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Roadmap

Next several lectures: "universal” structural properties of networks

Each large-scale network is unique microscopically, but with appropriate
definitions, striking macroscopic commonalities emerge

Main claim: "typical” large-scale network exhibits:
- heavy-tailed degree distributions > “hubs” or "connectors”
- existence of giant component: vast majority of vertices in same component
- small diameter (of giant component) : generalization of the "six degrees of separation”
- high clustering of connectivity: friends of friends are friends

For each property:
- define more precisely; say what “heavy”, "small” and "high" mean
- look at empirical support for the claims

First up: heavy-tailed degree distributions




How Do "Real” Networks Look?
I. Heavy-Tailed Degree Distributions
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w10* Erdos Number Project last names experiment, nwlife 2010; mean = 31.3, std = 22.0; poisson fit overlay
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What Do We Mean By Not "Heavy-Tailed”?

Mathematical model of a typical "bell-shaped” distribution:

- the Normal or Gaussian distribution over some quantity x
Good for modeling many real-world quantities... but not degree distributions
if mean/average is [ then probability of value x is:

probability(x) « e " 2

main point: exponentially fast decay as x moves away from [{
if we take the logarithm:

log(probability(x)) &« —(x — w)’

Claim: if we plot log(x) vs log(probability(x)), will get strong cur'va’rure

Let's look at some (artificial) sample data...
- (Poisson better than Normal for degrees, but same story holds)
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What Do We Mean By "Heavy-Tailed"?

One mathematical model of a typical "heavy-tailed” distribution:
- the Power Law distribution with exponent

probability(x) o« 1/x"

- main point: inverse polynomial decay as x increases
- if we take the logarithm:

log( probability(x)) < —flog(x)

Claim: if we plot log(x) vs log(probability(x)), will get a straight linel
Let's look at (artificial) some sample data...
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numker of authors with degree

12

10

Erdos Number Project

10 20 30 40
number of coauthors (degree)

50

60

loginumker of authors with degree)

Erdos Number Project, loglog scale

o
o
o
o]
o
o
o
%5 "
o o,
oOO
%,
an
hS
@@
&
%,
1 1 1 1 1 1
0.5 1 1.5 2 25 35
log(degree)

Erdos Number Project Revisited




In-degree (total,; remote-only) distr. Out-degree (total, remote-only’ distr.
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Figures 1 and 2: In-degree and out-degree distributions subscribe to the power law. The law
also holds if only off-site (or "remote-only") edges are considered.

Degree Distribution of the Web Graph [Broder et al.]
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FIG. 1. The distribution function of connectivities for various large networks. (A) Actor col-
laboration graph with N = 212,250 vertices and average connectivity (k) = 28.78; (B) World wide
web, N = 325,729, (k) = 5.46 (6); (C) Powergrid data, N = 4,941, (k) = 2.67. The dashed lines

have slopes (A) Yactor = 2.3, (B) Ywww = 2.1 and (C) Ypower = 4-

Actor Collaborations; Web, Power Grid [Barabasi and Albert]
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FIG. 2. Histograms of the number of papers written by
scientists in four of the databases. As with Fig. Iil, the solid
lines are least-squares fits to Eq. (m)

Scientific Productivity (Newman)



Zipf's Law

Look at the frequency of English words:
- "the" is the most common, followed by "of", "t0", etc.
- claim: frequency of the n-th most common ~ 1/n (power law, a ~ 1)

General theme:
- rank events by their frequency of occurrence
- resulting distribution often is a power law!

Other examples:
- North America city sizes
- personal income
- file sizes
- genus sizes (number of species)
- the "long tail of search” (on which more later...)
- let's look at log-log plots of these
People seem to dither over exact form of these distributions
- e.g. value of a
- but not over heavy tails
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Summary

* Power law distribution is a good mathematical model for
heavy tails; Normal/bell-shaped is not

Statistical signature of power law and heavy tails: linear
on a log-log scale

* Many social and other networks exhibit this signature

- Next "universal”: small diameter



How Do "Real” Networks Look?
IT. Small Diameter




What Do We Mean By "Small Diameter”?

