
CIS 625 PROBLEM SET 1

Professor Kearns
Due Wednesday September 29, 2021 on Gradescope (code ERP5VV)

Problem 1.

Algorithm. Define a learning algorithm L such that L takes in inputs of the form
〈(x1, x2, . . . , xn) , c (x1, x2, . . . , xn)〉, which we denote as 〈x, c(x)〉 and parameters ε, δ. We
wish to output the tightest fit rectangle of n dimensions.
To do this, we examine all m inputs and select the smallest and largest value for each of
n dimensions that is positively labeled. We return the rectangle defined by the 2n values
that determine the min and max value (edges) of the n dimensions of the rectangle.
Runtime. We see m samples. For each sample, we iterate over each dimension to calcu-
late the tightest fit on that dimension, giving us a O(mn) runtime.
Error Analysis. The error analysis proceeds in a similar manner as the error analysis of
PAC learning axis aligned rectangles of 2 dimensions. Consider if the points are selected
to some distribution D.
First observe that the hypothesis we return is indeed an axis aligned rectangle and that
the rectangle of tightest fit is always contained within the target rectangle R. We define
our empirical rectangle as R′ and the error between the two rectangles as R∆R′ = R−R′.
Notice that we can split the error region R∆R′ into 2n strips. In the 2 dimensional case,
it is the top, left, right, and bottom strips. We do this for the rectangle of n dimension.
We want to guarantee that the weight of all strips under D is at most ε. Consider the
strip with weight at most ε

2n
. If each strip has weight greater than ε

2n
, then our total

error will exceed ε. But a strip will only have weight greater than ε
2n

if there is no point
in that region.
The probability that there is no such point landing in the region of a strip with weight ε

2n

is
(
1− ε

2n

)
. Since every point is selected independently via m draws, the probability that

a single strip does not have any point landing in that region is
(
1− ε

2n

)m
. Using union

bound, we can upper bound the probability that no point lands in any of the strips as:
2n∑
i=1

(
1− ε

2n

)m
= 2n

(
1− ε

2n

)m
So the probability that our error is greater than epsilon is at least 2n

(
1− ε

2n

)m
. We want

this to be less than δ. Now we solve for m:

2n
(

1− ε

2n

)m
≤ δ

−εm
2n
≤ ln

(
δ

2n

)
m ≥ 2n

ε
ln

(
2n

δ

)
Since D was arbitrary, this analysis must work for any distribution.

1



Problem 2.

Hypothesis/learning algorithm:
Our algorithm is simply to fit the smallest interval around each contiguous set of positive
points. Let h be the hypothesis we output at the end of our algorithm. We construct h
in O(m logm) time as follows:

(1) Sort the points given by the sample in increasing order. Since we are given a finite
number of points, there must be a smallest and largest point value.

(2) Iterating from smallest point to right, keep track of the first positive example and
then the last positive example that occurs before a negative example.

(3) Repeat on the next positive example.

(4) Add this interval to h so that at the end, h =
⋃n∗

i=1[ai, bi]

Analysis:
There are two places where our hypothesis can make mistakes: It can mislabel the ends of
intervals as negative, and it can also mislabel some negative regions as positive; namely
the negative intervals (between positive intervals) from which we don’t see any examples.
Note that there are 3d−1 such bad regions (2d ends of positive intervals, d−1 sandwiched
negative intervals).

We can perform a similar geometric analysis as in the case of rectangles. Consider regions
of weight ε

3d
from the left and right ends of each of the positive intervals; there can be (at

most) 2d of these. Also, consider any sandwiched negative intervals with weight ≥ ε
3d

;
there can be at most d−1 of these. As long as our sample hits each of these 3d−1 target
intervals at least once, each of our error regions will have probability mass < ε

3d
, so the

total error region will have probability mass < (3d−1)ε
3d

< ε. Our hypothesis is good as
long as we hit each of these target intervals at least once.

