
When Won’t Membership Queries Help?

(Extended Abstract)

Dana Angluin”

Yale University

Abstract

We investigate cryptographic limitations on the power

of membership queries to help with concept learning.

In particular, we use the recent construction of a

public-key encryption system secure against chosen

cyphertext attack by Naor and Yung [19] (and refine-

ments of it) together with the techniques of Kearns and

Valiant [16] to show that assuming the intractability of

(1) quadratic residues modulo a composite, (2) inverting

RSA encryption, or (3) factoring Blum integers, there

is no polynomial time prediction algorithm with mem-

bership queries for booIean formulas, constant depth

threshold circuits, 3p-boolean formulas, finite unions or

intersections of DFAs, 2-way DFAs, NFAs, or CFGS.

Also, we show that if there exist one-way functions

that cannot be inverted by polynomial-sized circuits,

then Naor and Yung’s [18] and Rompel’s [21] construc-

tion of a signature scheme can be used to show that

CNF or DNF formulas are either bounded polynomial

time predictable without membership queries, or are

not polynomial time predictable even with membership

queries; so, in effect, membership queries won’t help

with predicting CNF or DNF formulas.

*Supported by NSF Grants IRI-8718975 and CCR-9014943.

Address: Computer Science Department, Yale University, P. O.

Box 2158, New Haven, CT 06520. E-mail: angluin@cs.yale. edu.
t Supported by a Fannie and John Hertz Fellowship and in

part by NSF PYI Grant CCR-8858097 with matching funds
provided by AT&T and DigitaI Equipment Corporation, and a

grant from the 3M Corporation. Address: Computer Science

Department, Stanford University, Stanford, CA 94305. E-mail:

misha@cs.stanford .edu.

Permission to copy without fee afl or part of this matertial is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that the copying is by

perrmssion of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

Michael Kharitonov t

Stanford University

1 Introduction

We consider the problem of learning a concept from ex-

amples. In particular, we consider the task of predict-

ing the classification of a new example, given access to

a large collection of correctly classified examples. In the

distribution-free paradigm, the examples are all chosen

independently according to a fixed but unknown prob-

ability distribution, and the goal is to predict the new

example correctly with high probability. This model of

learning is “pa8sive “ in the sense that the learner has

no control over the selection of examples.

One can also consider a more “active” version of this

setting, in which the learner is allowed to ask about par-

ticular examples, that is, the learner makes membership

queries. We assume the membership queries occur be-

fore the new example to predict is given to the learner.

This capability appears to increase the power of poly-

nomial time bounded prediction algorithms.

For example, there is a polynomial time algorithm to

predict deterministic finite acceptors (DFAs) if mem-

bership queries are available [1], but Kearns and Valiant

have shown that predicting DFAs without membership

queries is as hard as computing certain apparently hard

cryptographic predicates [16]. The same situation holds

of p-formulas [3, 15, 16]. There is a polynomial time

prediction algorithm for propositional Horn sentences

with membership queries [2], but without membership

queries they are no easier to predict than general CNF

formulas [15], a problem whose status remains open.

Despite these positive results for prediction with

membership queries, several import ant concept classes

have so far resisted attack using membership queries,

for example, CNF and DNF formulas, general boolean

formulas, nondeterministic finite acceptors (NFAs) and

context-free grammars (CFGS). The general question

we address is: when can we expect membership queries

to help in a prediction task?

Valiant [231 used pseudorandom functions [10] to

show that general boolean circuits are unpredictable

@ 1991 ACM 089791-397-3/911000410444 $1.50

444

even with membership queries under the a~sumption

that one-way functions exist. Our results further illu-

minate the relationship between computational learning

theory and cryptography.

First, we show that if there is a public key encryp-

tion system secure against chosen cyphertext attack

whose decryption function can be polynomially repre-

sented as concepts in a given class, then that class of

concepts cannot be predicted with membership queries

in polynomial time. We use the public key encryption

scheme of Naor and Yung [19] and refinements of it to

show that the cryptographic assumptions of Kearns and

Valiant also imply that there is no polynomial time pre-

diction algorithm with membership queries for boolean

formulas, constant-depth threshold circuits, 3p-boolean

formulas, finite unions or intersections of DFAs, 2-way

DFAs, NFAs, or CFGS.

Second, we show that if there exists a signature

scheme secure against existential forgery under nonuni-

form adaptive chosen message attack then membership

queries will not help with the prediction of any class of

concepts that is closed under intersection and in which

the set of accepting computations of the signature ver-

ifier can be expressed. In particular, the class of CNF

formulas satisfies these conditions, and we give crypto-

graphic evidence that CNF and DNF formulas may be

as hard to predict with membership queries M they are

without.

2 Preliminaries

2.1 Representations of concepts

Let X denote {O, l}*; binary strings will represent both

examples and concept names. If x is a string, IZ [denotes

its length. For any natural number n, X[nl .= {x c X :

12] ~ n}.

A representation of concepts C is any subset of X x X.

We interpret an element (u, x) of X x X as consisting

of a concept name u and an example x. The example x

is a member of the concept u if and only if (u, x) c C.

Define the concept represented by u as

Kc(u) = {z : (U,2) e c}.

The set of concepts represented by C is

{Kc(u) : u E x}.

If a set A of binary strings is represented by C, then we

define sizec (A) to be the-length of the shortest string u

such that Kc(u) = A.

To represent DFAs we fix a straightforward binary

encoding of DFAs with input alphabet {O, 1} and de-

fine CDFA as the set of pairs (u, x) such that u encodes

a DFA M and M accepts z. The set of concepts rep-

resented is the regular sets over {O, 1}. For each such

set A, there is a polynomially bounded relation between

sizec~~~ (A) and the number of states in the smallest

deterministic finite acceptor for A.

2-way DFAs, NFAs and CFGS are represented (anal-

ogously to DFAs) by C2DFA, CNFA and CCFG. Finite

unions of DFAs are represented by Cu~~A as follows.

