A "Toy" ML Problem:
Rectangles in \mathbb{R}^{2}

- Aliens arrive from - user space
- You'd like to teach them the concept of "medium build" for adult males (assume binany)
- You can label but not describe

Lect's formalize this:

- You (teacher): rectangle R in $x-y$ plane:

You generate data for aliens:

Assume: points drawn i.i.d from ℓ oren \mathbb{R}^{2}

Note: strong assumptions on R, no assumptions on P

Players:

- Input domain: \mathbb{R}^{2}
- Model class: rectangles (binary function S)
- "Target" rectangle R
- Input distribution P H
Data:

Alien (leanne-) goal: from data, leann a "good" hypothesis rectangle \hat{R}.

- What should "good" mean?
- What algorithm should alien use?

A Proposed ARgo:
$\hat{R}=$ "tightest fit" to positive (+) examples.

- Note: exploiting own assumption tat "ground truth" (R) is a rectangle!

What can we say about \hat{R} ?
Claim: Viewed as sets, $\hat{R} \subseteq R$.

What about something stronger/more interesting?

Remember points are drawn i.i.d. from P.

Let's define the error of \hat{R} w.r.t. $R \notin P$:

$$
\begin{aligned}
& \varepsilon(\hat{R}) \triangleq \operatorname{Pr}_{\text {xp }}[\hat{R}(x) \neq R(x)] \\
& \text { (as functions) } \\
&=P[\hat{R} \Delta R] \\
& \quad(\text { as sets })
\end{aligned}
$$

(lain: With "high probability," $\varepsilon(\hat{R})$ is "small" as long as sample is "large enough".

Analysis
Two imputs/parameters:

- small $\delta>0$:
"with high prob" = with prob $\geqslant 1-\delta$ w.r.t. drew of sufficiently large sample S
- small $\varepsilon>0$:
$" \varepsilon(\hat{R})$ small" $=$

$$
\varepsilon(\hat{R}) \leqslant \varepsilon
$$

Goal: Show that if $|\mathrm{s}|=\mathrm{m}$ is large enough, then w.p. $\geq 1-\delta, \varepsilon(\hat{R}) \leq \varepsilon$.

Remark: Note that

$$
\begin{aligned}
E_{g}[\varepsilon(\hat{R})] \leq & (1-\delta) \varepsilon \\
& +\delta .1
\end{aligned}
$$

So why have both $\varepsilon \& \delta$?
δ : Bounds prob, of a wildly unrepresentative sample S
ε : Bounds error on representative samples
\hat{R} is "Probably ($\geqslant 1-\delta$) Approximately
cornet
$(\leq \varepsilon)^{\prime \prime}$

Let's define 4 subsets of $R($ w.r.t. P):

$$
\operatorname{Pr}_{x \sim p}[x \in t o p]=\varepsilon / 4
$$

(Q: What if $P[R]<\varepsilon / y$? Assume not fo now.)

Similarly:

$$
\operatorname{Pr}_{x_{n} p}[x \in \operatorname{left}]=\varepsilon / 4
$$

Similarly for right, bottom.

If sample hits de of top, bottom, left, right:

Then

$$
\begin{aligned}
\varepsilon(\tilde{R}) & \leq \varepsilon / 4+5 / 4 \varepsilon / 4+\varepsilon / 4 \\
& =\varepsilon .
\end{aligned}
$$

So let's define a bad sample s as one sit.
S misses any of e, c, t, b.
Goal: bound $\operatorname{Pr}[S$ is bad $]$ by δ.

- Let $m=|s|=$ sample size
- Remember S i.i.d. wry P
- $\operatorname{Pr}[s$ misses top $]$

$$
=(1-\varepsilon / 4)^{m} \quad \text { (indep.) }
$$

- Same for b, l, a
$\therefore \operatorname{Pr}[S$ misses any of t, b, c,
$\leq \operatorname{Pr}[$ s misses top $]+$
$\operatorname{Pr}[$ s misses bottom] +
$\operatorname{Pr}[s$ misses left]+
$\operatorname{Pr}[5$ misses right]
(union bound:

$$
\begin{aligned}
& \operatorname{Pr}[A \circ \sim \beta] \leq \\
& \operatorname{Pr}[A]+\operatorname{Pr}[B]) \\
\leqslant & 4 \cdot(1-\varepsilon / 4)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - So } \operatorname{Pr}[S \text { bad }] \leq \\
& 4(1-\varepsilon / 4)^{m} \text {, set } \leqslant \delta \text { : } \\
& 4(1-\varepsilon / 4)^{m} \leqslant \delta \\
& m \underbrace{\ln (1-\varepsilon / 4)}_{\text {l }} \leq \ln (\delta / 4)
\end{aligned}
$$

$$
\begin{aligned}
& -m \varepsilon / 4 \leq \ln (\delta / 4) \\
& m \varepsilon / 4 \geq \ln (4 / 5) \\
& m \geqslant 4 / \varepsilon \ln (4 / \varepsilon)
\end{aligned}
$$

$A \Rightarrow$ long as S is this
lange, w.p. $\geq 1-\delta$,

$$
\varepsilon(\hat{R}) \leq \varepsilon .
$$

Oh wait... what if e.g. $P[R]<\varepsilon / y$?

So have a fast algo with small sample complexity and a rigorous analysis.

Proof oversices:

- specify alg
- define "bad" events for argo
- bound prob, of each bad cuent
- take union bound
- sot less than δ, do algebra

Extensions?

- Rectangles in \mathbb{R}^{d} ?
- Parallel grams in \mathbb{R}^{2} ?
- Circles? Triangles?
- Union of 2 rectomales?

Next Up:
A General Model.

