A General Model

- Input/instance space $\chi\left(\right.$ e.g. $\left.\mathbb{R}^{2}\right)$
- Target concept/function $c \subseteq X$ (positive ex's)

$$
C: X \rightarrow\{0,1\} \circ\{+,-\}
$$

- Concept class E, (quite) restricted E.g. rectangles in \mathbb{R}^{2}
- We assume $c \in C$: l known to learner c unknown
- Input distribution Porer X unknown and arbitrary
- Learner given access to lobeled samples $\langle x, c(x)\rangle, x \backsim P$

Definition C is PAC learnable if \#learning algo L sit.
$\forall c \in e$ (target)
$\forall P$ over X (dist.)

$$
\forall \varepsilon, \delta>0:
$$

- With prob. $\geqslant 1-\delta$, h outputs

$$
\begin{aligned}
& h \in C \text { st. } \varepsilon(h) \leqslant \varepsilon \\
& \left(\varepsilon(h) \triangleq \operatorname{Pr}_{x \cap p}[h(x) \neq c(x)]\right.
\end{aligned}
$$

- Sample size \& runtime of L are "efficient", e.g. polynomial in $1 / \varepsilon, 1 / \delta$ and...
... "complexity" of X and c :
- e.g. \mathbb{R}^{2} vs \mathbb{R}^{d}, must depend on d, ideally polynomially or better
- e.g. "s $12 e^{\prime}$ of c : \# nodes in decision tree \#weights in neural net :
- Wo'll be precise as needed
- What classes C are PAC-learnable?
- What classes are (provably) not PAC, and why?
- What are general aldo tools/reductions?
- What are interesting variations on model?

Theorem The class C of axis-aligned rectangles in \mathbb{R}^{2} is PAC learnable.

Let's look at another e : conjunctions of Boolean features.

- Domain $X=X_{n}=\{0,1\}^{n}$
- conjunctions: e.g.

$$
\begin{aligned}
& c(x)=x_{1}{ }^{7} x_{3} x_{4} \quad n=6 \\
& c(110100)=1 \\
& c(1\|\|\|)=0
\end{aligned}
$$

- generalize \& specialize rectangles in \mathbb{R}^{2} :

$$
\begin{aligned}
2 & \rightarrow n \\
x_{i} \in[a, b] & \rightarrow x_{i}=0,1, *
\end{aligned}
$$

Let C be class, of conjunctions over $\{0,1\}$.

- What is $/ \mathrm{C} /$?
- Is e PAC learnable in time polynomial in $1 / \varepsilon, 1 / \delta$, and n ?
-Algorithm?
- Initial hypothesis:

$$
h \leftarrow x_{1}{ }^{\top} x_{1} x_{2}^{7} x_{2} \cdots x_{n}^{7} x_{n}
$$

- Given $\langle x, y\rangle, x \sim p$: $y=0 \rightarrow$ ignore $y=1 \rightarrow$ delete contradictions from h
- Eng. on $1101 \cdots, y=1$:
delete 4 $\begin{array}{llll}7 x_{1} & 7 x_{2} & x_{3} & \cdots\end{array}$
- Every deletion proven
\Rightarrow most specific h
\Rightarrow consistent with data so fan
- Only mistake: foil to delete some $x_{i}, 7 x_{i}$ that is harmful
("bad event")
- Let's analyze for some $z \notin c$

$$
\left(z=x_{i}, r-x_{i}\right)
$$

- Define

$$
q(z) \triangleq P_{x \times p}[c(x)=1 \& z=0 \text { in } x]
$$

$$
=\text { deletion prob. of } z
$$

$$
\text { - } \varepsilon(h) \leq \sum_{z \in h} q(z)
$$

- call z bad if $q(z) \geqslant \varepsilon / 2 n$
- h has no bad $z \Rightarrow \varepsilon(h) \leq \varepsilon$
- For fixed bad z : prot. z not deleted in m xu P $\leq(1-\varepsilon / 2 n)^{m}$ indep.
- Prob. somelany bad z not deleted $\leq 2 n(1-\varepsilon / 2 n)^{m}$ union bound Set $\leq \delta$, solve for m

Algo is PAC for

$$
m \geqslant \frac{2 n}{\varepsilon}(\ln (2 n)+\ln (1 / \delta))
$$

Running time $O(m \cdot n)$
Q: Even stronger property of aldo?

A (slight?) generalization:

$$
e=3-\operatorname{term} \text { DNF }
$$

- Now target $c=T_{1} \backsim T_{2} \backsim T_{3}$
- Each Ti a conjunction oven $\left.\left\{0_{0} 1\right\}^{n}\right\}$
e.g. $c=x_{1}^{7} x_{5} \vee x_{1} x_{2} x_{1} \vee{ }^{7} x_{1}{ }^{7} x_{2}$

$$
c(x)=T_{1}(x) \vee T_{2}(x) \cup T_{3}(x)
$$

Claim: If 3-term DNF is PAC leannable, then

$$
N P=R P .
$$

The Graph 3-Coloring Problem
Input: undirected graph/network G: e.g.

every edge connects different colors
Output: "yes" if G 3-colrrable, "no" else.
An NP-complete problem.

