

Learning and Fourier Analysis

Grigory Yaroslavtsev http://grigory.us

Slides at <u>http://grigory.us/cis625/lecture2.pdf</u>

CIS 625: Computational Learning Theory

Fourier Analysis and Learning

- Powerful tool for PAC-style learning under **uniform** distribution over $\{0,1\}^n$
- Sometimes requires **queries** of the form f(x)
- Works for learning many classes of functions, e.g.
 - Monotone, DNF, decision trees, low-degree polynomials
 - Small circuits, halfspaces, k-linear, juntas (depend on small # of variables)
 - Submodular functions (analog of convex/concave)
- Can be extended to **product** distributions over $\{0,1\}^n$, i.e. $D = D_1 \times D_2 \times \cdots \times D_n$ where \times means that draws are independent

Recap: Fourier Analysis

• Functions as vectors form a vector space:

$$f: \{-1,1\}^n \to \mathbb{R} \Leftrightarrow f \in \mathbb{R}^{2^n}$$

• Inner product on functions = "correlation":

$$\langle f, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} f(x) g(x) = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x)g(x)]$$

• Thm: Every function $f: \{-1,1\} \rightarrow \mathbb{R}$ can be uniquely represented as a multilinear polynomial

$$\boldsymbol{f}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \sum_{\boldsymbol{S} \subseteq [n]} \widehat{\boldsymbol{f}}(\boldsymbol{S}) \boldsymbol{\chi}_{\boldsymbol{S}}(\boldsymbol{x})$$

• $\hat{f}(S) \equiv$ Fourier coefficient of f on $S = \langle f, \chi_S \rangle$

Recap:Convolution

- **Def.:** For $x, y \in \{-1,1\}^n$ define $x \odot y \in \{-1,1\}^n$: $(x \odot y)_i = x_i y_i$
 - Def.: For $f, g: \{-1,1\}^n \to \mathbb{R}$ their convolution $f * g: \{-1,1\}^n \to \mathbb{R}:$ $f * g(x) \equiv \mathbb{E}_{y \sim \{-1,1\}^n} [f(y)g(x \odot y)]$
- Properties:

1.
$$f * g = g * f$$

2. $f * (g * h) = (f * g) * h$
3. For all $S \subseteq [n]$: $\widehat{f * g}(S) = \widehat{f}(S)\widehat{g}(S)$

Linearity Testing

- $f: \{0,1\}^n \to \{0,1\}$
- P = class of linear functions
- $dist(f, P) = \min_{g \in P} dist(f, g)$
- ϵ -close: $dist(f, P) \leq \epsilon$

Linearity Tester Accept with probability = 1Linear \Rightarrow Don't care *c*-close $\Rightarrow \frac{\text{Reject with}}{\text{probability}} \ge \frac{2}{3}$ Nonlinear

Local Correction

- Learning linear functions takes *n* queries
- Lem: If f is ϵ -close to linear function χ_s then for every x one can compute $\chi_s(x)$ w.p. $1 2\epsilon$ as:

- Pick
$$y \sim \{0,1\}^n$$

- Output
$$f(y) \oplus f(x \oplus y)$$

• Proof:

 $Pr[f(y) \neq \chi_{S}(y)] = Pr[f(x \oplus y) \neq \chi_{S}(x \oplus y)] = \epsilon$ By union bound:

 $Pr[f(y) = \chi_{S}(y), f(x \oplus y) = \chi_{S}(x \oplus y)] \ge 1 - 2\epsilon$ Then $f(y) \oplus f(x \oplus y) = \chi_{S}(y) \oplus \chi_{S}(x \oplus y) = \chi_{S}(x)$

Recap: PAC-style learning

- **PAC**-learning under uniform distribution: for a class of functions C, given access to $f \in C$ and ϵ find a hypothesis h such that $dist(f, h) \leq \epsilon$
- Two query access models:
 - Random samples (x, f(x)), where $x \sim \{-1, 1\}^n$
 - Queries: (*x*, f(x)), for any $x \in \{-1,1\}^n$

Fourier Analysis and Learning

• **Def (Fourier Concentration):** Fourier spectrum of $f: \{-1,1\}^n \to \mathbb{R}$ is ϵ -concentrated on a collection of subsets \mathbb{F} if:

$$\sum_{\mathbf{S}\subseteq[n],\mathbf{S}\in\mathbb{F}}\widehat{f}(\mathbf{S})^2\geq 1-\epsilon$$