In a pair (u, Z), the string u is interpreted as specifying

a finite set Ml, . . . Afr of DFAs, and the string z is in

the concept represented by u if and only if at least one

Lfi accepts z. This representation can be exponentially

more succinct than CDFA in representing regular sets,

Finite intersections of DFAs are represented by CnDFA.

We fix a straightforward binary representation of gen-

eral boolean formulas over the variables Xl, X2, . . . and

the basis AND, OR, and NOT. Then (u, z) is an element

of CBF if and only if u represents a positive integer n and

a boolean formula ~ over the variables Xl, Xn such

that Ixl = n and the assignment Xi = xi for i = 1, n

satisfies the formula ~.

The class CCNF consists of all those elements (u, z)

of CBF such that the formula represented by u is in con-

junctive normal form (CNF); CDNF represents DNF for-

mulas; CHCNF represents propositional Horn sentences.

For k ~ 1, CkP consists of all those elements (u, z) of

CBF such that u represents a formula with at most k oc-

currences of each variable. CIP represents the read-once

formulas (equivalently, fl-formulas.)

The class C~CO,d of threshold circuits of depth d is

specified analogously to boolean formulas: (u, x) is an

element of CTCO,d if and only if u represents a positive

integer n and a boolean threshold circuit C of depth at

most d over the inputs X1, Xn, and 1x1 = n and the

assignment Xi = ~i for i = 1, n causes the output

of C to be 1.

Since each representation of concepts is a set of pairs

of binary strings, we can investigate its computational

complexity, that is, the computational complexity of the

evaluation problem for the class of concepts. Note that

CN~A is in NSPACE(log n), CCFG is in log-CFL, and

the other representations of concepts defined above are

in DSPACE(log n).

2,2 Prediction with membership queries

We generalize the definitions of Pitt and Warmuth of

prediction algorithms [20] to allow membership queries.

A prediction wdh membership queries algorithm, or

pwrn-algorithrn, is a possibly randomized algorithm A

that takes as input a bound s on the size of the target

concept, a bound n on the length of examples, and an

accuracy bound e. It may make three different kinds of

oracle calls, the responses to which are determined by

the unknown target concept c and the unknown distri-

bution D on X, as follows.

445

1. A membership query takes a string x as input and

returns 1 if z E c and O otherwise.

2. A request for a random classified example takes no

input and returns a pair (z, b) where z is a string

chosen independently according to D and b = 1 if

z c c and b = O otherwise, and

3. A request for an element to predict takes no in-

put and returns a string x chosen independently

according to D.

A may make any number of membership queries or re-

quests for random classified examples. However, A must

eventually make one and only one request for an element

to predict, and then eventually halt with an output of

1 or O without making any further oracle calls. The

output is interpreted as A’s guess of how the target

concept classifies the element returned by the request

for an element to predict, A runs in polynomial time if

its running time (counting one step per oracle call) is

bounded by a polynomial in s, n, l/c.

We say that A successfully predicts a representation

of concepts C if and only if for all positive integers s and

n, for all positive rationals c, for all concept names u E

xI’] for all probability distributions D on X[nl, when

A is’run with inputs s, n, and c, and oracles determined

by c = Kc(u) and D, the probability is at most c that

the output of A is not equal to the correct classification

of z by tee(u), where z is the string returned by the

(unique) request for an element to predict.

A representation of concepts C is polynomially pre-

dictable with membership queries if and only if there is

a pwm-algorithm A that runs in polynomial time and

successfully predicts C. If a representation of concepts

is learnable in polynomial time with membership and

equivalence queries then it is polynomially predictable

with membership queries, thus, CDFA, CIP, and CHCNF

are polynomially predictable with membership queries

[1, 2, 3].

By the results of Schapire showing that weak learning

implies strong learning even with access to membership

queries [22], we may without loss of generality replace

the arbitrary c in the definition of the success of a pwm-

algorithm with the fixed value c = 1/4.

3 A reducibility for prediction

with membership queries

We define a notion of reducibility analogous to the

prediction-preserving reducibility of Pitt and Warmuth

[20], but allowing membership queries. We start with

two representations of concepts, C and C’, and define

a. reduction that will allow us to convert a polynomial

time pwm-algorithm A’ for C’ into a polynomial time

pwm-algorithm A for C.

There are three mappings involved in this reduction:

a mapping g of concept names in C to concept names

in C’, a mapping j of elements z for A to predict to

elements x’ for A’ to predict, and a mapping h of ele-

ments xl queried by A’ to elements x to be queried by

A. In the last case, we also allow h to answer member-

ship queries directly. These will be specified formally in

the definition below; first we give some intuition.

The prediction-preserving reductions of Pitt and War-

muth consist of maps g and ~; it is instructive to see

what the map h is. The algorithm A running on concept

c s C will be a simulation of A’ running on the image

c’ of c under the map g. When A’ requests a classified

example, A requests a classified example and receives

some (x, b). A then supplies (~(iz), b) to A’ to continue

the simulation. This is a correct classification of the

example ~(z) with respect to c’ because x c c if and

only if ~(x) E c’. Similarly, if A’ requests an element to

predict, A requests an element to predict, and receives

some x. A then supplies j(x) to A’ as the element to

predict and returns the prediction of A’ as its own. If

the prediction of A’ for ~(z) is correct for c’, then the

same prediction for z is correct for c.

Now consider the situation when A’ makes a mem-

bership query with a string y. If y is in the image of ~,

that is, y = $(z) for some string x, then things are rosy
— all A needs to do is make a membership query for z

and return the answer to A’, since in this case y c c’ if

and only if x E c. However, typically the image of ~ is

not all strings, and A’ is free to ask membership queries

for strings y not in the image of ~ – in order for the

simulation to continue correctly, such queries must be

answered correctly.

What we require in this case is that the correct answer

be computable in polynomial time from y independent

of the concept being predicted. All we have actually

used in the specific reductions in this paper is a constant

1 or constant O answer for all such y. Note that this

puts an implicit requirement on the expressive power

of the image concept c’ E C’. In particular, c’ must

be able to exclude (or include) all the strings y that

are not in the image of ~, so that the answer of O (or

1) for all such strings is correct. It is this requirement

that distinguishes, for example, bet ween intersections

of DFAs and DFAs – size polynomial in n is sufficient

to accept {wn’ : Iwl = n} for intersections of DFAs

but not for DFAs, and the element map ~ for Pitt and

Warmuth’s reduction of DSPACE(log n) to DFAs has

an image of this form. The formal definitions follow.

