “small” \(p \)
 - furthermore, they arise very suddenly (tipping/threshold)
- Let’s examine the Erdős-Renyi simulator

[Diagram of a network graph with nodes and edges]
Why Can't There Be Two Large Components?

\[\frac{N}{2} \]

densely connected

\[\frac{N^2}{4} \] missing edges

\[\frac{N}{2} \]

densely connected
Threshold Phenomena in Erdös-Renyi

- Theorem: In Erdös-Renyi, as N becomes large:
 - If $p < 1/N$, probability of a giant component (e.g. 50% of vertices) goes to 0
 - If $p > 1/N$, probability of a giant component goes to 1, and all other components will have size at most $\log(N)$
- Note: at edge density p, expected/average degree is $p(N-1) \sim pN$
- So at $p \sim 1/N$, average degree is ~ 1: incredibly sparse
- So model “explains” giant components in real networks
- General “tipping point” at edge density q (may depend on N):
 - If $p < q$, probability of property goes to 0 as N becomes large
 - If $p > q$, probability of property goes to 1 as N becomes large
- For example, could examine property “diameter 6 or less”
Threshold Phenomena in Erdős-Renyi

- Theorem: In Erdős-Renyi, as N becomes large:
 - Threshold at $p \sim \log(N)/N^{5/6}$
 - for diameter 6.
 - Note: degrees growing (slightly) with N
 - If $N = 300M$ (U.S. population) then average degree $pN \sim 500$
 - If $N = 7BN$ (world population) then average degree $pN \sim 1000$
 - Not unreasonable figures...

- At p not too far from $1/N$, get strong connectivity
- Very efficient use of edges
Threshold Phenomena in Erdős-Renyi

- In fact: Any **monotone property** of networks exhibits a threshold phenomenon in Erdős-Renyi
 - monotone: property continues to hold if you add edges to the networks
 - e.g. network has a group of K vertices with at least 71% neighbors
 - e.g. network has a cycle of at least K vertices
- Tipping is the rule, not the exception
What Doesn’t the Model Explain?

• Erdös-Renyi explains giant component and small diameter
• But:
 - degree distribution not heavy-tailed; exponential decay from mean (Poisson)
 - clustering coefficient is *exactly* p
• To explain these, we’ll need richer models with greater realism
Models of Network Formation
II. Clustering Models
Roadmap

• So far:
 - Erdös-Renyi exhibits small diameter, giant connected component
 - Does not exhibit high edge clustering or heavy-tailed degree distributions

• Next: network formation models yielding high clustering
 - Will also get small diameter “for free”

• Two different approaches:
 - “program” or “bake” high clustering into the model
 - balance “local” or “geographic” connectivity with long-distance edges
“Programming” Clustering

- **Erdös-Rényi:**
 - global/background edge density p
 - all edges appear independently with probability p
 - no bias towards connecting friends of friends (distance 2) \rightarrow no high clustering

- **But in real networks, such biases often exist:**
 - people introduce their friends to each other
 - people with common friends may share interests (homophily)

- **So natural to consider a model in which:**
 - the more common neighbors two vertices share, the more likely they are to connect
 - still some “background” probability of connecting
 - still selecting edges randomly, but now with a bias towards friends of friends
Making it More Precise: the α-model

$y = \text{probability of connecting } u \& v$

$y \sim p + (x/N)^\alpha$

"default" probability p

$x = \text{number of current common neighbors of } u \& v$

network size N

smaller α

$\alpha = 1$

larger α
From D. Watts, "Small Worlds"
Clustering Coefficient Example 2

- Network: simple cycle + edges to vertices 2 hops away on cycle
- By symmetry, all vertices have the same clustering coefficient
- Clustering coefficient of a vertex v:
 - Degree of v is 4, so the number of possible edges between pairs of neighbors of v is $4 \times 3/2 = 6$
 - How many pairs of v's neighbors actually are connected? 3 --- the two clockwise neighbors, the two counterclockwise, and the immediate cycle neighbors
 - So the c.c. of v is $3/6 = \frac{1}{2}$
- Compare to overall edge density:
 - Total number of edges = $2N$
 - Edge density $p = 2N/(N(N-1)/2) \sim 4/N$
 - As N becomes large, $\frac{1}{2} \gg 4/N$
 - So this cyclical network is highly clustered
An Alternative Model

• A different model:
 - start with all vertices arranged on a ring or cycle (or a grid)
 - connect each vertex to all others that are within k cycle steps
 - with probability q, rewire each local connection to a random vertex
• Initial cyclical structure models “local” or “geographic” connectivity
• Long-distance rewiring models “long-distance” connectivity
• q=0: high clustering, high diameter
• q=1: low clustering, low diameter (~ Erdös-Renyi)
• Again is a “magic range” of q where we get both high clustering and low diameter
• Let’s look at this demo
Summary

• Two rather different ways of getting high clustering, low diameter:
 - bias connectivity towards shared friendships
 - mix local and long-distance connectivity
• Both models require proper “tuning” to achieve simultaneously
• Both a bit more realistic than Erdös-Renyi
• Neither model exhibits heavy-tailed degree distributions
Models of Network Formation

III. Preferential Attachment
Rich-Get-Richer Processes

- Processes in which the more someone has of something, the more likely they are to get more of it
- Examples:
 - the more friends you have, the easier it is to make more
 - the more business a firm has, the easier it is to win more
 - the more people there are at a nightclub, the more who want to go
- Such processes will amplify inequality
- One simple and general model: if you have amount x of something, the probability you get more is proportional to x
 - so if you have twice as much as me, you're twice as likely to get more
- Generally leads to heavy-tailed distributions (power laws)
- Let's look at a simple “nightclub” demo...
Preferential Attachment

- Start with two vertices connected by an edge
- At each step, add one new vertex v with one edge back to previous vertices
- Probability a previously added vertex u receives the new edge from v is proportional to the (current) degree of u
 - more precisely, probability u gets the edge = \(\frac{\text{current degree of } u}{\text{sum of all current degrees}} \)
- Vertices with high degree are likely to get even more links!
 - ...just like the crowded nightclub
- Generates a power law distribution of degrees
- Variation: each new vertex initially gets k edges
- Here's another demo
Summary

• Now have provided network formation models exhibiting each of the universal structure arising in real-world networks
• Often got more than one property at a time:
 - Erdös-Renyi: giant component, small diameter
 - α model, local+long-distance: high clustering, small diameter
 - Preferential Attachment: heavy-tailed degree distribution, small diameter
• Can we achieve all of them simultaneously?
• Probably: mix together aspects of all the models
• Won’t be as simple and appealing, though