• Thm (Sparse Fourier Algorithm): Given \mathbb{F} on which $f : \{-1,1\}^n \to \{-1,1\}$ is $\epsilon/2$ concentrated there is an algorithm that PAClearns f with $O(|\mathbb{F}| \log |\mathbb{F}| / \epsilon)$ random samples

Estimating Fourier Coefficients

- Lemma: Given S and $O\left(\log \frac{1}{\delta}/\epsilon^2\right)$ random samples from $f: \{-1,1\}^n \to \{-1,1\}$ there is an algorithm that gives $\tilde{f}(S)$ such that with prob. $\geq 1 - \delta$: $\left|\tilde{f}(S) - \hat{f}(S)\right| \leq \epsilon$
- **Proof:** $\hat{f}(S) = \mathbb{E}_{x}[f(x)\chi_{S}(x)]$
- Given $k = O\left(\log \frac{1}{\delta}/\epsilon^2\right)$ random samples $(x_i, f(x_i))$
- Empirical average $\frac{1}{k} \times \sum_{i}^{k} f(x_{i}) \chi_{S}(x_{i}) \epsilon$ -close by a Chernoff bound with prob. $\geq 1 \delta$

Rounding real-valued approximations

- Lem: If $f: \{-1,1\}^n \to \{-1,1\}, g: \{-1,1\}^n \to \mathbb{R}$ such that $\mathbb{E}_x \left[\left| |f - g| \right|_2^2 \right] \leq \epsilon$. For $h: \{-1,1\}^n \to \{-1,1\}$ defined as h(x) = sign(g(x)): $dist(f,h) \leq \epsilon$
- Proof: $f(x) \neq g(x) \Rightarrow |f(x) g(x)|^2 \ge 1$

$$dist(\boldsymbol{f}, \boldsymbol{h}) = \Pr_{\boldsymbol{X}}[\boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{h}(\boldsymbol{x})] = \mathbb{E}_{\boldsymbol{X}}[1_{\boldsymbol{f}(\boldsymbol{x})\neq sign(\boldsymbol{g}(\boldsymbol{x}))}] \leq \mathbb{E}_{\boldsymbol{X}}[||\boldsymbol{f} - \boldsymbol{g}||_{2}^{2}] \leq \boldsymbol{\epsilon}$$

Sparse Fourier Algorithm

• Thm (Sparse Fourier Algorithm):

Given \mathbb{F} such that $f : \{-1,1\}^n \to \{-1,1\}$ is $\epsilon/2$ -concentrated on \mathbb{F} there is a **Sparse Fourier Algorithm** which PAC-learns fwith $O(|\mathbb{F}| \log |\mathbb{F}| / \epsilon)$ random samples.

- For each $S \in \mathbb{F}$ get $\tilde{f}(S)$ with prob. $1 1/10|\mathbb{F}|$: $\left|\tilde{f}(S) - \hat{f}(S)\right| \le \sqrt{\epsilon}/2\sqrt{|\mathbb{F}|}$
- Output: h = sign(g) where $g = \sum_{s \in \mathbb{F}} \tilde{f}(s) \chi_s$

$$\left|\left|f-g\right|\right|_{2}^{2}=\sum_{\boldsymbol{S}}(\widehat{f-g})(\boldsymbol{S})^{2}=$$

 $\sum_{\boldsymbol{S}\in\mathbb{F}} \left| \tilde{\boldsymbol{f}}(\boldsymbol{S}) - \hat{\boldsymbol{f}}(\boldsymbol{S}) \right|^2 + \sum_{\boldsymbol{S}\in\mathbb{F}} \hat{\boldsymbol{f}}(\boldsymbol{S})^2 \leq \sum_{\boldsymbol{S}\in\mathbb{F}} \left(\frac{\sqrt{\epsilon}}{2\sqrt{|\mathbb{F}|}} \right)^2 + \frac{\epsilon}{2} \leq \epsilon$

Low-Degree Algorithm

- Some classes are ϵ -concentrated on low degree Fourier coefficients: $\mathbb{F} = \{S: |S| \le k\}, k \ll n$
- $|\mathbb{F}| \le n^k$
- Monotone functions: $\mathbf{k} = O(\sqrt{n}/\epsilon)$