Definition 1 Let C and C’ be representations of con-

cepts. Let T and 1 be elements not in X. Then C is

pwm-reducible to C’, denoted C <Pwm C’, if and only if

there exist three mappings g, f, and h with the following

properties.

1. There is a nondecreasing polynomial q(s, n) such

446

2.

9.

that for all natural numbers s and n and for all

u E xI’], g(s, n,u) is a string u’ of length at most

q(s, n).

For all natural numbers s and n, for eve;ry u c XI’],

and for every x G X[nl, f(s, n, x) is a string x’

and z ~ Kc(u) if and only if x’ ● ~cl(g(s, n, u)).

Moreover, f is computable in time bounded by a

polynomial in s, n, and 1x1.

For all natural numbers s and n, for every u E

xI’], and every z’ E X, IL(s, n, z’) is either T,

1, or a string Z, and if h(s, n, z’) = T ihen

x’ 6 Kc/(g(s, n, u)), if h(s, n, x’) = _L then x’ #

fic, (g(s, n, u)), and otherwise x’ ~ Kc)(g(s, n, u)) if

and only if x E Kc(u). Moreover, h is computable

in time bounded by a polynomial in s, n, and Ix’l.

Lemma 2 The reducibihty <PUm is transitive. Let C

and C! be representations of concepts. If C. <PWm C{ and

C’ is polynomially predictable with membership queries,

then C is also polynomially predictable wtth membership

queries.

A representation of concepts C is <Pwm-complete in a

complexity class S if and only if C c S and and for every

representation of concepts C’ in S, C’ ~PW~ C. Then we

have the following results:

Theorem 3 ● CBF <PWWI C3~,

● CUDFA, cnDFA, and C2DFA are <pwm-COmPlete for

DSPA CE(log n),

. CNFA is <Pwm-complete for NSPACE(log n), and

. CCFG as <p~~-complete for log- G’FL.

Since CBF is in DSPACE(log n), these results imply

that if CBF is not polynomially predictable with mem-

bership queries, then the classes cap, CUDFA, CflDF,4,

C2DFA, CNFA, and CCFG are also not polynomially pre-

dictable with membership queries.

(In Section 7 we give a sketch of the reduction

CBF <Pwm C3P; the others are omit ted.)

4 Membership queries and cho-

sen cyphert ext attack

In a public-key encryption system, a user A publishes

a public key for a (probabilistic) encryption function E

and keeps secret the key for the decryption function D.

For simplicity we assume that messages are single bits,

In a chosen-cyphertext attack, the attacker has access

to an oracle for the function D and can quer!y it repeat-

edly as part of the attempt to compromise the security

of the system. After gathering information, tlhe attacker

is presented with an encryption E(b) of a randomly cho-

sen bit b E {O, 1}. The attacker’s goal is to guess the

value of b, without further access to the oracle for D.

The attack is said to be successful if the probability of

the attacker’s correctly guessing b is larger than 1/2 by

a “Polynomially useful” amount.

Suppose instead we think of the decryption function

D as representing a concept, namely, all those strings

that decrypt to 1. Then the attacker’s goal may be

thought of as predicting the value of this concept for a

string chosen by encrypting a random bit b. The at-

tacker can generate “solved problems” from this distri-

bution because the probabilistic encryption function E

is public. In this setting, the ability to query an oracle

for D is simply the availability of membership queries

for the concept D. Hence the security of a public-key

encryption system against chosen cyphertext attack im-

plies the impossibility of a polynomial time algorithm

for predicting the associated representation of concepts

with membership queries.

Then the problem becomes: how weak a represen-

tation system is sufficient to express (sufficiently con-

cisely) the concepts corresponding to decryption func-

tions? Here we can apply the techniques of Kearns and

Valiant [16] to reduce the complexity of a decryption

function in a way that does not compromise its crypto-

graphic security. The formal definitions follow.

4.1 Chosen cyphertext security

We use essentially the definition given by Naor and

Yung for public-key encryption [19], specialized to

single-bit messages.

Definition 4 A public-key cryptosystem consists of

three probabilistic Turing machines: a key generator G,

an encryption mechanism E, and a decryption mecha-

nism D. Each of these machines halts in expected time

bounded by a polynomial in the lengths of its inputs.

Also, the length of the output of each machine is always

bounded by a polynomial in the length of its input. The

machines have the following inputs and outputs:

1. G takes as input a positive integer n represented in

unary and outputs a pair of strings (PI<, SK).

2. E takes as input a pair (b, PI<), where b is a bit

and PI< is a string, and outputs a string x.

3. D takes as input a triple of strings (PI<, SK, x)

and outputs a bit b.

Here n is the security parameter, PI< is an encryption

key, S1= is a decryption key, b is a (single bit) mes-

sage, and x is a cyphertext. We require that decryption

Of properly encrypted bits be correct. That is, for all

pairs (PI<, SK] output by G and for all b E, {0, 1), if

447

E outputs x on inputs b and PI{, then D outpuis b on

inputs (PK, SK, x).

For a chosen cyphertext attack (abbreviated CC-

attack) we also use essentially Naor and Yung’s defini-

tion. A CC-attacker is a probabilistic program A with

two inputs: a positive integer n and a string PA’. A

must run in expected time bounded by a polynomial in

n and IPKI. The output of A is a single bit.

In addition to the usual complement of instructions,

the program has access to oracles for (1) requesting a

decryption and (2) requesting a challenge. Each of these

instructions takes unit time. Before it halts, the program

must execute exactly one request for a challenge. After

the program executes a request for a challenge it must

not execute any further oracle calls.

The results of the oracle calls are determined by the

inputs n and PK and an oracle set c (the set of all

binary strings that decrypt to 1.) When A is run with

inputs n and PI-- and oracle set c, the oracle calls work

as follows:

1. The input to a request for a decryption is a binary

string Z. The result is 1 if z E c and O otherwise.

