
5Learning in the Presence of NoiseIn order to obtain a clean and simple starting point for a theoreticalstudy of learning, many unrealistic assumptions were made in de�ningthe PAC model. One of the most unjusti�ed of these assumptions is thatlearning algorithms have access to a noise-free oracle for examples of thetarget concept. In reality, we need learning algorithms with at least sometolerance for the occasional mislabeled example.In this chapter we investigate a generalization of the PAC model inwhich the examples received by the learning algorithm are corruptedwith classi�cation noise. This is random and essentially \white" noisea�ecting only the label of each example. (Learning in the presence of thistype of noise implies learning in some slightly more realistic models, andmore adversarial error models have also been examined in the literature;see the Bibliographic Notes at the end of the chapter.) In this settingwe will see that much of the theory developed so far is preserved even inthe presence of such noise. For instance, all of the classes we have shownto be e�ciently PAC learnable remain so even with a classi�cation noiserate approaching the information-theoretic barrier of 1=2.To show this, we will actually introduce another new model, calledlearning from statistical queries. This model is a specialization of thePAC model in which we restrict the learning algorithm to form its hy-pothesis solely on the basis of estimates of probabilities. We will then



104 Chapter 5give a theorem stating that any class e�ciently learnable from statisticalqueries can be e�ciently learned in the presence of classi�cation noise.While we show that conjunctions of literals can be e�ciently learnedfrom statistical queries (and thus in the presence of classi�cation noise),we leave it to the reader (in the exercises) to verify that all of the othere�cient PAC learning algorithms we have given have e�cient statisticalquery analogues.5.1 The Classi�cation Noise ModelIn the classi�cation noise model, a PAC learning algorithm will nowbe given access to a modi�ed and noisy oracle for examples, denotedEX �CN (c;D). Here c 2 C and D are the target concept and distribu-tion, and 0 � � < 1=2 is a new parameter called the classi�cationnoise rate. This new oracle behaves in the following manner: as withEX (c;D), a random input x 2 X is drawn according to the distributionD. Then with probability 1��, the labeled example hx; c(x)i is returnedto the learning algorithm, but with probability �, the (incorrectly) la-beled example hx;:c(x)i is returned, where :c(x) is the complement ofthe binary value c(x). Despite the classi�cation noise in the examplesreceived, the goal of the learner remains that of �nding a good approx-imation h to the target concept c with respect to the distribution D.Thus, on inputs � and � and given access to EX �CN (c;D), the learningalgorithm is said to succeed if with probability at least 1 � � it outputsa hypothesis h satisfying error(h) � Prx2D[c(x) 6= h(x)] � �.Although the criterion for success remains unchanged in the noisymodel, we do need to modify the de�nition of e�cient learning. Notethat if we allow the noise rate � to equal 1=2, then PAC learning becomesimpossible in any amount of computation time, because every label seenby the algorithm is the outcome of an unbiased coin ip, and conveysno information about the target concept. Similarly, as the noise rateapproaches 1=2, the labels provided by the noisy oracle are providing



Learning in the Presence of Noise 105less and less information about the target concept. Thus we see thereis a need to allow the learning algorithm more oracle calls and morecomputation time as the noise rate approaches 1=2.We also need to specify what knowledge the learning algorithm has, ifany, about the value of the noise rate �. For simplicity we will assume thatthe learning algorithm is provided with an upper bound 1=2 > �0 � �on the noise rate. (This assumption can in fact be removed; see Exercise5.4.) The new notion of e�ciency can then be formalized by allowing thelearning algorithm's running time to depend on the quantify 1=(1 � 2�0),which increases as the upper bound �0 approaches 1=2. (Making rigorousthe informal arguments used here to argue that this dependence is neededis the topic of Exercise 5.5.)De�nition 13 (PAC Learning in the Presence of Classi�cation Noise)Let C be a concept class and let H be a representation class over X. Wesay that C is PAC learnable using H in the presence of classi�-cation noise if there exists an algorithm L with the following property:for any concept c 2 C, any distribution D on X, any 0 � � < 1=2, andany 0 < � < 1, 0 < � < 1, and �0 (where � � �0 < 1=2), if L is givenaccess to EX �CN (c;D) and inputs �, � and �0, then with probability at least1��, L outputs a hypothesis concept h 2 H satisfying error(h) � �. Thisprobability is taken over the randomization in the calls to EX �CN (c;D),and any internal randomization of L.If L runs in time polynomial in n, 1=�, 1=� and 1=(1 � 2�0) we saythat C is e�ciently PAC learnable using H in the presence ofclassi�cation noise.Before proceeding further, let us convince ourselves with some con-crete examples that learning in this apparently more di�cult model reallydoes require some new ideas. Recall that one of the �rst PAC learningalgorithms we gave in Chapter 1 was for the class of boolean conjunctionsof literals. The algorithm initializes the hypothesis to be the conjunc-tion of all 2n literals over x1; : : : ; xn, and deletes any literal that appears



