Competitive Contagion Scoring Review

• Let P be the population distribution of seed choices on graph G
• For every seed set s that appears with non-zero probability in P, we will compute its \textit{expected payoff with respect to P}:
 – average of $\text{pay}(s,s')$ over many trials and many draws of s' from P
 – enough draws/trials to distinguish/rank expected payoffs accurately
• We will then rank the s that appear in P by their expected payoffs
• If you played s on G, you will receive a number of points equal to the \textit{number of other players} you \textit{strictly beat} in expected payoff
• Example: Suppose s_1, s_2 and s_3 appear in P, and have expected payoffs and population counts as follows:
 – s_1: payoff 0.57, count 11; s_2: payoff 0.48, count 71; s_3: payoff 0.31, count 18
 – if you play s_1, your score is $71+18=89$; if s_2, your score is 18; if s_3, your score is 0
• If everyone plays the same thing, nobody receives any points
• You must submit seeds for \textit{all} graphs in order to receive any credit
• Your overall score/grade for the assignment is the sum of your scores over all graphs, which will then be curved
• In general, there is no right/best choice for seeds: depends on P!
Questions Worth Pondering

• What does it mean for the population distribution P to be an equilibrium?
• If P is an equilibrium what can we say about different players’ payoffs?
• If P is an equilibrium and G is connected, what can we say about payoffs?
• What if G is not connected?
Experimental Agenda

• Human-subject experiments at the intersection of CS, economics, sociology, “network science”
• Subjects simultaneously participate in groups of ~ 36 people
• Subjects sit at networked workstations
• Each subject controls some simple property of a single vertex in some underlying network
• Subjects have only local views of the activity: state of their own and neighboring vertices
• Subjects have (real) financial incentive to solve their “piece” of a collective (global) task
• Simple example: graph coloring (social differentiation)
 – choose a color for your vertex from fixed set
 – paid iff your color differs from all neighbors when time expires
 – max welfare solutions = proper colorings
• Across many experiments, have deliberately varied network structure and task/game
 – networks: inspired by models from network science (small worlds, preferential attachment, etc.)
 – tasks: chosen for diversity (cooperative vs. competitive) and (centralized) computational difficulty
• Goals:
 – structure/tasks → performance/behavior
 – individual & collective modeling → prediction
 – computational and equilibrium theories
Experiments to Date

- **Graph Coloring**
 - **player controls**: color of vertex; number of choices = chromatic number
 - **payoffs**: $2 if different color from all neighbors, else 0
 - **max welfare states**: optimal colorings
 - **centralized computation**: hard even if approximations are allowed

- **Consensus**
 - **player controls**: color of vertex from 9 choices
 - **payoffs**: $2 if same color as all neighbors, else 0
 - **max welfare states**: global consensus of color
 - **centralized computation**: trivial

- **Independent Set**
 - **player controls**: decision to be a “King” or a “Pawn”; variant with King side payments allowed
 - **payoffs**: $1/minute for Solo King; $0.50/minute for Pawn; 0 for Conflicted King; continuous accumulation
 - **max welfare states**: maximum independent sets
 - **centralized computation**: hard even if approximations are allowed

- **Exchange Economy**
 - **player controls**: limit orders offering to exchange goods
 - **payoffs**: proportional to the amount of the other good obtained
 - **max welfare states**: market clearing equilibrium
 - **centralized computation**: at the limit of tractability (LP used as a subroutine)

- **Biased Voting**
 - **player controls**: choice of one of two colors
 - **payoffs**: only under global agreement; different players prefer different colors
 - **max welfare states**: all red and all blue
 - **centralized computation**: trivial

- **Networked Bargaining**
 - **player controls**: offers on each edge to split a cash amount; may have hidden deal limits and “transaction costs”
 - **payoffs**: on each edge, a bargaining game --- payoffs only if agreement
 - **max welfare states**: all deals/edges closed
 - **centralized computation**: nontrivial, possibly difficult

- **Voting with Network Formation**
 - **player controls**: edge purchases and choice of one of two colors
 - **payoffs**: only under global agreement; different players prefer different colors
 - **max welfare states**: ???
 - **centralized computation**: ???
Coloring and Consensus
“first neighborhood” view
Small Worlds Family

