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1 Introduction

Alice is a director of a chemical company. She is appalled by delays to repairs of a leaky pipe that transports
a chemical that kills small children. If Alice leaked the email anonymously, no-one would believe it is real.
Alice could convince a journalist, Bob that she knows her private key with a zero-knowledge proof, but then
she would lose her anonymity, and risk being fired, assassinated, stood up by James Bond, etc. Can Alice
convince Bob that she is a director by convincing Bob that she knows one of the directors’ private keys —
but without revealing which one?

The whistleblower’s problem is an example of a logical composition problem. Given zero-knowledge
proofs for a set of assertions {¢1,...,@n}, is it possible to construct a zero-knowledge proof of an arbitrary
proposition, such as

01 A\ (2 V —p3)?

Three primitive cases to consider:
e Conjunction: This is trivial to implement. To prove 1 A ¢, run the proofs of 1) and then ¢ sequentially.

e Disjunction: This is non-trivial to implement. Simply proving the correct proposition would reveal
too much information — namely which assertion is true. The rest of this note describes a technique to
prove ¥ V ¢ when 3-step polynomial-time-prover ZKPs are available for ¢ and ¢. Unfortunately, the
resulting proof is only witness-indistinguishable rather than full zero-knowledge.

e Negation: This is impossible unless NP = coNP, as efficient provers only exist for languages in N'P.

This means the techniques described in this note will be able to construct witness-indistinguishable proofs
for monotonic propositions — i.e. propositions that only use the V and A connectives.

To prove a disjunction ¥ V ¢, the prover will simultaneously execute proofs of ¢ and ¢. However, one of
the ZKPs will be fake, and the other real. The verifier will not know which is fake, and will only be able to
deduce that one of the assertions is true. To implement this partial faking, the prover will use a secret sharing
scheme, which is the topic of the section 2. However, since the disjunction proof executes several proofs in
parallel, it is unknown whether the resulting protocol is zero-knowledge. Instead, Cramer et al. [1994] show
that their proofs are witness-indistinguishable. Section 3 defines this weaker notion of knowledge. Finally,
section 4 describes the disjunction proof, and argues that it is indeed witness-indistinguishable.

2 Secret sharing schemes

Our motivation for using secret sharing is for constructing zero-knowledge proofs for disjunctions of proposi-
tions, which is described in the following section. But the original (and more intuitive) motivation for secret
sharing schemes is controlling a group of agents’ access to a secret. For example, they can enforce a rule that
the nuclear weapon launch codes must only be released with the support of at least two-thirds of the cabinet
members. Each member would be given a secret share such that the launch code can only be computed if
at least two thirds of the shares are available.



More formally, a distributor that knows the secret s would like to construct n secret shares {s;}!_;, so
that any subset containing at least k of them can be used to compute s.
In Shamir [1979]’s secret sharing scheme, the distributor constructs the secret shares as follows:

Protocol 1 (Secret sharing). Common input: k,n € N with k < n.
Distributor’s private input: s € F, where F is a finite field with at least n + 1 elements.
Output: secret shares {s;}1,, so that any k shares can recover the secret s.

1. The distributor chooses a random polynomial f € F[z] of degree k — 1 so that f(0) = s. That is, the
distributor chooses the coefficients f1,..., fx—1, and sets fy = s.

2. The distributor gives each receiver ¢ € {1,...,n} the share s; = (z;,v;) = (¢, f(i)).
Then, any group of agents with at least £ members can reconstruct the secret:

Protocol 2 (Secret reconstruction). Input: any k of the shares {s;}7, = {(xs, y;) }1;.
Output: s.

1. Use Lagrangian interpolation to construct f from S. That is, solve the k simultaneous equations
Zf;é fix] = y; for the polynomial coefficients fo, ..., fr—1:

2. Output s = £(0) = fo.

If the threshold of k shares is met, then the secret reconstruction succeeds because every degree k — 1
polynomial is uniquely determined by any k points it passes through. (While this is a fundamental result
for R[z], the generalization to finite fields with at least k + 1 elements is also standard.) Thus, & points on
the polynomial f contain enough information to recover f completely, and hence the secret s = f(0). Since
the equations are all linear, they can be solved with standard finite field arithmetic.

If fewer than k people reveal their secret shares s;, then any choice of f(0) is consistent with some
polynomial in F[z], so no information is revealed about s.

3 Witness-indistinguishable proofs

If zero-knowledge proofs are executed in parallel, they may no longer be zero-knowledge. (See section 4.5.4 of
Goldreich [2001].) This is a problem for Cramer et al. [1994)’s disjunction proof, which works by pretending
to simultaneously proving all of the assertions. A weaker notion of zero-knowledge can be preserved, however.
There is also second motivation for studying weak notions of zero-knowledge: since these proofs are easier
to design, a procedure for upgrading them to full zero-knowledge would be useful.