106 Chapter 5negated in a positive example of the target conjunction (the negativeexamples received are ignored). The problem with using this same algo-rithm in the classi�cation noise setting is obvious and fatal. With thenoisy oracle, the algorithm may actually be given a negative exampleof the target conjunction as a positively labeled example, resulting inunwarranted and costly deletions of literals. For instance, suppose thatthe target conjunction c contains at least one unnegated literal, say x1.Then the vector of all 0's is a negative example of the target. However,if this single vector has signi�cant weight under D, say weight , thenthere is probability � that the learning algorithm will receive the vectorof all 0's as a negatively labeled example from EX �CN (c;D), causing thedeletion of all unnegated literals from the hypothesis.Similarly, consider our algorithm from Chapter 1 for PAC learningaxis-aligned rectangles in the real plane. This algorithm takes a suf-�ciently large sample of random examples of the target rectangle, andchooses as its hypothesis the most speci�c (smallest area) rectangle thatincludes all of the positive examples but none of the negative examples.But such a rectangle may not even exist for a sample from the noisyoracle EX �CN (c;D).5.2 An Algorithm for LearningConjunctions from StatisticsIntuitively, the problem with our conjunctions learning algorithm in theclassi�cation noise setting is that the algorithm will make drastic and irre-versible changes to the hypothesis on the basis of a single example. In thenoisy setting, where every individual example received from EX �CN (c;D)is suspect since its label could be the result of an error, it seems natu-ral to seek algorithms that instead form their hypotheses based on theproperties of large samples, or that learn from statistics.As an example, consider the following rather di�erent algorithm for



Learning in the Presence of Noise 107PAC learning boolean conjunctions (still in the original noise-free set-ting). For each literal z over the boolean input variables x1; : : : ; xn,denote by p0(z) the probability that z is set to 0 in a random instancedrawn according to the distribution D. If p0(z) is extremely small, thenwe can intuitively \ignore" z, since it is almost always set to 1 (satis�ed)with respect to D. We de�ne p01(z) to be the probability that a randominstance from D fails to satisfy z, but does satisfy (that is, is a positiveexample of) the target conjunction c. Note that for any literal appearingin c, p01(z) = 0. If p01(z) is large, then we would like to avoid including zin our hypothesis conjunction, since there is a reasonable chance of draw-ing a positive example of c in which z is 0. We say that z is signi�cantif p0(z) � �=8n and harmful if p01(z) � �=8n. Note that since we alwayshave p01(z) � p0(z), any harmful literal is also signi�cant.We now argue that if h is the conjunction of all the signi�cant literalsthat are not harmful, then h has error less than � with respect to cand D. First we consider Pra2D[c(a) = 0 ^ h(a) = 1]. Note that theevent c(a) = 0 ^ h(a) = 1 occurs only when there is some literal zappearing in c that does not appear in h, and z is set to 0 in a. Since hcontains all the signi�cant literals that are not harmful, and c containsno harmful literals, any such literal z must not be signi�cant. Then wehave that Pra2D[c(a) = 0 ^ h(a) = 1] is at most the probability thatsome insigni�cant literal is 0 in a, which by the union bound is at most2n(�=8n) = �=4. To bound Pra2D[c(a) = 1^h(a) = 0], we simply observethat the event c(a) = 1^ h(a) = 0 occurs only when there is some literalz not appearing in c but appearing in h, and z is set to 0 in a. Since hcontains no harmful literals, we have that Pra2D[c(a) = 1 ^ h(a) = 0] isbounded by the probability that some harmful literal is set to 0 in a butc(a) = 1, which by the union bound is at most 2n(�=8n) = �=4. Thuserror(h) � �=4 + �=4 = �=2.The above analysis immediately suggests an e�cient algorithm forPAC learning conjunctions (in our original noise-free model). The proba-bilities p0(z) for each literal z can be estimated using EX (c;D) by draw-ing a su�ciently large set of examples and computing the fraction of



