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Roadmap 
•  Next several lectures: “universal” structural properties of networks 
•  Each large-scale network is unique microscopically, but with appropriate 

definitions, striking macroscopic commonalities emerge 
•  Main claim: “typical” large-scale network exhibits: 

–  heavy-tailed degree distributions  “hubs” or “connectors” 
–  existence of giant component: vast majority of vertices in same component 
–  small diameter (of giant component) : generalization of the “six degrees of separation” 
–  high clustering of connectivity: friends of friends are friends 

•  For each property: 
–  define more precisely; say what “heavy”, “small” and “high” mean 
–  look at empirical support for the claims 

•  First up: heavy-tailed degree distributions 



How Do “Real” Networks Look? 
I. Heavy-Tailed Degree Distributions 





What Do We Mean By Not “Heavy-Tailed”? 
•  Mathematical model of a typical “bell-shaped” distribution: 

–  the Normal or Gaussian distribution over some quantity x 
–  Good for modeling many real-world quantities… but not degree distributions 
–  if mean/average is      then probability of value x is: 

–  main point: exponentially fast decay as x moves away from  
–  if we take the logarithm: 

•  Claim: if we plot log(x) vs log(probability(x)), will get strong curvature 
•  Let’s look at some (artificial) sample data… 

–  (Poisson better than Normal for degrees, but same story holds) 
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What Do We Mean By “Heavy-Tailed”? 

•  One mathematical model of a typical “heavy-tailed” distribution: 
–  the Power Law distribution with exponent  

–  main point: inverse polynomial decay as x increases 
–  if we take the logarithm: 

•  Claim: if we plot log(x) vs log(probability(x)), will get a straight line! 
•  Let’s look at (artificial) some sample data… 
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Erdos Number Project Revisited 



Degree Distribution of the Web Graph [Broder et al.] 



Actor Collaborations; Web; Power Grid [Barabasi and Albert] 



Scientific Productivity (Newman) 



Zipf’s Law 
•  Look at the frequency of English words: 

–  “the” is the most common, followed by “of”, “to”, etc. 
–  claim: frequency of the n-th most common ~ 1/n (power law, α ~ 1) 

•  General theme: 
–  rank events by their frequency of occurrence 
–  resulting distribution often is a power law! 

•  Other examples: 
–  North America city sizes 
–  personal income 
–  file sizes 
–  genus sizes (number of species) 
–  the “long tail of search” (on which more later…) 
–  let’s look at log-log plots of these 

•  People seem to dither over exact form of these distributions 
–  e.g. value of α	


–  but not over heavy tails 



iPhone App Popularity 



Summary 
•  Power law distribution is a good mathematical model for 

heavy tails; Normal/bell-shaped is not 
•  Statistical signature of power law and heavy tails: linear 

on a log-log scale 
•  Many social and other networks exhibit this signature 
•  Next “universal”: small diameter 



How Do “Real” Networks Look? 
II. Small Diameter 



What Do We Mean By “Small Diameter”? 
•  First let’s recall the definition of diameter: 

–  assumes network has a single connected component (or examine “giant” component) 
–  for every pair of vertices u and v, compute shortest-path distance d(u,v) 
–  then (average-case) diameter of entire network or graph G with N vertices is 

–  equivalent: pick a random pair of vertices (u,v); what do we expect d(u,v) to be? 
•  What’s the smallest/largest diameter(G) could be? 

–  smallest: 1 (complete network, all N(N-1)/2 edges present); independent of N 
–  largest: linear in N (chain or line network) 

•  “Small” diameter: 
–  no precise definition, but certainly << N 
–  Travers and Milgram: ~5; any fixed network has fixed diameter 
–  may want to allow diameter to grow slowly with N (?) 
–  e.g. log(N) or log(log(N)) 
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Empirical Support 
•  Travers and Milgram, 1969:  

–  diameter ~ 5-6, N ~ 200M 
•  Columbia Small Worlds, 2003:  

–  diameter ~4-7, N ~ web population? 
•  Lescovec and Horvitz, 2008:  

–  Microsoft Messenger network 
–  Diameter ~6.5, N ~ 180M 

•  Backstrom et al., 2012:  
–  Facebook social graph  
–  diameter ~5, N ~ 721M 



Summary 
•  So far: naturally occuring, large-scale networks exhibit: 

–  heavy-tailed degree distributions 
–  small diameter 

•  Next up: clustering of connectivity 



How Do “Real” Networks Look? 
III. Clustering of Connectivity 



The Clustering Coefficient of a Network 
•  Intuition: a measure of how “bunched up” edges are 
•  The clustering coefficient of vertex u: 

–  let k = degree of u = number of neighbors of u 
–  k(k-1)/2 = max possible # of edges between neighbors of u 
–  c(u) = (actual  # of edges between neighbors of u)/[k(k-1)/2] 
–  fraction of pairs of friends that are also friends 
–  0 <= c(u) <= 1; measure of cliquishness of u’s neighborhood 

•  Clustering coefficient of a graph G: 
–  CC(G) = average of c(u) over all vertices u in G 

k = 4 
k(k-1)/2 = 6 
c(u) = 4/6 = 0.666… 

u 



What Do We Mean By “High” Clustering? 
•  CC(G) measures how likely vertices with a common neighbor 

are to be neighbors themselves 
•  Should be compared to how likely random pairs of vertices 

are to be neighbors 
•  Let p be the edge density of network/graph G: 

•  Here E = total number of edges in G 
•  If we picked a pair of vertices at random in G, probability 

they are connected is exactly p 
•  So we will say clustering is high if CC(G) >> p 
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p = E /(N(N −1) /2)



Clustering Coefficient Example 1 

1/(2 x 1/2) = 1 

 3/(4 x 3/2) = 1/2 

1/(2 x 1/2) = 1 2/(3 x 2/2) = 2/3 

2/(3 x 2/2) = 2/3 

C.C. = (1 + ½ + 1 + 2/3 + 2/3)/5 = 0.7666… 
p = 7/(5 x 4/2) = 0.7 
Not highly clustered 



Clustering Coefficient Example 2 
•  Network: simple cycle + edges to vertices 2 hops away on cycle 
•  By symmetry, all vertices have the same clustering coefficient 
•  Clustering coefficient of a vertex v: 

–  Degree of v is 4, so the number of possible edges between pairs of neighbors of v is 
4 x 3/2 = 6 

–  How many pairs of v’s neighbors actually are connected? 3 --- the two clockwise 
neighbors, the two counterclockwise, and the immediate cycle neighbors 

–  So the c.c. of v is 3/6 = ½ 
•  Compare to overall edge density: 

–  Total number of edges = 2N 
–  Edge density p = 2N/(N(N-1)/2) ~ 4/N 
–  As N becomes large, ½ >> 4/N 
–  So this cyclical network is highly clustered 



Clustering Coefficient Example 3 

Divide N vertices into sqrt(N) groups of size sqrt(N) (here N = 25) 
Add all connections within each group (cliques), connect “leaders” in a cycle 
N – sqrt(N) non-leaders have C.C. = 1, so network C.C.  1 as N becomes large 
Edge density is p ~ 1/sqrt(N) 