2. A request for a challenge has no input. The result

is a binary string x produced by first flipping a coin

to determine a bit b and then running E(b, PK) to

obtain x.

If the program A halts, its output is a single bit b’. The

CC-attacker A succeeds if b’ = b, where b was the bit

encrypted in the (unique) request for a challenge made

by the program.

For a CC-attacker A and a positive integer n we de-

fine a boolean-valued random variable TA (n) as follows.

Run G on input n to generate (PK, SK). Let c be

the set of strings z such that D(PK, SK, z) = 1. Now

run A on inputs n and PK with oracle set c, and de-

fine TA(n) = 1 if A succeeds. The probability that

TA(n) = 1, denoted Pr{TA(n) = 1}, depends on the

random choice of b and the random choices made by G,

E, and A.

Definition 5 A public-key encryption sysiem is said to

be secure against CC-attack provided thai for every CC’-

attacker A and every polynomial p(n),

for all sufficiently large n.

4.2 Representing decryption

Let (G, E, D) be a public-key encryption system. For

any pair (PK, SK) produced by G, let

C(PK, SK) = {z : II(PK, SIi, 2) = 1}.

Let C be a representation of concepts. Then C polyno-

mially represents decryption in (G, E, D) if and only if

there exists a polynomial q(n) such that for all positive

integers n and all pairs (PK, SK) that could be output

by G(n), we have

C(PK, SK) = Kc(u)

for some string u such that [u I $ q(n). That is, the

set c(PK, SK) is a represented concept in the system C

and has size bounded by the polynomial q in the security

parameter n.

Now we can state the main theorem relating security

against chosen cyphertext attack and unpredictability

with membership queries.

Theorem 6 Let (G, E, D) be any public key encryption

system. Suppose C is a representation of concepts that

polynornially represents decryption in (G, E, D). Then

zf (G, E, D) is secure against C’C-attack, C is not poly-

nomially predictable with membership queries.

The proof of this theorem goes by assuming that C is

polynomially predictable with membership queries and

then converting a successful prediction algorithm into a

successful CC-attacker. The proof is given in Section 7.

4.3 Specific systems secure against CC-

attack

Naor and Yung constructed the first probabilistic en-

cryption system secure against CC-attack, assuming the

intractability of testing quadratic residuosity modulo a

composite (the QRA) [19]. Recent improvements of this

system due to Naor and Yung [personal communica-

tion] and Feige, Lapidot, and Shamir [8] allow the con-

struction of similar systems assuming the existence of

trapdoor permutations, and in particular under any of

the three intractability assumptions used by Kearns and

Valiant. Using these systems, together with the meth-

ods of Kearns and Valiant that show how decryption

functions can be polynomially represented by boolean

formulas or constant-depth threshold functions, we have

the following.

Corollary 7 If we assume the intractability of any of

the following three problems: testing quadratic residues

modulo a composite, inverting RSA encryption, or fac-

toring Blum integers, then the following representations

of concepts are not polynomially predictable with mem-

bership queries: CBF, Cl’c.yd (for any Sufficiently large

~), C3p, &DFA, GtDFA, C2DFA, CNFA, and CCFG.

448

5 Membership queries and sig-

nature schemes

We show that the existence of secure signature schemes

of a certain type implies that a representation of con-

cepts that can efficiently represent intersection and the

verification of signatures can, in effect, render member-

ship queries useless. CNF formulas are one such repre-

sentation; for concreteness we sketch the idea in terms

of CNF formulas.

For any CNF formula 4 with input z we may de-

fine a polynomially larger CNF formula # on input zyz

which is true if and only if ~ is true on x, y consists

of a valid signature for z with respect to some public

key PK and z is a step-by-step encoding of the accept-

ing computation of the signature verifier on PI<, x and

y. If CNF formulas are polynomially predictable with

membership queries, the class of all such formulas # can

be predicted with membership queries. In order to get

an answer other than O from a membership query, the

learning algorithm must produce a correct signature for

prefix x. Thus, if the signature scheme is existentially

unforgeable, the membership queries will cclncern only

r’s already seen – that is, the algorithm must succeed in

predicting @ without membership queries. The formal

development of this idea follows.

5.1 Signature schemes

Definition 8 A public-key signature scheme consists of

three Turing machines: a key-generator G, a signing

program SP, and a signature verzfier V, with the fol-

lowing properties:

1.

2’.

3.

G is a probabilistic machine that takes as input

a positive integer n and outputs a pair of strings

(PK, SK]. The length of its output and its expected

running time are bounded by a polynomial in n.

SP is a probabilistic machine that takes as tnput

a pair of strings (PI-, SK), and a string x, and

outputs a string y. The length of its output and its

expected running time are bounded by a polynomial

in the lengths of its inputs.

V takes as input three strings PI<, x, and y and

outputs a single bit. V is a deterministic ma-

chine that runs in time bounded by a polynomial

the lengths of its inputs.

Here n is an upper bound on the length of messages to

be signed, (PI<, SK] is a pair of public and secret keys

for the system, x is a message to be sagned, and y is a

signature. We require that V accept all signatures pro-

duced by SP1 that is, for all n, for all (PI<, SK) output

by G(n), and for all strings x E X~n~, if y is output by

SP((PK, SK), x) then V(PK, x, y) must Oui!put 1.

The security of a public-key signature scheme against

existential forgery under adaptive chosen message at-

tack uses a polynomial time attacker with black box

access to the signing program z ~ SP((PK, SK), z).

The attacker is permitted to query the black box arbi-

trarily, and succeeds if it can output a correct signature

for a message x not queried. We require security against

a non-uniform attacker, defined below.

A non-uniform polynomial time adaptive chosen mes-

sage attacker, (or nonuniform forger) F is a probabilis-

tic advice Turing machine MF with fixed advice tapes

tl,tz,.... MF takes as as input a positive integer n and

a string PK, and has access to the advice tape tn. It

must run in time polynomial in n and [PK[. It may

make calls to an oracle that takes w input a string x

of length at most n and produces as output a string g.