108 Chapter 5inputs on which z is set to 0. Similarly, the probabilities p01(z) can beestimated by drawing a su�ciently large set of examples and computingthe fraction on which z is set to 0 and the label is 1. Note that whilewe cannot exactly determine which literals are harmful and which aresigni�cant (since we can only estimate the p0(z) and p01(z)), we haveleft enough room to maneuver in the preceding analysis that accurateestimates are su�cient. For instance, it can be veri�ed using Cherno�bounds (see the Appendix in Chapter 9) that if our algorithm takes a suf-�ciently large (but still only polynomial in n, 1=� and 1=�) sample for itsestimates, and chooses as its hypothesis h the conjunction of all literalsz such that the resulting estimate p̂0(z) for p0(z) sati�es p̂0(z) � �=8n,but the estimate p̂01(z) for p01(z) sati�es p̂01(z) � �=2n, and the samplesize is su�cient to make our estimates p̂0(z) and p̂01(z) within an addi-tive error of �=8n of their true values, then with probability 1� �, h willsatisfy error(h) � �.A nice property of this new algorithm is that it forms its hypothesissolely on the basis of estimates of a small number of probabilities (namely,the p0(z) and p01(z)). Of course, at this point all we have shown is anothere�cient algorithm for PAC learning conjunctions. The feeling that thisalgorithm is somehow more robust to classi�cation noise than our originalalgorithm is nothing more than an intuition. We now generalize andformalize the notion of PAC learning solely on the basis of probabilityestimates. This is most easily done by introducing yet another modelof learning. We then proceed to verify our intuition by showing thate�cient learning in the new model automatically implies e�cient PAClearning in the presence of classi�cation noise.5.3 The Statistical Query LearningModelOur new learning model can be viewed as placing a restriction on theway in which a PAC learning algorithm can use the random examples



Learning in the Presence of Noise 109it receives from the oracle EX (c;D). Let C be a concept class over X.In the statistical query model, if c 2 C is the target concept and D isthe target distribution, then we replace the usual PAC oracle EX (c;D)with an oracle STAT (c;D) that accepts statistical queries of the form(�; � ). Here � is a mapping � : X � f0; 1g ! f0; 1g and 0 < � � 1.We think of � as a function that maps a labeled example hx; c(x)i ofthe target concept to 0 or 1, indicating either the presence or absenceof some property in hx; c(x)i. For instance, in our new algorithm forPAC learning conjunctions we took a large random sample, and for eachha; c(a)i in the sample we computed the predicate �z(a; c(a)) that is 1 ifand only if the literal z is 0 in a but c(a) = 0. This predicate correspondsto the probability p01(z), that is, p01(z) = Pra2D[�z(a; c(a)) = 1].In general, for a �xed target concept c 2 C and distribution D, let usde�ne P� = Prx2D[�(x; c(x)) = 1]:We interpret a statistical query (�; � ) as a request for the value P�.However, on input (�; � ) the oracle STAT (c;D) will not return exactlyP�, but only an approximation. More precisely, the output of STAT (c;D)on input query (�; � ) is allowed to be any value P̂� satisfying P� � � �P̂� � P� + � . Thus, the output of STAT (c;D) is simply any estimate ofP� that is accurate within additive error � . We assume that each queryto STAT (c;D) takes unit time.We call � the tolerance of the statistical query, and the choice ofboth � and � are left to the learning algorithm (modulo some importantrestrictions discussed momentarily). For instance, in our conjunctions ex-ample, recall that by the analysis of the last section it su�ces to estimatethe probabilities p01(z) = P�z to within tolerance � = �=8n.At this point, it should be clear that given access to the oracle EX (c;D),it is a simple matter to simulate the behavior of the oracle STAT (c;D) ona query (�; � ) with probability at least 1��. We just draw from EX (c;D)a su�cient number of random labeled examples hx; c(x)i, and use thefraction of the examples for which �(x; c(x)) = 1 as our estimate P̂� of