– Learning complexity: $n^{\widetilde{O}(\sqrt{n}/\epsilon)}$

- Size-s decision trees: k = O((log s)/€)
 Learning complexity: n^{O((log s)/€)}
- Depth-*d* decision trees: $\mathbf{k} = O(d/\epsilon)$ - Learning complexity: $n^{O(d/\epsilon)}$

Restrictions

• **Def:** For a partition (J, \overline{J}) of [n] and $Z \in \{-1, 1\}^{\overline{J}}$ let the **restriction** $f_{J|Z}$: $\{-1, 1\}^{|J|} \to \mathbb{R}$ be $f_{J|Z}(y) = f(y, Z)$

where (y, z) is a string composed of y and z.

• Example:

$$\min(x_1, x_2) = -\frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_1x_2$$
$$J = \{1\}, \overline{J} = \{2\}, \mathbf{Z} = 1 \Rightarrow$$
$$f_{J|\mathbf{Z}}: \{-1, 1\} \to \{-1, 1\} = x_1$$

Fourier coefficients of restrictions

• Fourier coefficients of $f_{J|z}$ can be obtained from the multilinear polynomial by subsitution

•
$$\hat{f}_{J|\mathbf{z}}(S) = \sum_{T \subseteq \overline{J}} \hat{f}(S \cup T) \chi_T(\mathbf{z})$$

•
$$\mathbb{E}_{\mathbf{Z}}[\hat{f}_{J|\mathbf{Z}}(S)] = \hat{f}(S)$$

Take $T = \emptyset$, otherwise $\mathbb{E}_{\mathbf{z}}[\boldsymbol{\chi}_{T}(\mathbf{z})] = 0$

•
$$\mathbb{E}_{\mathbf{Z}}[\hat{f}_{J|\mathbf{Z}}(S)^2] = \sum_{T \subseteq \overline{J}} \hat{f}(S \cup T)^2$$

 $\mathbb{E}_{\mathbf{Z}}[\hat{f}_{J|\mathbf{Z}}(S)^2] = \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{T \subseteq \overline{J}} \hat{f}(S \cup T)\chi_T(\mathbf{Z})\right)^2\right] = \sum_{T \subseteq \overline{J}} \hat{f}(S \cup T)^2$
since $\mathbb{E}_{\mathbf{Z}}[\chi_T(\mathbf{Z})\chi_{T'}(\mathbf{Z})] = 0$

Goldreich-Levin/Kushilevitz-Mansour

• Thm (GL/KM): Given query access to $f: \{-1,1\}^n \rightarrow \{-1,1\}$ and $0 < \tau \leq 1$ GL/KM-algorithm w.h.p. outputs $L = \{U_1, \dots, U_\ell\}$:

 $-\left|\widehat{f}(U)\right| \geq \tau \Rightarrow U \in L$

 $- U \in L \Rightarrow \left| \hat{f}(U) \right| \ge \tau/2$

- Exercise: GL/KM + Sparse Fourier Algorithm: A class C which is ϵ -concentrated on at most M sets can be learned using $poly\left(M, \frac{1}{\epsilon}, n\right)$ queries – Every large coefficient $|\hat{f}(U)| \ge 1/\sqrt{M}$
- Corollary: Size-*s* decision trees are learnable with $poly(n, s, \frac{1}{\epsilon})$ queries

Estimating Fourier Weight via Restrictions

- Recall: $\mathbb{E}_{\mathbf{Z}}[\hat{f}_{J|\mathbf{Z}}(S)^2] = \sum_{T \subseteq \overline{J}} \hat{f}(S \cup T)^2$
- Lemma: $\sum_{T \subseteq \overline{J}} \hat{f}(S \cup T)^2$ can be estimated from $O(1/\epsilon^2 \log 1/\delta)$ random samples w.p. 1δ
- $\sum_{T \subseteq \overline{J}} \widehat{f}(S \cup T)^2 = \mathbb{E}_{z} [\widehat{f}_{J|z}(S)^2] =$ $= \mathbb{E}_{z \in \{-1,1\}^{\overline{J}}} \left[\mathbb{E}_{y \in \{-1,1\}^{\overline{J}}} [f(y,z)\chi_{S}(y)]^2 \right]$ $= \mathbb{E}_{z \in \{-1,1\}^{\overline{J}}} \left[\mathbb{E}_{y,y' \in \{-1,1\}^{\overline{J}}} [f(y,z)\chi_{S}(y)f(y',z)\chi_{S}(y')] \right]$
- $f(y, z)\chi_{S}(y)f(y', z)\chi_{S}(y')$ is a ± 1 random variable $\Rightarrow O(1/\epsilon^{2} \log 1/\delta)$ samples suffice to estimate