The output of M~ is a pair of strings x’ and y’.

For each n we define the binary-valued random vari-

able TF(n) as follows. Run G on input n to produce

(PK, SK). Run Mr on inputs n and PK with advice

tape t.. When MF makes an oracle call with a string

x, run SP((PK, SK), x) to generate a signature y and

return y as the value of the oracle call. Eventually M~

halts with outputs (x’, y’). The value of T’~(n) is 1 if

and only if V(PK, z’, /) = 1 and the string x’ was not

the input to any oracle call during the run.

Definition 9 The signature scheme (G, SP, V) is se-

cure against existential forgery under nonuniform poly-

nomial time adaptive chosen message attack (or n-

secure) if and only if for every nonuniform forger F

and for every polynomial p(n) and for all suficientiy

large n,

Pr{T’(n) = 1} < l/p(n),

where the probability is taken over the random choices

of G, SP, and MF.

The signature schemes we have defined above are

memory less, do not have an explicit signature bound,

and must exhibit security against nonuniform forgers.

Using the results of Goldwasser, Micali, and Rivest [11],

Goldreich [9], Bellare and Micali [4], Naor and Yung

[18], and Rompel [21] on the construction of secure sig-

nature schemes, we have the following.

Corollary 10 If there exists a one-way function that

cannot be inverted by polynomial-sized circuits, then an

n-secure signature scheme exists.

5.2 Polynomial representation of signa-

tures

We define what it means for C’ to represent “signed”

versions of the concepts in C. Cl polynomially represents

signatures for C with respect to the signature scheme

449

(G, SP, V) if and only if there exist two maps, d con-

cept map g and an example map f and two nondecreas-

ing polynomials ql(s, n) and q2(s, n) with the following

properties:

1. The inputs to g(PK, s, n, u) are a string PK, pos-

itive integers s and n, and a string u; the output is

a string. For all positive integers s and n and all

strings PK such that (PK, SK) can be output by

G(n), and all strings u G XISI, 19(PK7s, n, u) I ~

ql(s, n).

2. The inputs to f(PK, s, n, x, y) are a string PK,

positive integers s and n represented in unary, and

strings z, and y; the output is a string w, The

function f is computable in time bounded by a

polynomial in the lengths of its inputs. For all

positive integers s and n, all strings PI< such

that (PK, SK) can be output by G(n), all strings

z c X[nl, all strings y that could be output by

SP((PK, SK), z), we have Iwl ~ qz(s, n).

3. Moreover, if for a fixed PK, s, and n we define

then $’ is injective and there is a polynomial time

algorithm that given PI<, s, n, and w determines

the unique pair of strings (z, y) such that f’(z, y) =

w (if any.)

4. For every n and for every PI{, SK) output by
\G(n), for every string z c X ‘1, for every positive

integer s and every string u ● X[sl and every string

w

w ● tcc/(g(PK, s,n, u))

if and only if for some strings z and y, we have w =

f(PK, s,n, z,y) and z E Kc(u) and V(PK, z,y) =

1.

We say that C polynomially represents signatures if

and only if for any signature scheme (G, SP, V), C poly -

nomially represents signatures for C with respect to

(G, SP, V).

Lemma 11 The following representations of concepts

polynomially represent signatures; C3CNF, CCNF,
CTco,d fOr d ~ 2, CBF, CnDFA, C2DFA.

5.3 Bounded polynomial prediction

We need a (possibly) weaker notion of polynomial pre-

dictability without membership queries, in which we

bound by a polynomial in n the size of the unknown

concept and the complexity of the distribution D. A

circuit with n + 1 outputs may be taken to represent a

distribution over X[nl in a straightforward way. A dis-

tribution D has complexity at most t if and only if it is

representable by a circuit of at most t gates in this way.

A representation of concepts C is bounded polynomi-

ally predictable if and only if there exists a polynomial

time pwm-algorithm A that does not use membership

queries such that for all polynomials p(n), for all but

finitely many positive integers n, for all strings u of

length at most p(n) and for all distributions D on xI”]

of complexity at most p(n), A with inputs p(n) and n,

and oracles determined by concept KC(u) and distribu-

tion D, the probability is at most 1/4 that the output of

A is not equal to the correct classification of z by KC(u),

where z is the string returned by the (unique) request

for an element to predict.

Theorem 12 Let C and C’ be representations of con-

cepts in PTIME. If (G, SP, V) is an n-secure public-key

signature scheme, C) polynomially represents signatures

for C with respect to (G, SP, V), and C’ is polynomially

predictable with membership queries, then C is bounded

polynomially predictable (without membership queries.)

The proof of this theorem is sketched in Section 7.

Combining this theorem with Lemma 11 on representing

signatures and Corollary 10 on assumptions sufficient to

guarantee the existence of n-secure signature schemes,

we have the following.

Corollary 13 If there ezisis a one-way function that

is not invertible by polynomial-sized circuits, then each

of the following representations of concepts is either

bounded polynomially predictable (without membership

queries) or is not polynomially predictable with mem-

bership queries: CCNF, CDNF, CTcO,d for d z 2, CBF,

C“DFA, C“DFA, C2DFA, CNFA, CCFG.

In view of the results in the preceding section, the

main thrust of the corollary is to give evidence that

membership queries will not help with (3NF or DNF

formulas; they will either be bounded polynomial pre-

dictable without them, or won’t be predictable with

them,

6 Additional remarks

The learner’s ability to ask membership queries raises

two new issues: samplability of the underlying distri-

butions of examples, and learnability of concepts over

arbitrary domains.

Sections 4 and 5 describe two different methods for

showing non-learnability with membership queries –

one using chosen cyphertext secure encryption, the

other using existentially unforgeable signatures. Ex-

cept for CNF and DNF formulas and threshold circuits

450

of “small” constant depth, Corollaries 7 and 13, to-

gether with results of Kearns and Valiant [16], prove

non-learnability of the same representations of concept

classes under virtually the same cryptographic assump-

tions.