110 Chapter 5P�. Now by Cherno� bounds, the number of calls to EX (c;D) requiredwill be polynomial in 1=� and log(1=�), and the time required will bepolynomial in the time required to evaluate �, and in 1=� and log(1=�).To ensure that e�cient algorithms for learning using STAT (c;D) canbe e�ciently simulated using EX (c;D), we must place some natural re-strictions on � (namely, that it is an inverse polynomial in the learningproblem parameters) and on � (namely, that it can be evaluated in poly-nomial time). Thus we require that algorithms only ask STAT (c;D) forestimates of su�ciently \simple" probabilities, with su�ciently coarsetolerance. This is done in the following de�nition, which formalizes themodel of learning from statistical queries. The intuition that algorithmswith access to STAT (c;D) can be e�ciently simulated given access toEX (c;D) is then formalized in greater detail as Theorem 5.1 below.De�nition 14 (The Statistical Query Model) Let C be a concept classand let H be a representation class over X. We say that C is e�cientlylearnable from statistical queries using H if there exists a learningalgorithm L and polynomials p(�; �; �), q(�; �; �) and r(�; �; �) with the follow-ing property: for any c 2 C, for any distribution D over X, and for any0 < � < 1=2, if L is given access to STAT (c;D) and input �, then� For every query (�; � ) made by L, the predicate � can be evaluatedin time q(1=�; n; size(c)), and 1=� is bounded by r(1=�; n; size(c)).� L will halt in time bounded by p(1=�; n; size(c)).� L will output a hypothesis h 2 H that satis�es error(h) � �.Notice that the con�dence parameter � has disappeared from thisde�nition. Recall that this parameter guarded against the small butnonzero probability that an extremely unrepresentative sample is drawnfrom EX (c;D) in the PAC learning model. Since EX (c;D) has now beenreplaced by the oracle STAT (c;D), whose behavior is completely deter-mined modulo the query tolerance � , there is no need for �. Of course,



Learning in the Presence of Noise 111we could allow a certain failure probability for the case of randomizedlearning algorithms, but choose not to for the sake of simplicity, since wewill only examine deterministic algorithms.The following theorem veri�es that we have de�ned the statisticalquery model in a way that ensures e�cient simulation in the PAC model.Its proof is the subject of Exercise 5.6. Thus, we have found a model thatspecializes the PAC model in a way that allows learning algorithms toestimate probabilities, but to do nothing else.Theorem 5.1 Let C be a concept class and H be a representation classover X. Then if C is e�ciently learnable from statistical queries usingH, C is e�ciently PAC learnable using H.In the following section we will show a much more interesting anduseful result: any class that is e�ciently learnable from statistical queriesis in fact e�ciently PAC learnable even in the presence of classi�cationnoise. Before this, however, we pause to note that by the analysis ofSection 5.2, we already have our �rst positive result in the statisticalquery model:Theorem 5.2 The representation class of conjunctions of literals is ef-�ciently learnable from statistical queries.5.4 Simulating Statistical Queries in thePresence of NoiseLet us �x the target concept c 2 C and the distribution D, and supposewe are given a statistical query (�; � ). We now give an e�cient methodfor obtaining an accurate estimate ofP� = Prx2D[�(x; c(x)) = 1]