Define the following events:

Bi(i ∈ [3d− 1]) := the sample misses the ith target interval

Bj
i (j ∈ [m]) := the jth example misses the ith target interval

B := the sample misses at least one of the target intervals

G := the good event, where we hit all target intervals

We can then compose these events as follows:

∀i, j : Bj
i ≤ 1− ε

3d

∀i : Bi =
∏
j∈[m]

Bj
i ≤

(
1− ε

3d

)m

=⇒ B ≤
∑

i∈[3d−1]

Bi ≤ 3d
(

1− ε

3d

)m

=⇒ G = 1−B ≥ 1− 3d
(

1− ε

3d

)m
Finally, we set 1− δ > G and find that it suffices for

m >
3d

ε
log

3d

δ
.

2



Problem 3.

There are many answers, but here is one such example. Notice that the rectangles are
distinct and maximal, so there is not a unique target rectangle that we can analyze.

Problem 4.

a) We wish to show that if monotone m-term DNF is PAC learnable by some learn-
ing algorithm that runs polynomial in

(
1
ε
, 1
δ

)
, then general m-term DNF is PAC

learnable. We proceed with a reduction from general m-term DNF to monotone
m-term DNF.

Suppose that monotone m-term DNF is PAC learnable with some learning
algorithm Lm. Define the following mapping

f : {0, 1}n → {0, 1}2n

Such that f maps input (x1, x2, . . . , xn) → (x1, x2 . . . , xn, xn+1, . . . , x2n) where
the xn+i term represents the negated literal of the xi term (¬xi) in the input.

For example, if n = 2, then f(1, 0) = (1, 0, 0, 1).
Now we define a mapping g from the set of m-term DNFs over n variables to

the set of monotone m-term DNFs over 2n variables, which replaces any ¬xi with
xn+i. For example, if n = 3, g(x1¬x2 ∨ ¬x3 ∨ x1x2) = x1x5 ∨ x6 ∨ x1x2. Clearly
g is a bijection as for any monotone DNF, we can map it back to a general DNF
via g−1 that sends any instance of a literal to itself or the negated version (i.e it
replaces xj with ¬xj−n for j > n given the size of n). Notice that these mappings
are linear in O(mn).

Let L be a learning algorithm for m-term DNF, which consists of running an in-
stance of Lm, and for each sample point,{x, c(x)}, L supplies Lm with {f(x), c(x)}.
After processing the entire sample, L outputs g−1(h), where h is the hypothesis
outputted by Lm and g−1 is the inverse of g as defined above. We claim that L is
a PAC learning algorithm for m-term DNF, by m-term DNF.

To see why, suppose that we are given some target m-term DNF c : {0, 1}n →
{0, 1}, some sampling distribution D over {0, 1}n, and some δ, ε. We claim that
for any x ∈ {0, 1}n and m-term DNF,h, h(x) = (g(h)) (f(x)). To see why, suppose

3



x = (z1, z2, ..., zn) and let f(x) = (y1, y2, ..., yn, ...y2n).

h = xa1 ...xak¬xak+1
...¬xak+j

∨ xb1 ...xbl¬xbl+1
...¬xbl+m

∨ xc1 ...xcp¬xcp+1 ...¬xcp+q

h(x) = 1 ⇐⇒ h(z1, ..., zn) = 1

⇐⇒ za1 ...zak¬zak+1
...¬zak+j

∨ zb1 ...zbl¬zbl+1
...¬zbl+m

∨ zc1 ...zcp¬zcp+1 ...¬zcp+q = 1

⇐⇒ ya1 ...yakyak+1+n...yak+j+n ∨ yb1 ...yblybl+1+n...ybl+m+n ∨ yc1 ...ycpycp+1+n...ycp+q+n = 1

⇐⇒ (g(h))(y1, ..., y2n) = 1

⇐⇒ (g(h))(f(x)) = 1

From the observation that h(x) = (g(h))(f(x)), we observe that running L with
target c and distribution D is equivalent to running Lm with target g(c) and some
distribution D′ over {0, 1}2n (which is simply the D under f). Therefore by the
PAC property of Lm, we may choose sample size m which polynomialy varies with
1
δ
, 1
ε
, and see that with probability at least 1− δ,

εD(g−1(h)) = Pr
x∼D

[c(x) 6= g−1(h)(x)]

= Pr
x∼D

[(g(c))(f(x)] 6= (h)(f(x)))