There is, however, a major difference between the un-

derlying distributions of examples that are used; in the
case of chosen cyphertext secure encryption, the under-

lying distributions are polynomial time samplable (by

the learner), while in the case of signatures not all dis-

tributions are polynomial time samplable. Therefore,

it is still open whether membership queries may help

to learn CNF and DNF formulas or boolean threshold

circuits of small constant depth over polynomial time

samplable distributions.

The question of learnability of concepts over domains

that are subsets of the “universal” domain {O, 1}* does

not arise in the “passive” model because such domains

can always be extended to be all of {O, 1}“’ by assign-

ing probability O to the missing elements. Cln the other

hand, when membership queries are allowed,, requiring a

learning algorithm to be domain-independent as well as

distribution-independent may weaken the power of the

algorithm. In effect, such a requirement prohibits the

learner from asking queries on examples whose proba-

bility under the underlying distribution is (0, since the

domain can always be restricted to consist of only ex-

amples with positive probability. By the reductions of

Theorem 3 it follows that the representation of concepts

CDFA, which is learnable with membership queries over

domain {O, 1}* (see [1]), becomes not learnable (un-

der cryptographic assumptions) when the domain is re-

stricted to a subset of {O, 1}*.

We may consider allowing a learning algorithm to ask

membership queries after receiving an example to pre-

dict, disallowing only the query on this example. By

using a new encryption scheme of Dolev, Dwork, and

Naor [7], as well as secure signatures, we show that the

representations of concepts shown in sections 4 and 5 to

be non-learnable remain so in the new model.

Finally, we may use the techniques of Section 5 to

show that Amsterdam’s “experiments” may be strictly

more powerful than membership queries; this develop-

ment will appear in the full paper

7 Proofs and sketches

7.1 Sample reduction: CBF <p~~, C3gi

Lenny Pitt collaborated in the discovery of this reduc-

tion. For ease of understanding, we present this reduc-
tion by example. Suppose for concreteness n = 4 and

s=6.

The instance map ~ takes a binary string of length n

and replaces each bit by s copies of that bit, e.g.,

~(6,4,1101) = 111111111111000000111111.

The concept map g takes a boolean formula ~ over

n variables of size at most s to a 3p-boolean formula

over ns variables as follows. First, it replaces each

distinct occurrence of the variable Xi by distinct vari-

ables from the irh group of s consecutive variables:

x(&l), +l, Xi.. This produces a read once formula

~’. Then it conjoins an additional formula to check that

the input is in the image of ~, that is, to check that the

inputs in each group all have the same value.

For example, if

q!J= (-IXI V X3 V X4) A (Xl V X2 V =X3)

then

= (TXI V X13 V X19) A (X2 V X7 V lXM).

A formula to check that the inputs in the first group all

have the same value is

Al = (Xl + X2) A (X2 + X3) A (X3 + X4) A

(X, + X,) A (X5 + X,) A (XG + XI).

(As usual, (A + B) is (1A V B).) Similarly, formula

A~ checks that the inputs in the ith group all have the

same value. Hence, the 2p-formula

checks that the input is in the image of the instance

map f. The final 3#-formula (over 24 variables) output

by the concept map is @’A @J.

The query map h is easily specified – if the input y is

a string of length ns and g = ~(s, n, Z) for some string

~ of length n, then the result is Z, otherwise, the result

is 1. For example:

h(6,4, 111111000000111111000000) = 1010,

while

h(6,4, 111101000000111111000000) = 1.

We omit the straightforward proof that this reduction
satisfies the definition of <PW~.

Note that if the original formula # is in CNF then the

final formula @ A @ is also in CNF. Thus, in particu-

lar, we get the result (independently discovered by Tom

Hancock [12]) that CCNF <Pwm C3PCATF. Thus, 3PCNF

formulas are as hard to predict with membership queries

as general CNF formulas. (Dually for DNF.) Hancock

has shown that 2uDNF formulaa are Polynomially me-
dicable with membership queries [12].

With a little more work we can get some insight into

the oft-remarked phenomenon that finite disjunction or

451

conjunction seems to make learning much harder in
some cases. If C is a class of concepts, define A(C) to be

the class of concepts (under some straightforward en-

coding) consisting of intersections of pairs of concepts

from C.

It is not difficult to modify the reduction above so

that the concept map g produces a formula that is the

conjunction of three read-once formulas. The idea is to

separate the read-twice checking formula A 1 into the

conjunction of its first, third, and fifth clauses (a read-

once formula) and its second, fourth, and sixth clauses

(another read-once formula.)

Now consider formulas that are the conjunction of

k read once formulas. For k = 1, such formulas are

polynomially predictable with membership queries, and

for k = 3 Corollary 7 and the modified reduction show

that they are not polynomially predictable with mem-

bership queries (under suitable cryptographic assump-

tions.) The case of k = 2 is open, but whichever way it

goes, there must be some class C which is polynomially

predictable with membership queries while A(C) is not

(under suitable cryptographic assumptions.)

7.2 Chosen cyphertext and membership

queries

Proof of Theorem 6. Suppose that (G, E, D) is a public

key encryption system that is secure against CC-attack.

Let p(n) be a polynomial such that for every (PK, S1<)

output by G(n) and every z output by E(b, P]<) for

b c {0,1}, IzI < p(n).

Also suppose that C is a representation of concepts

that polynomially represents decryption in (G, E, D).

Let q(n) be a polynomial such that for every n and every

(PI<, SK) output by G(n), the size of the concept

C(PK, SK) = {z c x : D((PK, SK), z) = 1}

is at most q(n).

To show that C is not polynomially predictable with

membership queries, we assume to the contrary that a

pwm-algorithm A’ witnesses the polynomial predictabil-

ity of C with membership queries, and use A’ to con-

struct a successful CC-attack on (G, E, D).

The CC-attacker A on inputs n and PI< simulates

the pwm-algorithm A’ with inputs q(n) (bounding the

size of the concept) and ~(n) (bounding the length of
examples) and error parameter 1/4. The oracle queries

of A’ are answered as follows.

1.

2.