112 Chapter 5given access only to the noisy examples oracle EX �CN (c;D). We will thenshow how this method can be used to e�ciently simulate any statisticalquery learning algorithm in the presence of classi�cation noise.5.4.1 A Nice Decomposition of P�The key idea behind obtaining the desired expression for P� is to de�nea partition of the input space X into two disjoint regions X1 and X2as follows: X1 consists of all those points x 2 X such that �(x; 0) 6=�(x; 1), and X2 consists of all those points x 2 X such that �(x; 0) =�(x; 1). Thus, X1 is the set of all inputs such that the label \matters"in determining the value of �, and X2 is the set of all inputs such thatthe label is irrelevant in determining the value of �. Note that X1 andX2 are disjoint and X1 [X2 = X.Having de�ned the regions X1 and X2, we can now de�ne the induceddistributions on these regions. Thus, we let p1 = Prx2D[x 2 X1] andp2 = Prx2D[x 2 X2] (note that p1 + p2 = 1), and we de�ne D1 over X1by letting Prx2D1 [x 2 S] = Prx2D[x 2 S]p1for any subset S � X1. Thus, D1 is just D restricted to X1. Similarly,we de�ne D2 over X2 by lettingPrx2D2 [x 2 S] = Prx2D[x 2 S]p2for any subset S � X2.For convenience, let us introduce the shorthand notation PrEX (c;D)[�]and PrEX �CN (c;D)[�] to denote probabilities over pairs hx; bi 2 X � f0; 1gdrawn from the subscripting oracle. We will now derive an expressionfor P� = PrEX (c;D)[� = 1] (we have omitted the arguments x; b to � forbrevity) involving only the quantities�; p1;PrEX �CN (c;D1)[� = 1];PrEX �CN (c;D)[(� = 1) ^ (x 2 X2)]:



Learning in the Presence of Noise 113Looking ahead, we will then show that an accurate guess for � can bemade and veri�ed given only the upper bound �0, and that the latter threeprobabilities can in fact be estimated from the noisy oracle EX �CN (c;D).To derive the desired expression for P�, we may write:P� = PrEX (c;D)[� = 1]= PrEX (c;D)[(� = 1) ^ (x 2 X1)] +PrEX (c;D)[(� = 1) ^ (x 2 X2)]= PrEX (c;D)[x 2 X1]PrEX (c;D)[� = 1jx 2 X1]+PrEX (c;D)[(� = 1) ^ (x 2 X2)]= p1PrEX (c;D1)[� = 1] +PrEX �CN (c;D)[(� = 1) ^ (x 2 X2)] (5.1)where to obtain the �nal equality we have used the fact that for x 2 X2,we may replace the correct label by a noisy label without changing theprobability that � = 1.Note that since � is always dependent on the label in region X1, wealso have:PrEX �CN (c;D1)[� = 1] = (1� �)PrEX (c;D1)[� = 1] + �PrEX (c;D1)[� = 0]= (1� �)PrEX (c;D1)[� = 1]+�(1�PrEX (c;D1)[� = 1])= � + (1� 2�)PrEX (c;D1)[� = 1]:Solving for PrEX (c;D1)[� = 1] and substituting into Equation 5.1, weobtain:P� = p1PrEX �CN (c;D1)[� = 1]� �1� 2� +PrEX �CN (c;D)[(� = 1)^(x 2 X2)] (5:2)As promised, we now show that the probabilitiesp1;PrEX �CN (c;D1)[� = 1];PrEX �CN (c;D)[(� = 1) ^ (x 2 X2)]appearing in Equation (5.2) can in fact be estimated from the noisy oracleEX �CN (c;D). In a later section we return to the issue of estimating thenoise rate.