= Pr
x∼D′

[(g(c))(x) 6= (h)(x)] < ε

We now may observe that this above argument generalizes to other classes of
boolean formulae and their monotone counterpart. In particular, we see that if
C is some boolean class of (finite) functions, then the g described above, is a
map from C to its monotone-counterpart. By replicating the above analysis, we
may conclude that PAC-learnability of the monotone counterpart by itself, implies
PAC-learnablility of C by itself.

b) We wish to show that if read-once m-term DNF is PAC learnable by itself, then
m-term DNF is PAC learnable by itself. Suppose that read-once m-term DNF is
PAC learnable by itself with some learning algorithm Lr. Define a mapping

f : {0, 1}n → {0, 1}mn

By sending (x1, ..., xn) → (x1, ..., xn, x1, ..., xn, x1, ..., xn). For example, if n = 3,
then f(1, 1, 0) = (1, 1, 0, 1, 1, 0, 1, 1, 0). Now define a mapping g from the set of
m-term DNF’s over to n variables to the set of read-once m-term DNF’s over mn
variables, which replaces any xj in the second conjunction with xj+n and any xk in
the third conjunction with xk+2n. For example, if n = 3, g(x1¬x2 ∨¬x3 ∨x1x2) =
x1¬x2 ∨ ¬x6 ∨ x7x8. Notice that these reductions are linear in O(mn).

Finally, let L be a learning algorithm for m-term DNF, which consists of run-
ning an instance of Lr, and for each sample point,{x, c(x)}, L supplies Lr with
{f(x), c(x)}. After processing the entire sample, L outputs g−1(h), where h is
the output model of Lr and g−1 is the inverse of g (i.e it replaces each xj with
xj mod n ). We claim that L is a PAC learning algorithm for m-term DNF, by
m-term DNF.

To see why, suppose that we are given some target m-term DNF c : {0, 1}n →
{0, 1}, some sampling distribution D over {0, 1}n, and δ, ε. We claim that for
any x ∈ {0, 1}n and m-term DNF,h, h(x) = (g ◦ h)(f(x)). To see why, suppose
x = (z1, z2, ..., zn) and f(x) = (y1, y2, ..., ymn).

4



h = xa1 ...xak¬xak+1
...¬xak+j

∨ xb1 ...xbl¬xbl+1
...¬xbl+m

∨ xc1 ...xcp¬xcp+1 ...¬xcp+q

h(x) = 1 ⇐⇒ h(z1, ..., zn) = 1

⇐⇒ za1 ...zak¬zak+1
...¬zak+j

∨ zb1 ...zbl¬zbl+1
...¬zbl+m

∨ zc1 ...zcp¬zcp+1 ...¬zcp+q = 1

⇐⇒ ya1 ...yak¬yak+1
...¬yak+j

∨ · · · ∨ yc1+2n...ycp+2n¬ycp+1+2n...¬ycp+q+2n = 1

⇐⇒ (g(h))(y1, ..., ymn) = 1

⇐⇒ (g(h))(f(x)) = 1

From the observation that h(x) = (g(h))(f(x)), we observe that running L with
target c and distribution D is equivalent to running Lm with target g(c) and some
distribution D′ over {0, 1}mn (which is simply the D under f). Therefore by the
PAC property of Lm, we may choose sample size m which polynomially varies
with 1

δ
, 1
ε
, and see that with probability at least 1− δ,

εD(g−1(h)) = Pr
x∼D

(c(x) 6= g−1(h)(x))

= Pr
x∼D

((g(c))(f(x)) 6= (h)(f(x)))

= Pr
x∼D′

((g(c))(x) 6= (h)(x)) < ε

We now make a brief remark on the above analysis. We have thus far as-
sumed that any variable xj will not appear in the a single conjunction more
than once. If we relax this assumption and allow xj and ¬xj to appear in a
single term of a m-term DNF, then we can trivially modify our f and g to pre-
serve the analysis. In particular we may instead make f map into {0, 1}2mn, by
f(x1, ..., xn) = (x1, .., xn, x1, ..., xn). Accordingly, define g to map xj and ¬xj to
xj+n and xj+2n in the second term, take xj and ¬xj to xj+3n and xj+4n in the
third term and map ¬xj to xj+5n in the first term.