When A’ makes a membership query with string

x, A requests the decryption of x and returns the

value to A’ as the result of the membership query.

When A’ requests a random classified example, A

flips a coin to determine a bit b and then runs

3.

E(b, PK) to generate a string z. The pair (z, b)

is then returned to A’.

When A’ requests a element to predict, A requests

a challenge. The resulting string c is returned to A

as the element to predict.

When A’ makes a prediction b, the CC-attacker A out-

puts b and halts.

For any n, consider the test to determine the value of

TA (n). G(n) is run to determine (PK, SK) and then the

CC-attacker A is run with inputs n and PI<. Consider

the distribution D on strings x induced by flipping a

coin to determine b and then running E((PK, SK), b)

to determine S. This assigns probability zero to strings

longer than p(n).

In the simulation of A’, the membership queries are

answered according to the concept c(F’1<, S1<), the ran-

dom classified examples are generated according to D

and classified according to c(PK, SK), and the request

for an element to predict is generated according to D.

Since the input q(n) bounds the size of c(PK, SK) and

the input p(n) bounds the length of examples produced

from D, the correctness of A’ means that with prob-

ability at least 3/4 it correctly predicts the element x

returned by its request for an element to predict. This

means that with probability at least 3/4 A produces a

correct decryption of the string z returned by its re-

quest for a challenge, That is, Pr{T~(n) = 1} ~ 3/4,

which contradicts our assumption that (G, E, D) is se-

cure against CC-attack. Thus C is not polynomially

predictable with membership queries. Q.E.D.

7.3 Signatures and membership queries

Proof sketch for Theorem 12?. Let the concept map g,

the example map ~, and the pair of nondecreasing poly-

nomials gl and q2 witness the fact that C’ polynomially

represents signatures for C with respect to (G, SP, V).

Let the pzom-algorithm A’ witness the fact that C’ is

polynomially predictable with membership queries.

The prediction algorithm A to predict C without

membership queries is defined as follows.

The algorithm A: On inputs s (bound on the con-

cept size) and n (bound on the example length), let

s‘ = ql(s, n) and n’ = qz(s, n). A runs the key genera-

tor G on input n’ to generate (PK, SK).

Now A simulates A’ on inputs n’ and s’ with error pa-
rameter 1/8. The oracle calls that A’ makes are handled

as follows.

1. When A’ requests a random classified example,

A requests a random classified example. Suppose

(z, b) is the response to A; this pair is saved in mem-
ory. A runs SP((PK, SK), x) to generate a signa-

ture y. The classified example (f(PK, s, n, x, y), b)

is returned to A’.

452

2.

3.

When A’ requests an element to predict, A requests

an element to predict. Suppose the element re-

turned isx. Then A generates yasin the preceding

case, and returns the string f(P1<, s, n, z, y) as the

element for A’ to predict.

When A’ makes a membership query with string w,

then A determines the unique strings x and y such

that f(PK,s, n, x, y) = w (if any) and checks to

see that V(PK, z, y) = 1. If so, and if a pair (x, b)

has been stored in memory, then the classification

b is returned as the result of the membership query

to A’. Otherwise the value returned to A’ is O.

When the algorithm A’ outputs a prediction and halts,

A outputs the same prediction and halts. ❑

Note that A makes no membership queries. Also note

that it succeeds in answering the membership queries of

A’ in the two cases (1) the string w is not in the right

form or does not contain a valid signature of z (in which

case the query is correctly answered with O) or (2) the

string w is in the right form, y is a valid signature of x,

and z has already occurred as a classified example (in

which the correct stored value of b is returned.)

Thus, the only case in which A may fail to answer

a membership query of A’ correctly is when the string

w is in the right form, y is a valid signature of x, but

the example z has not occurred as a classified example.

When this happens, A has not previously requested a

signature for t, that is, y is a correct signature for a

new Z; in effect, the pair x, y is a successful forgery.

Also, if all the membership queries of A“ were cor-

rectly answered, then by the correctness of A’, the pre-

dictions of A’ for the signed version of a concept c (and

therefore, the predictions of A for the original concept

c) should be correct with probability at least 7/8. If

in fact there are infinitely many concepts and distribu-

tions on which A has prediction error at least 1/4, then

these may be exploited to get a nonuniform forger (in-

corporating knowledge of the “hard” distributions and

concepts) whose success probability is at least 1/8. We

now proceed more formally.

We claim that A witnesses the bounded polynomial

predictability of C. The proof is by contradiction; we

assume that A fails and use it to construct a, successful

nonuniform forger for signature scheme (G, SP, V),

If A fails to be a witness to the bounded polynomial

predictability of C, then there exist a polynomial p(n)
. .

and mfimtely many values nl, n~, . . . such that for each

ni, there exist a concept name Ui of length at most p(ni)

and a distribution Di on X[n’l that can be represented

by a circuit C’i of size at most P(ni), such that when A is

run with inputs s = P(ni) and n = ni, concept /cc(ui),

and distribution Di, the probability that A makes an
error of prediction exceeds 1/4.

Consider a nonuniform forger F defined as follows.

For each i, the advice tape tn, contains the string w

and a straightforward encoding of the circuit Ci, repre-
senting the “hard” concept and distribution for ni. The

other advice tapes contain empty strings.

The machine h’fF: On inputs n and PK, if the

advice tape contains the empty string, then AfF halts

with a pair of empty strings as output. Otherwise, n =

n~ for some i and the advice tape contains a string ui and

a circuit L’i representing distribution Di. Let s = p(n)

and let s’ = ql(s, n) and n’ = qa(s, n). Mr simulates

A’ on inputs s’, n’ and 1/8. The oracle calls of A’ are

handled as follows by ~r:

1

2.

When A’ requests a random classified example,

MF first generates an element x according to the

distribution Di (using the circuit Ci) and then

makes a call on the signing oracle with input z

to get string y. ~F uses the string u~ to calcu-

late whether z E ~c(ui) and sets the bit b = 1 if

so. The pair (z, b) is saved in memory, and the
pair (~(p~-, s, n, x, y), b) is returned as the random

classified example requested by A’.