GL/KM-Algorithm

- Put all 2ⁿ subsets of [n] into a single "bucket"
- At each step:
 - Select any bucket ${\mathfrak B}$ containing 2^m sets, $m\geq 1$
 - Split $\boldsymbol{\mathfrak{B}}$ into $\boldsymbol{\mathfrak{B}}_1$, $\boldsymbol{\mathfrak{B}}_2$ of 2^{m-1} sets each
 - Estimate Fourier weight $\sum_{U \in \mathfrak{B}_i} \hat{f}(U)^2$ up to $\tau^2/4$ for of each \mathfrak{B}_i
 - Discard \mathfrak{B}_1 or \mathfrak{B}_2 if its weight is $\leq \frac{\tau^2}{2}$
- Output all buckets that contain a single set

GL/KM-Algorithm: Correctness

- Put all 2ⁿ subsets of [n] into a single "bucket"
- At each step:
 - Select any bucket ${\boldsymbol{\mathfrak{B}}}$ containing 2^m sets, $m\geq 1$
 - Split \mathfrak{B} into \mathfrak{B}_1 , \mathfrak{B}_2 of 2^{m-1} sets each
 - Estimate Fourier weight $\sum_{U \in \mathfrak{B}_i} \hat{f}(U)^2$ up to $\tau^2/4$ for each \mathfrak{B}_i
 - Discard \mathfrak{B}_1 or \mathfrak{B}_2 if its weight is $\leq \frac{\tau^2}{2}$
- Output all buckets that contain a single set

Correctness (assuming all estimates up to $\tau^2/4$ w.h.p):

- $|\hat{f}(U)| \ge \tau \Rightarrow U \in L$: no bucket with weight $\ge \tau^2$ discarded
- $U \in L \Rightarrow |\hat{f}(U)| \ge \tau/2$: buckets with weight $\le \tau^2/4$ discarded

GL/KM-Algorithm: Complexity

- Put all 2ⁿ subsets of [n] into a single "bucket"
- At each step:
 - Select any bucket ${\boldsymbol{\mathfrak{B}}}$ containing 2^m sets, $m\geq 1$
 - Split \mathfrak{B} into \mathfrak{B}_1 , \mathfrak{B}_2 of 2^{m-1} sets each
 - Estimate Fourier weight $\sum_{U \in \mathfrak{B}_i} \hat{f}(U)^2$ up to $\tau^2/4$ for each \mathfrak{B}_i
 - Discard \mathfrak{B}_1 or \mathfrak{B}_2 if its weight is $\leq \frac{\tau^2}{2}$
- Output all buckets that contain a single set
- By Parseval $\leq 4/\tau^2$ active buckets at any time
- Bucket can be split at most *n* times
- At most $4n/\tau^2$ steps to finish

GL/KM-Algorithm: Bucketing

- $\mathfrak{B}_{k,S} = \{ S \cup T : T \subseteq \{k+1, ..., n\} \}, |\mathfrak{B}_{k,S}| = 2^{n-k}$
- Initial bucket ${f B}_{0,\emptyset}$
- Split $\mathfrak{B}_{k,S}$ into $\mathfrak{B}_{k+1,S}$ and $\mathfrak{B}_{k+1,S\cup\{k+1\}}$
- Fourier weight of $\mathfrak{B}_{k,S} = \sum_{\mathbf{T} \subseteq \{k+1,\dots,n\}} \widehat{f}(S \cup \mathbf{T})^2$
- $\sum_{T \subseteq \{k+1,\ldots,n\}} \hat{f}(S \cup T)^2$ estimated via restrictions
- Estimate each up to $\pm \frac{\tau^2}{4}$ with prob. $1 \frac{\tau^2}{80n'}$ complexity $O\left(\frac{1}{\tau^4}\log\left(\frac{n}{\tau}\right)\right)$
- All estimates are up to $\pm \frac{\tau^2}{4}$ with prob. 9/10

Thanks!