Encode as 3-term DNF leorning prablem: create labiled sample S.

Let's show the following:
\# a 3-term DNF consistent with S
G is 3 -colorable

Suppose G is 3-colorable:

$T_{R}=$ all vargluerts not red

$$
\begin{array}{r}
=x_{2} x_{3} x_{5} x_{6} \\
T_{B}=x_{1} x_{2} x_{4} x_{6} x_{7} \\
T_{G}=x_{1} x_{3} x_{4} x_{5} x_{7}
\end{array}
$$

Claim: $T_{R} \cup T_{B} \cup T_{G}$ consisknt with S.

Now suppose some
$T_{R} \checkmark T_{B} \cup T_{C}$ conorshat with S.

- Define color of vanlverkx i to be the T that satisfies $\langle 11 \cdot 101 \cdots 1,+\rangle$
- If idj both R^{i} and $(i, j) \in G$:

\Rightarrow none of $x_{i}, 7 x_{i}, x_{j},{ }^{7} x_{j} \in T_{R}$
\Rightarrow - 0 - 0 - ats T_{R}
$\Rightarrow \leftarrow$ with consistency!
$\therefore G$ is 3-colsrable.

So G is 3-colorable
$S=S(G)$ is consistent with some 3-term DNF.

So what?
What does this have to do with PAC?
Where are our friends

$$
P, \varepsilon, \delta ?
$$

Need to simulate them.

- Let A be a black-box PAC aldo.
- Given $G \rightarrow S=S(G)$
- Let P be uniform over S |s/ = \#vertices + A edges = size of G
- Choose $\varepsilon<1 / 1 s 1$ and any small $\delta>0$
- Run A on P, ε, δ \rightarrow test output $T_{1} v T_{2} \cup T_{0}$ fo consistency
- G 3-colorable \Rightarrow w.p. $\geqslant 1-\delta$, A outpat consiskent hypothesis.
- G not 3-colorable \Rightarrow w.p. I, A farls to output consistent hypo.
\therefore PAC leanning 3-term DNF

$$
\Rightarrow N P=R P .
$$

Moral: As mysterious a) powerful as ML can sometimes seem, it obeys same "computation laws" as any other algorithmic problem/framework.
But now let's weasel out of this result.

A little Boolean algebra.

$$
\begin{aligned}
& T_{1} \vee T_{2} \vee T_{3}=\bigcap(u \vee v \circ \omega) \\
& \left(3 \text {-term DNF) } \begin{array}{c}
u \in T_{1} \\
w \in T_{2} \\
\omega \in T_{3} \\
\text { (}
\end{array}\right. \\
& \text {-e.g. } T_{1}=1 \Rightarrow \operatorname{each} u \in T=1 \\
& \Rightarrow \text { RHS }=1 \\
& \text { - } L H S=0 \Rightarrow \text { some } u, v, \omega=0 \\
& \Rightarrow \text { RHS }=0
\end{aligned}
$$

$\therefore 3$-term DNF $\subseteq 3 C N F$ (\nexists)

Create meta-features: ("Lincanization")

- $Z(u, v, w) \triangleq u \times v \circ w$
- \#meta-featares

$$
\sim\binom{2 n}{3}=O\left(n^{3}\right)
$$

- RHS on last page is a conjunction over z^{\prime} s
- giren $x \in\{0,1\}^{n}$, expand:

$$
\begin{aligned}
& x \rightarrow z(x) \\
& n \quad u n^{3}
\end{aligned}
$$

So:3-term DNF is PAC-learnable
..."by" 3CNF.

We have circumvented the hardness result by enlarging our hypothec's class.

Notes:

- We are using $\forall P$ part of PAC deft!
- E.g. P unific over $\{0,1\}^{n} \nRightarrow p^{\prime}$ uniform over z's
- Output of conjuncts algo may not $b r=a n y 3 C N R$
- Hypo. representation matters
- "Overcompleteness"

Definition C is PAC learnable if \#learning al: $\left.\begin{array}{c}b y \\ \forall c \in e \\ \forall t a r y\end{array}\right)$ $\forall c \in e$ bang of
$\forall P$ oven X (dist.) $\forall \varepsilon, \delta>0$:

- With knob. $\geqslant 1-\delta$, h outputs $h \in \mathcal{C}$.t. $\varepsilon(h) \leqslant \varepsilon$ (z, n) $2 \operatorname{Pr}_{x \cap p}[h(x) \neq c(x)]$
- Sample size \& runtime of L are "efficient", e.g. polynomial in $1 / \varepsilon, 1 / \delta$ and...

Recap:

- PAC learning 3-term DNF by 3-term DNF is NP-hand
- 3-te-m DNF is PAC le anable by 3CNF

Q: Can we ever be sure any e is truly hand to learn?