First let's recall the definition of diameter:
- assumes network has a single connected component (or examine "giant" component)
- for every pair of vertices uand v, compute shortest-path distance d(u,v)
- then (average-case) diameter of entire network or graph G with N vertices is

diameter(G) =2 /(N(N = 1)) ¥, d(u,v)

- equivalent: pick a random pair of vertices (u,v); what do we expect d(u,v) to be?

What's the smallest/largest diameter(G) could be?

- smallest: 1 (complete network, all N(N-1)/2 edges present); independent of N
- largest: linear in N (chain or line network)

"Small” diameter:
- no precise definition, but certainly <« N

- Travers and Milgram: ~5; any fixed network has fixed diameter
- may want to allow diameter to grow slowly with N (?)

- e.g. log(N) or log(log(N))




Empirical Support

Travers and Milgram, 1969:

- diameter ~ 5-6, N ~ 200M
Columbia Small Worlds, 2003:

- diameter ~4-7, N ~ web population?
Lescovec and Horvitz, 2008:

- Microsoft Messenger network

- Diameter ~6.5, N ~ 180M

Backstrom et al., 2012:

- Facebook social graph
- diameter ~5, N ~ 721M




Summary

- So far: naturally occuring, large-scale networks exhibit:
- heavy-tailed degree distributions
- small diameter

* Next up: clustering of connectivity




How Do "Real” Networks Look?
ITI. Clustering of Connectivity




The Clustering Coefficient of a Network
Intuition: a measure of how "bunched up” edges are

The clustering coefficient of vertex u:

- let k = degree of u = number of neighbors of u

- k(k-1)/2 = max possible # of edges between neighbors of u

- ¢(u) = (actual # of edges between neighbors of u)/[k(k-1)/2]
- fraction of pairs of friends that are also friends

- 0 <= c(u) <= 1; measure of cliguishness of u's neighborhood

Clustering coefficient of a graph G:

- CC(6G) = average of c(u) over all verticesuin G

k=4
k(k-1)/2 = 6
c(u) = 4/6 = 0.666...




What Do We Mean By "High" Clustering?

CC(G) measures how likely vertices with a common neighbor
are to be neighbors themselves

Should be compared to how likely random pairs of vertices
are to be neighbors

Let p be the edge density of network/graph G:
p=EIN(N =1)/2)

Here E = total number of edges in G

If we picked a pair of vertices at random in G, probability
they are connected is exactly p

So we will say clustering is high if CC(G) >> p



Clustering Coefficient Example 1

1/(2x1/2)=1

2/(3x2/2)=2/3 3/(4x3/2)=1/2

2/(3x2/2)=2/3 1/(2x1/2)=1

CC =(1+3+1+2/3+2/3)/5=0.7666...
p=7/(5x4/2)=0.7
Not highly clustered



Clustering Coefficient Example 2

Network: simple cycle + edges to vertices 2 hops away on cycle
By symmetry, all vertices have the same clustering coefficient

Clustering coefficient of a vertex v:

- Degree of v is 4, so the number of possible edges between pairs of neighbors of v is
4x3/2=6

- How many pairs of v's neighbors actually are connected? 3 --- the two clockwise
neighbors, the two counterclockwise, and the immediate cycle neighbors

- Sothecc.ofvis3/6=1%

Compare to overall edge density:
- Total number of edges = 2N
- Edge density p = 2N/(N(N-1)/2) ~ 4/N
- As N becomes large, 7 > 4/N
- So this cyclical network is highly clustered




Clustering Coefficient Example 3
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Divide N vertices into sqrt(N) groups of size sqrt(N) (here N = 25)
Add all connections within each group (cligues), connect “leaders” in a cycle
N - sgrt(N) non-leaders have C.C. = 1, so network C.C. > 1 as N becomes large

Edge density is p ~ 1/sqrt(N)
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