Simple Cycle

5-Chord Cycle

20-Chord Cycle

Leader Cycle

Preferential Attachment, $\nu = 2$

Preferential Attachment, $\nu = 3$
Art by Consensus
Sample Findings

- Generally strong collective performance
 - nearly all problems globally solved in a couple minutes or less
- Systematic effects of structure on performance and behavior:
 - rewiring harms coloring performance in "clique chain" family
 - rewiring helps consensus performance in clique chain family
- Preferential attachment much harder than small worlds for coloring
 - natural heuristics can give reverse order of difficulty
- Providing more global views of activity:
 - helps coloring performance in small world family
 - harms coloring performance in preferential attachment
- Coloring problems solved more rapidly than consensus
 - easier to get people to disagree than agree

![Graph showing running time vs. rewiring probability]

![Bar chart showing average experiment duration for information views]
Biased Voting in Networks
Biased Voting in Networks

- Cosmetically similar to consensus, with a crucial strategic difference
- Deliberately introduce a tension between:
 - individual preferences
 - desire for collective unity
- Only two color choices; challenge comes from competing incentives
- If everyone converges to same color, everyone gets some payoff
- But different players have different preferences
 - each player has payoffs for their preferred and non-preferred color
 - e.g. $1.50 red/$0.50 blue vs. $0.50 red/$1.50 blue
 - can have symmetric and asymmetric payoffs
- High-level experimental design:
 - choice of network structures
 - arrangement of types (red/blue prefs) & strengths of incentives
 - most interesting to coordinate network structure and types
Democratic Primary Games

Zak Xavier

Game progress: 67%
Game status: Voter Game in progress
Elapsed time:
If unanimity is reached, your payoff will be
$0.75 for red, $1.25 for blue

Your color: blue red
Minority Power: Preferential Attachment
Summary of Findings

- 55/81 experiments reached global consensus in 1 minute allowed
 - mean of successful ~ 44s

- Effects of network structure:
 - Cohesion harder than Minority Power: 31/54 Cohesion, 24/27 Minority Power
 - all 24 successful Minority Powers converge to minority preference!
 - Cohesion P.A. (20/27) easier than Cohesion E-R
 - overall, P.A. easier than E-R (contrast w/coloring)
 - within Cohesion, increased inter-group communication helps
 - some notable exceptions...

- Effects of incentives:
 - asymmetric beats weak symmetric beats strong symmetric
 - the value of “extremists”
Effects of “Personality”

- **Wealth**: $p = 0.54$
- **Early Color Changes**: $p = 1.51 \times 10^{-10}$
- **Stubbornness**: $p = 1.34 \times 10^{-46}$

fraction < value
Behavioral Modeling

model: play color c with probability \(\sim \) payoff(c) \(\times \) fraction in neighborhood playing c
Lessons Learned, 2005-2011

- At least for $n=36$, human subjects remarkably good
 - diverse set of collective tasks
 - diverse set of network topologies
 - efficiency $\sim 90\%$ across all tasks/topologies
- Network structure matters; interaction with task
 - contrast with emphasis on topology alone
- Importance of subject variability and style/personality
- Most recently: endogenized creation of the network
 - network formation games
 - challenging computationally (best response) and analytically
Edge Purchases: Strategic Tensions

• Buy edges or not?
• For information or influence?
• Early in the game or late?
• To high degree or low degree players?
• Nearby or far away?
Experimental Design

- **Session A**: 99 experiments
 - 63 “unseeded” with varying payoffs, imbalances, asymmetries
 - 36 seeded with Minority Power settings
- **Session B**: 72 experiments
 - mixture of unseeded and variety of seeded (cliques, torus)
- **A**: 47/99 solved (47%): 25/63 unseeded, MP 22/36
- **B**: 27/72 solved (38%)
- **Session C**: 72 experiments
 - final networks from “hard” settings in Session A
 - permitted 0 or 1 edge purchases per player
 - started with both initial and final incentives from Session A
- **C**: 25/72 (35%); All: 99/243 (41%)
- Subjects seem to build difficult networks!