Algorithmic Trading and Computational Finance

Michael Kearns Computer and Information Science University of Pennsylvania

> STOC Tutorial NYC May 19 2012

Special thanks: Yuriy Nevmyvaka, SAC Capital

Takeaways

- There are many interesting and challenging algorithmic and modeling problems in "traditional" financial markets
- Many (online) machine learning problems driven by rich & voluminous data
- Often driven by mechanism innovation & changes
- Almost every type of trading operates under reasonably precise constraints
 - high frequency trading: low latency, short holding period
 - market-making: offers on both sides, low inventory
 - optimized execution: performance tied to market data benchmarks (e.g. VWAP)
 - proprietary trading/statistical arbitrage: many risk limits (Sharpe ratio, concentration, VAR)
- These constraints provide structure
- Yield algorithm, optimization and learning problems

Financial Markets Field Guide ("Biodiversity" of Wall Street)

- Retail traders
 - individual consumers directly trading for their own accounts (e.g. E*TRADE baby)
- "Buy" side
 - large institutional traders: portfolio managers; mutual and pension funds; endowments
 - often have precise metrics and constraints; e.g. tracking indices
 - percentage-based management fee
- "Sell" side
 - brokerages providing trading/advising/execution services
 - "program trading" \rightarrow "algorithmic trading": automated strategies for optimized execution
 - profit from commissions/fees
- Market-makers and specialists
 - risk-neutral providers of liquidity
 - (formerly) highly regulated
 - profit from the "bid-ask bounce"; averse to strong directional movement
 - automated market-making strategies in electronic markets (HFT)
- Hedge funds and proprietary trading
 - groups attempting to yield "outsized" returns on private capital (= beat the market)
 - can take short positions
 - relatively unregulated; but also have significant institutional investment
 - heavy quant consumers: "statistical arbitrage", modeling, algorithms
 - typically take management fee and 20% of profits
- All have different goals, constraints, time horizons, technology, data, connectivity...

Outline

- I. Market Microstructure and Optimized Execution
 - online algorithms and competitive analysis
 - reinforcement learning for optimized execution
 - microstructure and market-making
- II. Mechanism Innovation: a Case Study
 - difficult trades and dark pools
 - the order dispersion problem
 - censoring, exploration, and exploitation
- III. No-Regret Learning, Portfolio Optimization, and Risk
 - no-regret learning and finance
 - theoretical guarantees and empirical performance
 - incorporating risk: Sharpe ratio, mean-variance, market benchmarks
 - no-regret and option pricing

Outline

- I. Market Microstructure and Optimized Execution
 - online algorithms and competitive analysis
 - reinforcement learning for optimized execution
 - microstructure and market-making
- II. Mechanism Innovation: a Case Study
 - difficult trades and dark pools
 - the order dispersion problem
 - censoring, exploration, and exploitation
- III. No-Regret Learning, Portfolio Optimization, and Risk
 - no-regret learning and finance
 - theoretical guarantees and empirical performance
 - incorporating risk: Sharpe ratio, mean-variance, market benchmarks
 - no-regret and option pricing

Questions of Enduring Interest

- How do (stock) prices "evolve"? How can we model this evolution?
 - classical random walk, diffusion models + drift
 - many recent empirical challenges [Lo & MacKinlay; Brock et al.]
 - autoregressive time series models
 - AR1, ARCH, GARCH, etc. → generalized Ito model
 - computer science: adversarial/worst-case price sequences
 - algorithms analyzed w.r.t. competitive ratios, regret
- Can we design "adaptive" or "learning" algorithms for:
 - executing difficult/large trades?
 - predicting and profiting from movements of prices?
- Models generally ignore market mechanism and liquidity issues
 - at least in part because the data was unavailable and unreliable
- This is changing rapidly... and presents challenges & opportunities

Background on Market Microstructure

- Consider a typical exchange for some specific security
- Limit order: specify price (away from the market)
- (Partially) Executable orders are filled immediately
 - prices determined by standing orders in the book
 - one order may execute at multiple prices
- Non-executable orders are placed in the buy or sell book
 - sorted by price; top prices are the bid and ask
- Market order: limit order with an extreme price
- Full order books visible in real time
- What are they good for?

LAST MATCH		TODAY'S	ACTIVITY
Price	23.7790	Orders	1,630
Time	9:01:55.614	Volume	44,839

BUY	BUY ORDERS		ORDERS
SHARES	PRICE	SHARES	PRICE
<u>1,000</u>	23,7600	<u> 100 </u>	23,7800
3,087	23,7500	800	23,7990
<u>200</u>	23.7500	<u> 500 </u>	23.8000
<u> 100 </u>	23.7400	1,720	23.8070
1,720	23.7280	<u>900</u>	23.8190
2,000	23.7200	<u>200</u>	23.8500
<u>1,000</u>	23,7000	<u>1,000</u>	23.8500
<u> 100 </u>	23,7000	<u>1,000</u>	23.8500
<u> 100 </u>	23.7000	1,000	23.8600
800	23.6970	<u>200</u>	24.0000
<u> 500</u>	23.6500	<u> </u>	24.0000
3,000	23.6500	1,000	24.0300
4,300	23.6500	<u>200</u>	24.0300
2,000	23.6500	<u>1,100</u>	24.0400
<u>200</u>	23.6200	<u>500</u>	24.0500
(195	5 more)	(219	9 more)