114 Chapter 5First, note that it is easy to estimate p1 using only calls to EX �CN (c;D):we simply take many noisy examples hx; bi from EX �CN (c;D), ignore theprovided label b, and test whether �(x; 0) 6= �(x; 1). If so, then x 2 X1,otherwise x 2 X2. Thus for a large enough sample, the fraction of the xfalling in X1 will be a good estimate for p1 by Cherno� bounds. The factthat the labels are noisy does not bother us, since membership in X1 isa property of the input x alone.Next, PrEX �CN (c;D1)[� = 1] can be estimated from EX �CN (c;D). Notethat we do not have direct access to the subscripting oracle, since it isde�ned with respect to D1 and not D. Instead, we simply sample pairshx; bi returned by EX �CN (c;D) and use only those inputs x that fall in X1(using the membership test �(x; 0) 6= �(x; 1)). For such x, we compute�(x; b) (using the noisy label b given with x) and use the fraction of times�(x; b) = 1 as our estimate.Finally, note that we can estimate PrEX �CN (c;D)[(� = 1) ^ (x 2 X2)]from EX �CN (c;D) because we have a membership test for X2, and thisprobability is already de�ned directly with repsect to the noisy oracle.5.4.2 Solving for an Estimate of P�Equation (5.2) has the desired form, being a simple algebraic expressionfor P� in terms of � and the probabilities that we have already arguedcan be accurately and e�ciently estimated from EX �CN (c;D). Assumingthat we have \su�ciently accurate" estimates for all of the quantities onthe right hand side of Equation (5.2), we can use the estimates to solvefor an accurate estimate of P�.Of course, in order to use this method to obtain an estimate of P�that is accurate within the desired additive error � , we may need toestimate the probabilities on the right hand side of Equation (5.2) withan additive accuracy � 0 that is slightly smaller than � . For instance, forany A;B 2 [0; 1] and Â; B̂ 2 [0; 1] that satisfy A� � 0 � Â � A+ � 0 and



Learning in the Presence of Noise 115B � � 0 � B̂ � B + � 0 for some � 0 2 [0; 1], we have AB � 2� 0 � ÂB̂ �AB +3� 0. Thus if we are using the product of the estimates Â and B̂ toestimate the product AB within additive error � , then � 0 = �=3 su�ces.However, Equation (5.2) is more complex than a single product, and thuswe need to make � 0 even smaller to prevent the accumulation of too mucherror when solving for P�. It turns out that the choice � 0 = �=27 willsu�ces; this comes from the fact that the right hand side of Equation(5.2) can be multiplied out to obtain a sum of three terms, with eachterm being a product of at most three factors. Thus if every estimatedfactor has additive error at most �=27, then each estimated product willhave error at most 3(3�=27) = �=3, and the estimated sum will haveerror at most � , as desired. As we shall now see, however, we need toguess � with even greater accuracy.5.4.3 Guessing and Verifying the Noise RateThe main issue that remains unresolved is that when estimating theright hand side of Equation (5.2) to solve for P�, we do not know theexact value of �, but have only the upper bound �0. This is handled bysimulating the statistical query algorithm (let us denote this algorithmby L) d1=2�e times, where � 2 [0; 1] is a quantity in our control thatwill be determined by the analysis. The ith time L is simulated (fori = 0; 1; 2; : : : ; d1=2�e�1), we substitute the guess �̂ = i� for � wheneversolving for a probability P� using Equation (5.2). Eventually we willchoose the best of the 1=2� hypotheses output by L on these manysimulations as our �nal hypothesis.Note that for some value of i, the guess �̂ = i� satis�es� �� � �̂ � � +�:We would now like to derive conditions on � that will ensure that forthis i we have 11� 2� � �min � 11� 2�̂ � 11� 2� + �min: (5:3)



116 Chapter 5Here �min will be a quantity smaller than any of the tolerances � neededby L (but still an inverse polynomial in the learning problem parameters).Like the estimates for the probabilities discussed in the last section, thiswill ensure that on this ith run of L, our guess 1=(1 � 2�̂) for the factor1=(1 � 2�) in Equation (5.2) will be su�ciently close to let us solve forP� within the desired � .Now we know 11 � 2(� ��) � 11� 2�̂ � 11� 2(� +�) :Taking the leftmost inequality of this equation, we see that the leftmostinequality of Equation (5.3) will be satis�ed if we have11 � 2� � �min � 11� 2(� ��) :Solving for constraints on � gives:1� 2� + 2� � 111�2� � �minor 2� � 111�2� � �min � (1� 2�):If we set x = 1=(1 � 2�) we obtain2� � 1x� �min � 1xor, if we further de�ne f(x) = 1=x,2� � f(x� �min)� f(x):The right hand side of this inequality suggests analysis via the derivativeof f . Now f 0(x) = �1=x2 and we may write f(x��min) � f(x)+c0�min=x2for some constant c0 > 0, giving� � c0�min2x2 = c0�min2 (1 � 2�)2:



Learning in the Presence of Noise 117An identical analysis gives a similar bound on � for achieving therightmost inequality in Equation (5.3). Thus we see that to ensure thatour additive error in guessing the value of the factor 1=(1 � 2�) in Equa-tion (5.2) is smaller than �min, we should make sure that the \resolution"� of our successive guesses for � is smaller than c0�min=(2(1�2�)2). Sincewe only have the upper bound �0, we will instead use the smaller value� = c0�min=(2(1 � 2�0)2).The preceding analysis shows that when � is properly chosen then onone of the simulations L our guess �̂ will be su�ciently close to �, and onthis run L must output a hypothesis h such that error(h) � �. We muststill give some way of verifying which simulation was the good one. This isa straightforward matter. Let h0; : : : ; hd1=2�e�1 be the hypotheses outputby L on the d1=2�e simulations. If we de�ne i = PrEX �CN (c;D)[hi(x) 6=b] (this is the probability hi disagrees with the label provided by thenoisy oracle), then i = (1 � �)error(hi) + �(1 � error(hi)) = � + (1 �2�)error(hi), and i � j = (1 � 2�)(error(hi)� error(hj)). This showsthat if we estimate all of the i to within an additive error of �=(2(1�2�))(which is easily done, since i is de�ned with respect to the noisy oracle)and choose as our �nal hypothesis that hi whose associated estimatêi is smallest, then error(h) � � with high probability. Again, havingonly the upper bound �0 we can instead use the smaller additive error of�=(1 � 2�0).5.4.4 Description of the Simulation AlgorithmWe are �nally ready to give a detailed outline of the overall simulation,followed by the main result of this chapter.Algorithm Simulate-SQ(�; �; �0):� �min 1=(4r(1=�; n; size (c))), where r(1=�; n; size(c)) is the polyno-mial bound on the inverse tolerance for all queries of the statisticalquery algorithm L.



118 Chapter 5� � c0�min=(2(1 � 2�0)2).� For i = 0 to d1=2�e � 1:{ �̂  i�.{ Simulate the statistical query algorithm L with accuracy pa-rameter � and using �̂ as the guessed noise rate. More precisely,for every statistical query (�; � ) made by L:� Randomly sample from the noisy oracle EX �CN (c;D) tocompute estimates p̂1 for p1 = PrEX (c;D)[x 2 X1], q̂ forq = PrEX �CN (c;D1)[� = 1] and r̂ forr = PrEX �CN (c;D)[(� = 1) ^ (x 2 X2)]:Here X1;X2 is the partition of X de�ned by �. These es-timates should be accurate (with high probability) withinan additive error of � 0 = �=27.� P̂�  p̂1(q̂� �̂)=(1�2�̂)+ r̂. This is the estimated solutionof Equation (5.2).� Return P̂� to L.{ Let hi be the hypothesis returned by the ith simulation of L.� For i = 0 to d1=2�e�1, let i = PrEX �CN (c;D)[hi(x) 6= b]. Randomlysample from EX �CN (c;D) to obtain estimates ̂i that are accuratewithin additive error �=(2(1 � 2�0)), and output the hi with thesmallest ̂i.The only details missing from our analysis of this simulation is itsdependence on the con�dence parameter �, and of course, a precise boundon the number of examples from EX �CN (c;D) required by the simulation.The handling of � is the standard one used in Section 4.3.6 when provingthe equivalence of weak and strong learning. Namely, in any executionof Simulate-SQ there are many places in which we need to randomlysample to accurately estimate some probability, and there is always somesmall probability that we fail to get an accurate estimate. If N is the