When A’ requests an element to predict, MF gen-

erates strings x and y as in the preceding case and

returns f(PK, s, n, z, y) to A’ as the string to pre-

dict.

3. When A’ makes a membership query with a string

w, MF computes the unique strings (if any) x and y

such that w = f(PK, s, n, x, y). It also checks that

V(PK, z, y) = 1. If not, it returns the value Oto A’

as the result of the membership query. Otherwise, if

there is a stored pair (z, b) in memory, MF returns

the value b to A’ as the result of the membership

query. In the final case, V(PK, z, y) = 1 and z has

not been an input to the oracle, so kfF outputs the

successful forgery (z, y) and halts.

If A’ outputs a prediction and halts, then MF has failed

to produce a successful forgery, so it outputs a pair of

empty strings and halts. ❑

Our goal is to show that this nonuniform forger F

witnesses that the signature scheme (G, SP, V) is not

n-secure. We in fact show that ~~{TF(n) = 1} ~

1/8. (The proof of this is omitted.) Thus the scheme

(G, SP, V) is not n-secure, contradicting one of our as-

sumptions. This shows that A witnesses the bounded
polynomial predictability of C (without membership

queries.) Q.E.D.

8 Acknowledgements

The authors thank Avrim Blum, Manuel Blum, David
Haussler, Michael Kearns, Moni Naor, Lenny Pitt, Ron

Rivest, and Moti Yung for helpful discussions of this

material. The second author thanks the International

453

Computer Science Institute for its hospitality. This re-
search was funded by the National Science Foundation,

under grant numbers IRI-8718975, CCR-9014943, and

CCR-8858097, by a Fannie and John Hertz Fellowship,

and by grants from AT&T, Digital Equipment and 3M

Corporations.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

D. Angluin. Learning regular sets from queries and

counterexamples. Inforrnaiion and Computation,

75:87-106, 1987.

D. Angluin, M. Frazier, and L. Pitt. Learning con-

junctions of horn clauses. In Proceedings of the 31st

Annual IEEE Symposium on Foundations of Com-

puter Science, pages 186-192. IEEE, 1990.

D. Angluin, L. Hellerstein, and M. Karpinski.

Learning read-once formulas with queries. Techni-

cal report, UC Berkeley, Report No. 89/528, 1989.

(Also, ICSI Technical Report TR-89-05099. Sub-

mitted to JACM.).

M. Bellare and S. Micali. How to sign given any

trapdoor function. In Proceedings of the 20ih An-

nual ACM Symposium on Theory of Computing,

pages 32-42. ACM, 1988.

M. Blum, A. DeSantis, S. Micali, and G. Persiano.

Non-interactive zero knowledge, Technical report,

MIT/Lcs/TM-430, 1990.

M. Blum, P. Feldman, and S. Micali. Non-

interactive zero-knowledge and its applications. In

Proceedings of the 20th Annual ACM Symposium

on Theory of Computing, pages 103–1 12. ACM,

1988.

D, Dolev, C. Dwork, and M. Naor. Non-malleable

cryptography. These Proceedings.

U. Feige, D. Lapidot, and A. Shamir. Multiple non-
interactive zero knowledge proofs based on a single

random string. In Proceedings of the 31si Annual

Symposium on Foundations of Computer Science,

pages 308-317, 1990.

0. Goldreich. Two remarks concerning the GMR

signature scheme. In Proceedings of CR YPTO 86,

pages 104-110, 1986.

0. Goldreich, S. Goldwasser, and S. Micali. How to

construct random functions. J. ACM, 33:792–807,

1986.

S. Goldwasser, S. Micali, and R. Rivest. A digital

signature scheme secure against adaptive chosen-

message attacks. SIAM J. Comput., 17:281-308,

1988.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T. Hancock. Learning 2~dnf formulas and kp deci-

sion trees. Extended Abstract, Harvard University,

1990.

D. Haussler, M. Kearns, N. Littlestone, and

M. Warmuth. Equivalence of models for polyno-

mial learnability. In Proc. of the 1988 Workshop

on Computational Learning Theory, pages 42–55.

Morgan Kaufmann Publishers, 1988.

D, Haussler, N, Littlestone, and M. Warmuth. Pre-

dicting {O, 1}-functions on randomly drawn points.

In Proc. 29th Symposium on Foundations of Com-

puter Science, pages 100-109. IEEE, 1988.

M. Kearns, M. Li, L. Pitt, and L. Valiant. On

the learnability of boolean formulae. In Proc. 19th

ACM Symposium on Theory of Computing, pages

285-295. ACM, 1987.

M. Kearns and L. Valiant. Cryptographic limita-

tions on learning boolean formulae and finite au-

tomata. In Proc. 21st ACM Symposium on Theory

of Computing, pages 433–444. ACM, 1989.

N. Littlestone. Learning quickly when irrelevant at-

tributes abound: a new linear-threshold algorithm.

Machine Learning, 2:285-318, 1988.

M. Naor and M. Yung. Universal one-way hash

functions and their cryptographic applications. In

Proceedings of the 21st Annual ACM Symposium

on Theory of Computing, pages 33–43. ACM, 1989.

M. Naor and M. Yung. Public-key cryptosystems

provably secure against chosen ciphertext attacks.

In Proceedings of the 22d Annual A CM Symposium

on Theory of Computing, pages 427–437. ACM,

1990.

L, Pitt and M. Warmuth. Reductions among pre-

diction problems: On the difficulty of predicting

automata. In Proceedings of the Third Annual

Structure in Complexity Theory Conference, pages

60-69. IEEE Computer Society Press, 1988.

J. Rompel. One-way functions are necessary and

sufficient for secure signatures. In Proceedings of

the 22d Annual ACM Symposium on Theory of

Computing, pages 387-394. ACM, 1990.

R. E. Schapire. The strength of weak learnabil-

ity. In Proceedings of the 90th Annual Symposium

on Foundations of Computer Science, pages 28–33.

IEEE, 1989.

L. G. Valiant. A theory of the learnable. C. ACM,

27:1134-1142, 1984.

454