Optimized Trade Execution

- Canonical execution problem: sell V shares in T time steps
 - must place market order for any unexecuted shares at time T
 - also known as "one-way trading" (OWT)
 - trade-off between price, time... and liquidity
- Problem is ubiquitous
- Multiple performance criteria:
 - Maximum Price:
 - · compare revenue to max execution price in hindsight
 - O(log(R)) competitive ratios in infinite liquidity, adversarial price model
 - R = a priori bound on ratio of max to min execution price
 - [EI-Yaniv, Fiat, Karp & Turpin]
 - Volume Weighted Average Price (VWAP):
 - · compare to per-share average price of executions in hindsight
 - widely used on Wall Street; reduces risk sources to execution
 - by definition, must track prices and volumes
 - Implementation Shortfall:
 - compare per-share price to mid-spread price at start of trading interval
 - an unrealizable ideal

An Online Microstructure Model

- Market places a sequence of price-volume limit orders:
 - $M = (p_1,v_1), (p_2,v_2), ..., (p_T,v_T)$ (+ order types)
 - possibly adversarial; also consider various restrictions
 - need to assume bound on p_max/p_min = R
- Algorithm is allowed to interleave its own limit orders:
 - $A = (q_1,w_1),(q_2,w_2),...,(q_T,w_T) (+ order types)$
- Merged sequence determines executions and order books:
 - merge(M,A) = (p_1,v_1), (q_1,w_1),..., (p_T,v_T), (q_T,w_T)
 - assuming zero latency
 - now have complex, high-dimensional state
 - how to simplify/summarize?

refresh	island home	<u>disclaim</u>	er <u>help</u>
		GE	т этоск
CB	ISFT	MSFT	- go
6664		Sym	bol Search
LAST	МАТСН	TODAVY	S ACTIVITY
Price	23,7790	Orders	1,630
	9:01:55.614	Volume	44,839
BUY	ORDERS	SELL	ORDERS
SHARES	PRICE	SHARES	PRICE
1,000	23.7600	100	23.7800
3,087	23.7500	800	23.7990
200	23.7500	500	23.8000
100	23.7400	1,720	23.8070
1,720	23.7280	900	23.8190
2,000	23.7200	200	23.8500
1,000	23.7000	1,000	23.8500
100	23.7000	1,000	23.8500
100	23.7000	1,000	23.8600
800	23.6970	200	24.0000
500	23.6500	500	24.0000
3,000	23.6500	1,000	24.0300
4,300	23.6500	200	24.0300
2,000	23.6500	1,100	24.0400
200	23.6200	500	24.0500
(195	i more)	(219	more)

What Can Be Done?

[Kakade, K., Mansour, Ortiz ACM EC 2004]

• Maximum Price:

- $O(\log(R))$ infinite liquidity model $\rightarrow O(\log(R)\log(V))$ in limit order model
- quantifies worst-case market impact of large trades
- if p_1 > p_2 >... are execution prices, randomly "guess" max{kp_k}
- note: optimal offline algorithm unknown!
- VWAP:
 - O(log(Q)) in limit order model
 - Q = ratio of max to min total executed volume on allowed sequences
 - Q often small empirically; can exploit (entropic) distributional features
 - Better: trade V over >= γ V executed shares, γ is max order size
 - VWAP "with volume" instead of "with time"
 - Can approach competitive ratio of 1 for large V !
 - Sketch of algorithm/analysis:
 - divide time into equal (executed) volume intervals I_1, I_2,...
 - place sell order for 1 share at ~ $(1-\epsilon)^k$ nearest VWAP_j
 - if all orders executed, are within $(1-\epsilon)$ of overall VWAP
 - can't "strand" more than one order at any given price level
 - optimize $\boldsymbol{\epsilon}$
- None of these algorithms "look" in the order books!

Limitations of the Book?

- Even offline revenue maximization is NP-complete
 - advance knowledge of sequence of arriving limit orders
 - [Chang and Johnson, WINE 2008]
- Instability of limit order dynamics
 - relative price formation model (market-making, HFT)
 - small "tweaks" to order sequence can cause large changes in macroscopic quantities
 - e.g. VWAP, volume traded
 - "butterfly effects" and discrete chaos
 - [Even-Dar, Kakade, K., Mansour ACM EC 2006]
- What about empirically?