Learning in the Presence of Noise 119number of such estimates, we can simply allocate probability of failure�=N to each and apply the union bound to bound our total probabilityof failure, and we can always use the running time of L as a crude boundon N . Finally, although we have been careful to argue that for everyestimate we can tolerate an additive error that is polynomial in �, �minand (1 � 2�0) (and thus that a polynomial sample su�ces by Cherno�bounds), we leave it to the reader (Exercise 5.7) to give precise bounds,and to in fact improve the simulation sample bounds in certain naturalcases by drawing a single initial sample from EX �CN (c;D) from which allprobabilities can be estimated throughout the simulation.The statement of our main result follows.Theorem 5.3 Let C be a concept class and let H be a representationclass over X. Then if C is e�ciently learnable from statistical queriesusing H, C is e�ciently PAC learnable using H in the presence of clas-si�cation noise.From Theorems 5.2 and 5.3, we have:Corollary 5.4 The representation class of conjunctions of literals is ef-�ciently PAC learnable in the presence of classi�cation noise.We leave it to the reader in the exercises to verify that the otherclasses for which we have provided PAC learning algorithms also havestatistical query algorithms, and thus are learnable in the presence ofclassi�cation noise.5.5 Exercises5.1. Show that the representation class of decision lists is e�cientlylearnable from statistical queries.



120 Chapter 55.2. Show that there is a statistical query model analogue to the e�-cient algorithm given in Section 2.3 for learning conjunctions with fewrelevant literals. Show that this statistical query algorithm can be ef-�ciently simulated in the classi�cation noise model using a number ofcalls to EX �CN (c;D) whose dependence on the number of literals size(c)is polynomial, but whose dependence on the total number of variables nis only logarithmic.5.3. Consider the variant of the statistical query model in which thelearning algorithm, in addition to the oracle STAT (c;D), is also givenaccess to unlabeled random draws from the target distribution D. Ar-gue that Theorem 5.3 still holds for this variant, then show that theconcept class of axis-aligned rectangles in <n can be e�ciently learnedin this variant (and thus is e�ciently PAC learnable in the presence ofclassi�cation noise).5.4. Show that if there is an e�cient algorithm for PAC learning in thepresence of classi�cation noise by an algorithm that is given a noise rateupper bound �0 (1=2 > �0 � � � 0) and whose running time dependspolynomially on 1=(1� 2�0), then there is an an e�cient algorithm thatis given no information about the noise rate and whose running timedepends polynomially on 1=(1 � 2�).5.5. Give the weakest conditions you can on a concept class C that implythat any algorithm for PAC learning C in the presence of classi�cationnoise must have a sample complexity that depends at least linearly on1=(1 � 2�).5.6. Prove Theorem 5.1.5.7. Give the best sample size bounds you can for the simulation of astatistical query algorithm in the presence of classi�cation noise given inSection 5.4.4. Now suppose further that the statistical query algorithmalways chooses its queries � from some restricted class Q of functionsfrom X � f0; 1g to f0; 1g. Give a modi�ed simulation with improvedsample size bounds that depend on log jQj (in the case of �nite Q) and



Learning in the Presence of Noise 121VCD(Q).5.6 Bibliographic NotesThe classi�cation noise variant of the PAC model was introduced by An-gluin and Laird [10], who proved that boolean conjunctions are e�cientlyPAC learnable in the presence of classi�cation noise. Their paper alsocontains several useful and general results on learning with noise, as doesthe book of Laird [63]. Prior to the introduction of the statistical querymodel, algorithms for PAC learning with classi�cation noise were givenby Sakakibara [82] and Kearns and Schapire [61, 85], who examine amodel of learning probabilistic concepts, in which the noise rate can beregarded as dependent on the instance.The statistical query model and the theorems given for it in thischapter are due to Kearns [56], who also establishes that the statisticalquery model is strictly weaker than the PAC model, and gives lowerbounds on the number of statistical queries that must be made in termsof the VC dimension. The paper also examines some apparently lessbenign noise models in which the statistical query results given here stillhold. Exercises 5.1, 5.2, 5.3, 5.6 and 5.7 are also from the paper of Kearns.The relationship between the statistical query model and other models ofrobust learning is examined by Decatur [28], and Decatur and Aslam [12]establish the equivalence of weak and strong learning in the statisticalquery model. A recent paper has given a complete characterization ofthe number of queries required for learning in the statistical query model(Blum et al. [18]).In addition to the classi�cation noise model, several other variants ofthe PAC model have been introduced to model errors in the data. Theseinclude PAC learning in the presence of malicious errors (Valiant [93];Kearns and Li [57]),and a model of errors in which there is noise in theinputs but not in the labels (Shackelford and Volper [87]); Goldman and


