Learning and Fourier Analysis

CIS 625: Computational Learning Theory


http://grigory.us/

Fourier Analysis and Learning

Powerful tool for PAC-style learning under uniform
distribution over {0,1}"

Sometimes requires queries of the form f(x)

Works for learning many classes of functions, e.g:
— Monotone, DNF, decision trees, low-degree polynomials

— Small circuits, halfspaces, k-linear, juntas (depend on
small # of variables)

— Submodular functions (analog of convex/concave)

Can be extended to product distributions over
{0,1}",i.e. D = D; X D, X --- X D,, where X means
that draws are independent



Boolean Functions

Book: “Analysis of Boolean Functions”, Ryan O’Donnell
http: //analysisofbooleanfunctions.org

f(xy, ... x): {01} > R

Notation switch:

-0-1

-1--1

f{-1,1}"-> R

Example:

— f(x1, o xp) = %2 @ x3 D xp, = Lin(xy, x3,x)

— 1 (xq, X)) = x5 * X3 * Xy



http://analysisofbooleanfunctions.org/

Fourier Expansion

Example:

| 11 1 1
mln(xl,XZ) — _E +§x1 +Ex2 +Ex1x2

For S € [n] let character ys(x) = | ];cq xi

Thm: Every function f:{—1,1} — R can be uniquely
represented as a multilinear polynomial

f ) = ) F)xs(0)
SCcn]

f(S) = Fourier coefficient of f on S



Functions = Vectors, Inner Product

* Functions as vectors form a vector space:
f{-11)">Re feR?
* |Inner product on functions = “correlation”:

(F.9r=27" )  fOIg)
xe{—1,1}"
= Ex—(—1,1)n [f(x)g(x)]
e For f:{—1,1}" - {—1,1}:
(f,9) = Prlf(x) = g(x)] = Pr[f(x) # g(x)] =
1 —2dist(f, g)
where dist(f,g) = Pr[f(x) # g(x)]



Orthonormal Basis: Proof

Thm: Characters form an orthonormal basis in R2"
(Xs, x1) =1, if S=T
(XSJXT) — O, lfS =T
Xs)xr(x) = [lies xi :_—[jEij =
[liesar xi HjESnT sz = [liesar xi = Xsar(x)
Ex[Xs)xr ()] = ExlXsar(x)] = Exllliesar xi] =
HiESAT IEx [xl]
Since E, [x;] = 0 we have:
— E, lxs()xr(x)] =0if SAT # @
— Exlxs()xr(x)] = 1if SAT = ¢
This proves that y's are an orthonormal basis




Fourier Coefficients

e Recall linearity of dot products:
_ <f+g!h> — <th>+<th>
_ (af'g> — a(f'g>

» Lemma: f(S) = (f, xs)
(frxs) = { Z fTXT:XS> = Z (fTXT»Xs) =
TC|n| TC|n|

= ) Frlxnxs) = F5)
TC|n]



Parseval’s Theorem

* Parseval’'s Thm: Forany f:{—1,1}" - R
(F.0) = Be-aap 2001 = ) F(5)?
SCn]
If f: {=1,1}" - {=1,1} then Y5 p, f($)? =1

e Example:

_ 1 1 1 1
f = mm(xl,xz) = —E-l'le +§x2 +§X1X2

o 1
D FeF=ax3=1
SC2]



Plancharel’s Theorem

* Plancharel’s Thm: Forany f,g:{—1,1} - R
(£.9) = B (ap[Fg0O] = ) FS)FS)
SCcn]

* Proof:

(F.9) = 2 F$)xs Z 3(Dxr) =

2 f(S)g(T)O(s xr) = 2 F($)a(5)

STC[n



Basic Fourier Analysis

* Mean = E,[f(x)] =(f,1) = (D)
— For f:{—1,1}"* - {—1,1} we have
Ex[fC0)] = Prlf(x) = 1] = Pr[f(x) = —1]
* Variance = Var(f) = E,[(f(x) — Ex[f(x)])?]

Var(f) = E,[(f(x) — E,[f(x)])?]
= E,[f* ()] — E,[f(x)]?

