
CIS 625 PROBLEM SET 1

Professor Kearns
Due Wednesday September 29, 2021 on Gradescope (code ERP5VV)

Problem 1.

In lecture, we proved that axis-aligned rectangles in the real plane are PAC learnable and
briefly sketched the generalization to axis-aligned rectangles in n-dimensional real space
Rn. Formally, for the concept class C of axis-aligned rectangles of dimension n, there
is an algorithm L that takes in samples 〈x, c(x)〉 for x ∈ Rn distributed according to a
distribution F and c ∈ C , error function ε, and outputs some hypothesis class h ∈ C
that with probability 1− δ has error ε (h) < ε with runtime poly(1

ε
, 1
δ
, n) for ε, δ > 0.

For this problem, complete the generalization onto n-dimensional real space carefully —
show that this class of concepts is PAC learnable by precisely describing and analyzing a
learning algorithm L. Be sure to show all parts of the PAC definition, including running
time of your algorithm and sample size analysis. Note that here you want to use the
part of the PAC definition that allows your algorithm’s running time and sample size to
depend polynomially on n.

Problem 2.

Consider the class of concepts known as unions of intervals. Here the domain or input
space X is simply the real line. Each concept c in the class can be described by a union
of n intervals of the real line:

c = [a1, b1] ∪ [a2, b2] ∪ [a3, b3] . . . ∪ [an, bn]

In other words, this is the set of positive examples of c and all other points are negative
examples. Here ∪ is set union, and [ai, bi] denotes all real numbers x such that ai ≤ x ≤ bi.
So each concept is simply the union of n non-overlapping intervals of the real line, and
let’s say there are n or fewer of them.

Show that this class is PAC learnable, again by carefully describing and analyzing a
learning algorithm and showing that it meets all parts of the PAC definition. Note that
here you want to use the part of the PAC definition that allows your algorithm’s running
time and sample size to depend polynomially on n.

Problem 3.

Recall that for rectangles in the real plane, we showed that for any set of labeled examples,
there is a “unique tightest fit” to the positive examples — i.e. a rectangle that includes
all of the positive examples, none of the negative examples, and whose area is as small
as possible.

Now consider rectangles that include all of the positives, none of the negatives, and whose
area is as large as possible.

Show that these may not be unique, by demonstrating a sample of points generated by a
target rectangle, in which there are 2 different rectangles consistent with the sample and
with maximal area. For this problem, a clearly annotated picture suffices.
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Problem 4.

Recall from lecture that we showed PAC learning 3-term DNF (of the form T1 ∨ T2 ∨ T3
where T1, T2, T3 are conjunctions over literals) is hard, in the sense that a PAC algorithm
for it would imply a randomized polynomial time algorithm for graph 3-coloring, a noto-
riously hard (and formally NP-complete problem). Here we consider the problem of PAC
learning general DNF formulas, whose status remains unresolved almost 40 years after
first being considered!

The problem is as follows: the target function is a logical formula of the form

T1 ∨ T2 ∨ T3 . . . ∨ Tm.

Here each Ti is a conjunction over n boolean variables x1, x2, . . . xn and their negations.
So instead of just 3 terms, the target function has some unknown and arbitrary number
of terms, m.

Note that m could be much larger than n, since the number of possible conjunctions is 3n

(recall for each xi we can either not include it, include it, or include its negation). This
is an example of where the PAC definition allows the learning algorithm to run in time
polynomial not only in n, but in m as well (as well as 1

ε
, 1
δ
).

As I said above, we don’t know if such general DNF formula are PAC learnable, and I’m
not going to ask you to resolve that here ,. Instead you will be asked to show that
certain restrictions on the problem do not make it any easier.

For this problem do the following:

(1) Consider monotone DNF formulas, in which no variable xj appears negated in
any of the terms Ti. Show that if monotone DNF is PAC learnable, so is general
DNF.

(2) Consider read-once DNF formulas, in which each variable xj appears at most
once in the entire DNF — so if xj or its negation appear in one term, they cannot
appear in any other term. Show that if read-once DNF is PAC learnabl, so is
general DNF.

To do this, you will need to give a reduction. In the case of the first problem, assume that
you are given access to a PAC learning algorithm L for monotone DNF, prove you can
use it in a subroutine for PAC learning general DNF. So you need to figure out how to
simulate the learning of a monotone DNF for L in a manner that lets you learn a general
DNF. You can assume that L returns a general DNF formula as its hypothesis.

Also, to make things a bit easier, you may assume that your algorithm for general DNF is
given m as an input — i.e. you are told the number of terms/conjunctions in the target
DNF. I’ll have you fix that in the next problem ,.

Hint: your reduction/simulation will need to use the fact that L must work for any dis-
tribution.

Problem 5.

Suppose you are given a learning algorithm L for PAC-learning general DNF, but L needs
the number of terms/conjunctions m in the target as an input. Show that you can use L
to construct an algorithm L′ for PAC learning general DNF that doesn’t know m.

Hint: the solution to this problem is sometimes known as the “doubling trick”.
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