Finally, we can generalize our entire analysis to other boolean classes. In par-
ticular, suppose C is some boolean class for any single variables xj occurs at most
some k times. If the read-once counterpart of C is PAC learnable, we may take
some g that maps repeated instances of xj in a formula in C to distinct xj+αn and
xj+βn. Then by choosing the appropriate f , we can replicate the above analysis
and conclude that PAC learnability of the read-once counterpart implies PAC
learnability of C.

Problem 5.

Recall that if L is a PAC learning algorithm, then for any distribution D and in-
puts ε, δ,m, L returns a hypothesis h such that ε(h) < ε with probability 1 − δ using
O(poly(1/ε, 1/δ,m, n) i.i.d. samples from D in O(poly(1/ε, 1/δ,m, n) time.

Note that this above definition actually isn’t complete in this specific case. We need
to add the caveat that the examples in our samples are labeled by (i.e. consistent with) a
DNF with m terms. When this is not the case, we do not get any guarantees from PAC.
L could either crash and burn, or worse, output an arbitrarily (bad) hypothesis.

Note also that every m-term DNF can be written as an equivalent m′ DNF for all m′ > m.
There are several ways to do this. For example, we could pad by taking some term in the
original DNF and repeat it multiple times (since T1 ∨ · · · ∨ T1 ⇐⇒ T1). As long as we

5



pass in some m′ to L which is larger than m (which we do not know a priori), we have
PAC guarantees.

One trivial approach is to just guess m′ = 3n (since every DNF is equivalent to a DNF
with only distinct terms, and there are 3n possible distinct terms). Then L is guaranteed
to output a consistent hypothesis. But m′ could be exponentially larger than m, so our
algorithm would run in exponential time with respect to m as L depends polynomially
on m′. This fails the PAC runtime efficiency conditions.

It remains to show how we can be smarter about choosing our m′ to still guarantee
polynomial runtime in m. This is where the “doubling” trick comes in. We can search
for m′ by guessing it in powers of two, and running L on each m′ = 2i until we’re sat-
isfied with its hypothesis. Note that, if we are able to perfectly detect when L gives
us a “good” hypothesis or always return a hypothesis with error < ε, then we simply
stop at m′ = mini{2i : 2i > m}; so that m′ < 2 ∗m, satisfying the “polynomial in m”
requirement.
However, because we only have a PAC algorithm, we are only able to produce a hypoth-
esis with error < ε with probability 1 − δ. So the goal now is to find a way to detect if
the hypothesis produced by L is good with high probability.
To do this, we use Chernoff-Hoefding bounds! The idea will be to test every hypothesis
we get with a newly drawn sample and then stop at the first hypothesis which gives us a
“good enough” test error.
We implement this idea in the following algorithm L.

L′(ε, δ,D):

(1) Initialize i = 0.
(2) Training: Run L(ε/3, 1

3∗2c ,m = 2i) to get hypothesis hi. If 2i > 3n, return hi.
(3) Testing:

(a) Draw a sample Si ∼ D of size p = 5
ε2

ln(max{3 ∗ 2c, 2n
δ
}) (see analysis for

why).
(b) If ε̂Si

(hi) <
2ε
3

, return hi. Otherwise, repeat from (2) with i = i+ 1

c is defined to be the largest dependence that L has on m, across sample size and runtime.
For example if the runtime of L is O(m3) and sample complexity is O(m4), then c = 4.

Correctness:
We’ll first show that L′ is indeed probabilistically approximately correct. Let h′ denote
the hypothesis returned. And let B denote the bad event:

B := [ε(h′) > ε]

When can this event occur? Well, it’s the union of Bi, defined as the event that hi is bad,
and h′ = hi (i.e. we accepted hi). Therefore, we can upperbound Pr[B] by the union
bound.

Pr[B] ≤
n log 3∑
i=1

Pr[Bi]

Therefore, it suffices to upper bound every Pr[Bi] by Pr[Bi] ≤ δ
n log 3

< δ
2n

Now, Pr[Bi]

we can (loosely) upper bound by Pr[accept hi | ε(hi) > ε]. Formally, we see that

Pr[Bi] ≤ PrSi
[ε− ε̂Si

(hi) > ε/2 | ε(hi) > ε] ≤ PrSi
[ε(hi)− ε̂Si

(hi) > ε/3]
6



By Chernoff-Hoefding bounds, we have:

PrSi
[ε(hi)− ε̂Si

(hi) > ε/2] ≤ e−2p(ε/3)
2

Plugging in our value for p results in e−2p(ε/3)
2 ≤ δ

2n
Sample and runtime complexity
Lastly, we need to make sure that this algorithm uses time and sample size expected
polynomial in all relevant parameters: ε, δ, n,m.
First, some definitions:

(1) Let Ti be the runningtime of L′ on round i. Note that each Ti can be different,
since L′ has time complexity which can depend on the number of terms m.

