


AGeneraeMod#
• Input/instance

space
✗ (e. g. R2)

• Target concept/function

c c-✗ (positive ex's)

C : ✗→ {0,1} or {+. -3

• Concept class E ,
(quite)

restricted

E.g. rectangles in R2



• We assume c. c- e-.

£ Known to learner

C Unknown

• Input distribution
P over ✗

unknown and arbitrary

• Learner given access
to labeled samples
{X.clxD , ✗up



Definition E is PAC learnable

if # learning algo L s-t.

He c- e 1target)

F- P over ✗ (dist.)

FE,S > 0 :

• With prob . I 1- S , L outputs

tree s.tv Elh)<_ E

( Elh) -7 Pr×np[hkH-⇒
• Sample size & runtime
of L are

"efficient
"

,

e. g. polynomial in
Yq ,

'/g and . . .



• • •

"complexity
"

of

✗ and c :

• e.g. BT vs Rd, must
depend on d.ideally
polynomials or better

• e.g.
"
size

" of C :

# nodes in decision tree

#weights in neural net

:

• We 'll be precise as

needed



• What classes (
are PAC -learn

abbe ?
• What classes are

(provably) not PAC,
and why ?

• "What are general
algo tools/reductions?

• What are interesting
variations on model ?



theorem The class

C of axis -aligned

rectangles in R~

is PAC learnable .



Let's look at another e :

conjunctions of

Boolean features .

• I}
"

• conjunctions : e.g.

clx> = ✗ixzxy n=6

C. ( 110100> = I

C ( 11111 1) = 0

• generalize & specialize
rectangles in R2 :
2→ a

✗it [a.b)
→ Xi --0,1 ,#



Let e be class of

conjunctions over {0,13?

• What is let ?

• Is e PAC learnable

in time polynomial
in Yells

,

and n ?

• Algorithm ?



• Initial hypothesis :

ho-xix.li/z..-XiXn

• Given {×,y> , ✗up :

y= 0 → ignore

y= I → deletecontradictions
from h

• E. g. on 1 I 0 1 ' ' '

, y= 1 :

T p pdelete
>✗
,

>✗2 ✗
3

- . .



• Every deletion proven
⇒ most specific h

⇒ consistent with
data so fan

• Only mistake : fail
to delete some ✗ifXi

that is harmful

( "bad event
")

• Let's analyze for
some 2- 4- c

l 2- = ✗i or >Xi)



• Define

qcz)
? Pr✗u§cl×>=/ & 2=0 in ×]

= deletion prob. of z

• elh) I E. qlz)
-2 c-h

• call 2- bad if qlz)> %n

• h has no bad 2-⇒ ELL)EE



• For fixed bad -2 :

prob. Z not deleted
In m x-P

E (I -42nF indeep.
• Prob . some/any

bad

2- not deleted

c- 2h11-%nTunion
bound

→-
set I 8

,
solve

for m



Algo is PAC for
m >_2÷(enlzn) +In/'Is))

Running time 01m -n)

Q : Even stronger
property of algo ?



A (slight ?>generalization :
e. =3- term DNF
-

• Now target c=T, -Tietz
• Each Ti a conjunction

over £0,13?
e.g. c- ✗ its " ✗,XzX> V 'XPXz

(Ti) CTD (Tz)

clx)=Tilx)rTzCx)vTzlX)

claim If 3 - term DNF
is PAC learn able , then

NP=RP
.



The Graph 3-Coloring Problem

1-npu-t.de#gaphetwork
G : e.g.

of

¥-4
every edge connects
different colors

Output :
"

yes
" if G 3-colorable

,

"
no
" else

.

An NP-complete problem .



Encode as 3- term DNF

learning problem:
create labeled samples .

6

5

(vertices> ledges?

÷É .

011 1111 ,+
10011 I 1 ,

-

10 11 11 I ,t 10 101 I 1 ,
-

I 10111 I ,t 1011011 ,
-

: :
>

111 1110,+ .

I 111100, -



Let's show the

following :

# a 3- term DNF

consistent with S

⇐
G is 3- colorable



Suppose G is 3-colorable :

8-OF

d¥É•
Tpgall vans/vetsnot red

= ✗2×3×5×6
1

TB = ×,✗2×4×6×7

TG = ✗1×3×4×5 ✗>

Claim : TR ✓ 1-☐ ✓To consistent

with S .



Now suppose some
TRVTBVTG consistent with S.

• Define color of van/vertex i

to be the T that

satisfies 411 . .-101 . . -1,1-7
i

• If idj both Rand Li
,;) c-G :

- oi-i - i
- i- o
- ,
+ } sat .tk

⇒ none of Xii✗i.X.si/jC-Tp

⇒ - o- o- Sats TR

⇒⇐ with consistency !

•
: G is 3-colorable .



So G is 3- colorable
⇐

5=5 (G) is consistent

with some 3-term DNF.

-

So what ?

What does this have

to do with PAC ?

Where are our friends

1358?
Need to simulate them

.



• Let A be a
black-box PAC aego .

• Given G-05--516)
• Let P be . uniform over S

1st #vertices + #edges
= size of G

• Choose E <
'

/1st
and any small 8>0

• Run A on P
,
E
,
S

→ test output Titu to
for consistency



• G 3-colorable⇒

w.p.tl- S, A output

consistent hypothesis .
• G not 3- colorable⇒

W.p. 1 ,
A fails to output

consistent hypo .

•

•

. PAC learning
3- term DNF

⇒ NP -- RP
.



Morad : As mysterious
4 powerful as ML
Can sometimes seem ,

it obeys same
"computation laws

"

as any
other algorithmic

problem/framework.
=

But now let's
Weasel out of this

result .



A little Boolean algebra .

-

T, utzvtz = (uuvvw)
(3 - term DNF) UETI ( 3C NF)

V C-T~

WET}

• e.g. T, =/ ⇒ each UET = I

⇒ RHS =/

• LH5=0 ⇒ some n,v, w
= 0

⇒ RH5=0

:3 - term DNF c- 3. CNF

(4)



Create meta - features :
("linearization ")

• 2- (um,w)€ u V. w

• #meta - features

up;) --01ns)
• RHS on last page is a

conjunction over 2- Is

•giren ✗ c- {0,15,
expand :

✗→ 2-Cx)
N nn

3



So :3 - term DNF

T's PAC - learnable
e. .

"

by
"

3CNF
.

=
We have circumvented
the hardness result

by enlarging our

hypothesis class .



Notes
• We are using HPpart
of PAC defn !

• E. g. P uniform over

{ 0,15 =p P
' uniform

over 2- Is

• Output of conjuncts algo
may not be = any 3CNF

• Hypo . representation matters
•

"

Overcompleteness "



Definition E is PAcleanable

if # learning alg by
He c- e Hans

F- P over ✗ (dist.)

FE,S > 0 :

• With nob . I 1- S , L outputs
t . {1h> ⇐ E

Laun)
? Prxnp[41×31--4×3]

• Sample size & runtime
of L are

"efficient
"

,

e. g. polynomial in
Yq ,

'/g and . . .



Recap:_
• PAC learning
3 - term DNF by
3- term DNF

is NP
-hand

.

• 3 - term PNF i.

PAC learnable

by 3CWE



Q : Can we ever
be sure any
e is truly
hard to learn?