The weakest possible definition of almost-zero-knowledge would be if the verifier were not curious, then
no information would be leaked from conversations with the prover. (Full zero-knowledge requires that no
information leaks for all verifiers, not merely one innocent verifier.)

Definition 3 (Honest verifier zero-knowledge proof). An interactive proof system (P,V) of a language L
is honest verifier zero-knowledge if there exists a polynomial time simulator M such that {view!, (z)}zer is
indistinguishable from {M(x)}ser .

Recall that a polynomial-time prover must have some private input called a witness to help it convince
the verifier. For example, in the whistleblower’s problem, Alice needs to know her own private key. But
several other witnesses would also suffice, such as the CEO’s key or the CFO’s key. An interactive proof is
witness-indistinguishable if it does not give any useful information about which witness the prover used.

Definition 4 (Witness-indistinguishable proof). An interactive proof system (P,V) of a language L € N'P
is witness-indistinguishable for a witness relation Ry, if: for every PPT verifier V* and for every sequence
of pairs of witnesses {(wk, w?)}per with {wl, w2} C Rr(z), the ensembles

{(P(wy), V* () (@) }serzeqony- and {{P(w}), V() (@)} eer zeq0,1-

are computationally indistinguishable.



It will be convenient to work with 3-step proofs.

Protocol 5 (3-step schema). Proves: x € L.
Common input: x.
Prover’s private input: a witness w, where (x,w) € Ry,.

1. Offer: The prover randomly picks m! independently of w, and sends it to the verifier.

2. Challenge: The prover picks a challenge ¢ uniformly at random, and sends it to the prover.

3. Response: The prover responds with m?, based on (w,m!,c).

4. The verifier checks m?, based on (z,m!,c).

For example, the graph isomorphism zero-knowledge proof has this form. To prove G; = G2, the prover
gives the verifier a random graph m! = G35 that is isomorphic to the other graphs. The verifier issues a
challenge ¢ € {1,2}. The prover responds with an isomorphism establishing G. & Gs.

Lemma 6. Every 3-step interactive proof (P, V') that is honest verifier zero-knowledge is witness-indistinguishable.

4 Witness-indistinguishable proofs of disjunctions

Cramer et al. [1994] prove ¢ V ¢ by providing a genuine proof for one of the propositions, and a fake proof
for the other. The prover is forced to answer a difficult challenge for any proposition, but can rig an easy
challenge for the remaining proposition. The verifier only knows that one of the challenges was difficult, but
does not know which one. The verifier concludes that at least one of the propositions is true.

For example, suppose the whistleblower Alice establishes her identity by proving that two graphs G
and G4 are isomorphic. Her boss uses a different pair of graphs H; and Hs. Alice could prove she is either
herself or her boss by proving (G = G2) V (Hy = Hj). At the end of the proof, the verifier will see a valid
transcript of each proof — that is (G3, ¢, G. = G3) and (Hs, ¢, Ho = H3). But the ¢’ challenge will be rigged
so that Alice can answer it easily.

Cramer et al. [1994] implement this idea using a 2-of-2 secret sharing scheme. The verifier picks a
challenge ¢ to be “shared”, and requires the prover split the challenge into two shares, ¢¥ and ¢¥ so that
all of the shares are needed to reveal the “secret”, c¢. Each share gives the challenge in the proof of each
proposition. The requirement that the shares reveal ¢ imposes a one-degree-of-freedom constraint on the
shares, leaving the prover to pick one and only one of the challenges. !

Protocol 7 (Disjunctions). Proves: @1 V @o using 3-step proofs for o1 and 3.
Common input: (x1,x2), the common inputs to ¢1 and ps.
Prover’s input: a witness of either assertion, w € Ry(x1) U Ra(x2).

1. If 1 is true, then the prover randomly picks m} and generates a fake proof of o (using the simulator,
which exists if o is honest verifier zero knowledge), consisting of (m3, ca, m2). We omit the symmetric
case for @s.

2. The prover sends (mi, mi) to the verifier.
3. The verifier sends the prover a random challenge c.

4. The prover has to pick (¢1,c2) and a polynomial p(z) = pg + p1x such that p(0) = ¢, p(1) = ¢; and
p(2) = ca. If ¢y is true, then the prover has already picked cq, so the constraints imply ¢; = ¢ — cs.
Then the prover computes m? honestly.

1In fact, their results are substantially more general. They generalize secret schemes, and generalize the duality between
propositions and secret schemes, so that they can prove any monotonic proposition.



5. The prover sends (p, c1, ca, m?, m3) to the verifier.
6. The verifier checks that p(0) = ¢, p(1) = ¢1 and p(2) = ¢z, and checks each proof (m},c;, m?).

Theorem 8. If the proofs of ¢1 and o are 3-step (honest-verifier) zero-knowledge, then Protocol 7 is a
witness-indistinguishable proof of p1 V @a.
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