= Dscin] f2(8) — f?(9) (Parseval’s Thm)

= > P

SC[n],S=0



Convolution

* Def.: Forx,y € {—1,1}" define x®y € {—1,1}"":
(xOy); = x;y;
* Def.: For f,g:{—1,1}" — R their convolution
fxg:{—-1,1}"-> R:
fxg(x) =By 11n[f(y)g(x ©y)]

* Properties:
1. fxg=9g+f
2. fx(g*h)=(fxg)=*h
3. ForallS S [n]: f+g(S) =f($)g(s)



Convolution: Proof of Property 3

* Property 3: Forall S C [n]: f*g(S) = F(S)G(S)

* Proof:

f*xg(S) =Exc1nn[(f * ) () xs(x)]

= [, :IEy [F()g(x @ ¥)]xs(x)| (def. convolution)

= Ey[f(WEx[g(x @ y)xs(x)].

= Ey [f(WEx[9(x D y)xs(x D y)xs(x © y)xs(x)]]

= IEy FOxs(V)E[g(x D y)xs(x D y)l]
y
y

fOxs(y)g(S)]
fFOxs)]g(s)




Approximate Linearity

* Def: f:{0,1}" — {0,1} is linear if
- f(x®y) =f(x) D f(y) forallx,y € {0,1}"
— 385 € |[n] such that f(x) =@ ;e x; for all x

* Def: f:{0,1}" — {0,1} is approximately linear if
1 fx®Dy)=f(x)D f(y) formostx,y € {0,1}"
2. 35 € [n]suchthat f(x) =@;cs x; for most x

* Q: Does 1. imply 2.7



Property Testing

[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan]

Randomized Algorithm Property Tester

Accept with — Accept with
1o 2 . 2
probability > > YES probability >

e-close | = Don’t care
: : Reject with

_— Reject with . = » )
probability > - probability = -

e-close : < € fraction has to be changed to become YES



Linearity Testing

f:10,1}" - {0,1}

P = class of linear functions
dist(f,P) = min dist(f, g)
geP

e-close: dist(f,P) < €

Linearity Tester

e-close

Accept with
—
probability = 1

— Don’t care

_— Reject with

winN

probability >



Linearity Testing [Blum, Luby, Rubinfeld]

* BLR Test (given access to f:{0,1}"* — {0,1}):
— Choose x ~ {0,1}"* and y ~ {0,1}" independently
— Acceptif f(x) D f(y) = f(x D y)

 Thm: If BLR Test accepts with prob. 1 — € then f is e-
close to being linear

 Proof:

— Apply notation switch0 - —-1,—-1 -1

— BLR accepts if f(x)f(y) = f(x®y)
1

¢ S+ fOfDMfOY) = 1if fOf ) = f(xOy)

1

S+ fFOfOY) = 0if fFQf(Y) # f(xOY)



Linearity Testing: Analysis

1 — e = Pr[BLR Accepts f]

1 1 1
— Ex,y 2 + Ef(x)f(:V)f(x@y)

1 1 :
=+ SE [FOOFO)f (@)

1 1
= >+ SEf@E [FOF O]

1 1

=+ Ef(x) - (f * f)(x)] (def. of convolution)

1

=+ %25;[11] f(S) (f * F)(S) (Plancharel’s thm)

_1+1ZA3S
=5+5 ) 1°()
SCn]




Linearity Testing: Analysis Continued

° 1—26=25c fg(s)
< max(f(s)) 2 F2(5)

SCc
= Sn;%{f ()}

» Recall f(S) =(f, xs) =1—2dist(f, xs)

o Let S*=argmax{f(5$)}: 1 —2e <1 — 2dist(f, xs*)
Scn]

o dist(f,xs) <€



Local Correction

* Learning linear functions takes n queries

* Lem: If f is e-close to linear function yg¢ then for
every x one can compute ¥q¢(x) w.p. 1 — 2€ as:
— Pick y ~ {0,1}"
— Output f(¥) @ f(x D y)

* Proof:

Prif(y) # xsWI=Prlf(xDy) # xs(x D y)] =€
By union bound:
Prif() =xsW, fx®y) =xs(xDy)]l=1-2¢

Then f(Y) D fFx D y) =xs(y) O xs(x D y) = xs(x)



Thanks!