(2) Let Pi be the probability that we reach round i
(3) Let k be the smallest natural number for which 2k ≥ m. I.e. k = dlog(m)e

First, we observe that the time it takes to complete the runs for which m′i < m (where
m′i = 2i is the m we pass to L at round i) is polynomial.

k−1∑
i=0

PiTi ≤
k−1∑
i=0

Ti

≤ kmax
i

(Ti)

≤ dlog(m)e poly(
4

ε
, 3 ∗ 2c, n,m′i∗)

= poly(
1

ε
,
1

δ
, n,m)

In the second to last line, i∗ = arg maxi(Ti). And we obtain the final expression by
absorbing the constants and the log(m) factor, and recalling that m

′∗
i < m by definition.

Second, we want to upperbound the expected amount of time (samples) we spend on
rounds with m′i > m. Note that above, we showed that the runtime is guaranteed poly-
nomial, since in our analysis, we completely ignored the Pi’s. However, now the Pi’s play
an important role. Since there’s always a chance that we keep getting bad test sets, we
might try all m′ up to 3n. We need to ensure that the probability of reaching large m′i
(relative to the true m) is “small enough.” More formally:
Define Uj = Tj+k be the running time for the jth round for which m′ > m. Observe:

Uj = Tj+k

= Tk ∗
Tj+k
Tk

≤ Tk ∗
(
m′j+k
m′k

)c∗j
= Tk ∗ 2c∗j

Recalling that Tk is polynomial in all problem parameters, it suffices if the probability to
reach the jth extra round is bounded by 1

2cj
.

Define Qj = Pj+k to be the probability we reach the jth round after m′ > m. And define
Ri to be the probability that, given that we’ve reach round i, we reject the ith hypothesis
and keep going. Note that:

Qj =

j+k−1∏
i=0

Ri ≤
j+k−1∏
i=k

Ri

7



The idea is that, when m′i > m , the probability that we accept is high (and so the
probability that we reject is low). The only times we reject are if: (a) L fails to produce
an ε/4 accurate hypothesis, or (b) L produces an accurate hypothesis, but the sample we
draw is unrepresentative. Define Ra

i , R
b
i to be the probabilities of these respective events,

where from now on, we assume i > k.
Ra
i follows from the δ parameter we passed to L, and the fact that L is a PAC learning

algo:

Ra
i ≤ δi =

1

3 ∗ 2c

Rb
i follows from the exact same Chernoff bound analysis as for the correctness analysis

from before, with the desired probability bound of δ
2n

replaced with 1
3∗2c .

Rb
i ≤ δi =

1

3 ∗ 2c

Alright... we can finally start piecing things back together. Applying union bound, we
get:

Ri ≤ Ra
i +Rb

i =
2

3 ∗ 2c
<

1

2c

Plugging back into the Qjs:

Qj ≤
j+k−1∏
i=k

Ri <
1

2cj

And finally, we can use this to compute the expected runningtime above m:
n log 3∑
i=k

PiTi =

n log 3−k∑
j=0

QjUj (1)

<
2n∑
j=0

Tk ∗ 2cj ∗ 1

2cj
(2)

= 2nTk (3)

= poly(
1

ε
,
1

δ
, n,m) (4)

Finally... we can conclude that the expected time complexity of this process is poly-
nomial in all relevant parameters. Note that we only showed this for time complexity,
but you can derive the same result for sample complexity by following the above analysis.

Notice that we didn’t use much about the fact that we were specifically learning DNFs.
The only part we somewhat used that fact was in stating that m was bounded by 3n.
Because of the generality of the proof, we can observe that the same overall algorithm
can be used to turn any PAC learning algorithm which depends on a bounded integral
parameter into an (expected polynomial) PAC learning algorithm which does not require
the parameter as input.

8