Reinforcement Learning for Optimized Execution

- Basic idea: execution as state-based stochastic optimal control
 - state: time and shares remaining... what else?
 - actions: position(s) of orders within the book
 - rewards: prices received for executions
 - stochastic: because same state may evolve differently in time
- Large-scale application of RL to microstructure
- Related work:
 - Bertsimas and Lo
 - Coggins, Blazejewski, Aitken
 - Moallemi, Van Roy

Experimental Details

[Nevmyvaka, Feng, K. ICML 2006]

- Stocks: AMZN, NVDA, QCOM (varying liquidities)
- Full OB reconstruction from historical data
- V = 5K and 10K shares
 - divided into 1, 4 or 8 levels of observed discretization
- T = 2 and 8 mins
 - divided into 4 or 8 decision points
- Explored a variety of OB state features
- Learned optimal strategy on 1 year of INET training data
- Tested strategy on subsequent 6 months of test data
- Objective function:
 - basis points compared to all shares traded at initial spread midpoint
 - implementation shortfall; an unattainable ideal (infinite liquidity assumption)
- Same basic RL framework can be applied much more broadly
 - e.g. "market-making" strategies [Chan, Kim, Shelton, Poggio]

A Baseline Strategy: Optimized Submit-and-Leave

[Nevmyvaka, K., Papandreou, Sycara IEEE CEC 2005]

Private State Variables Only: Time and Inventory Remaining

Average Improvement Over Optimized Submit-and-Leave

T=4 I=1	27.16%	T=8 I=1	31.15%
T=4 I=4	30.99%	T=8 I=4	34.90%
T=4 I=8	31.59%	T=8 I=8	35.50%

Improvement From Order Book Features

Bid Volume	-0.06%	Ask Volume	-0.28%
Bid-Ask Volume Misbalance	0.13%	Bid-Ask Spread	7.97%
Price Level	0.26%	Immediate Market Order Cost	4.26%
Signed Transaction Volume	2.81%	Price Volatility	-0.55%
Spread Volatility	1.89%	Signed Incoming Volume	0.59%
Spread + Immediate Cost	8.69%	Spread+ImmCost+Signed Vol	12.85%

Microstructure and Market-Making

- Canonical market-making:
 - always maintain outstanding buy & sell limit orders; can adjust spread
 - if a buy-sell pair executed, earn the spread
 - only one side executed: accumulation of risk/inventory
 - may have to liquidate inventory at a loss at market close
- A simple model, algorithm and result:
 - price time series $p_0,...,p_T$, where $d_t = |p_{t+1} p_t| < D$, infinite liquidity
 - algorithm maintains ladder of matched order pairs up to depth D
 - let $z = p_T p_0$ (global price change) and K = \sum_t d_t (sum of local changes)
 - then profit = $K z^2$
 - +/-1 random walk (Brownian): profit = 0
 - but profit > 0 on any "mean-reverting" time series
 - [Chakraborty and K., ACM EC 2011]
- Learning and market-making: Sanmay Das and colleagues

Outline

- I. Market Microstructure and Optimized Execution
 - online algorithms and competitive analysis
 - reinforcement learning for optimized execution
 - microstructure and market-making
- II. Mechanism Innovation: a Case Study
 - difficult trades and dark pools
 - the order dispersion problem
 - censoring, exploration, and exploitation
- III. No-Regret Learning, Portfolio Optimization, and Risk
 - no-regret learning and finance
 - theoretical guarantees and empirical performance
 - incorporating risk: Sharpe ratio, mean-variance, market benchmarks
 - no-regret and option pricing

Modern "Light" Exchanges

Major disadvantage: executing very large orders

distributing over time and venues insufficient
many buy-side parties are "compelled"

Thus the advent of... Dark Pools

specify side and volume only
no price, execution by time priority
price generally pegged to light midpoint

- * not seeking price *improvement*, just execution
- * only learn (partial) fill for your order

refresh island home	<u>disclaimer help</u>	
	GET STOCK	
🗔 MSFT	MSFT go	
	Symbol Search	

LAST MATCH		TODAY'S	ACTIVITY
Price	23.7790	Orders	1,630
Time	9:01:55.614	Volume	44,839

BUY ORDERS		SELL	ORDERS
SHARES	PRICE	SHARES	PRICE
<u>1,000</u>	23.7600	<u> 100 </u>	23.7800
3,087	23,7500	<u>800</u>	23,7990
<u>200</u>	23,7500	<u> 500 </u>	23.8000
<u> 100 </u>	23.7400	1,720	23.8070
1,720	23.7280	<u> </u>	23.8190
2,000	23.7200	<u>200</u>	23.8500
1,000	23,7000	1,000	23.8500
<u> 100 </u>	23,7000	<u>1,000</u>	23.8500
<u> 100 </u>	23,7000	1,000	23.8600
<u>800</u>	23.6970	<u>200</u>	24.0000
<u> 500 </u>	23.6500	<u> 500 </u>	24.0000
3,000	23.6500	1,000	24.0300
4,300	23.6500	<u>200</u>	24.0300
2,000	23.6500	1,100	24.0400
<u>200</u>	23.6200	<u> 500 </u>	24.0500
(195	5 more)	(219	9 more)

THE WALL STREET JOURNAL. Digital Network WSJ.com Market Watch BARRON'S All Things Digital. SmartMoney	More V News, Guotes, Companies, Videos SEARCH Search Principal		
Wednesday, October 21, 2009 As of 12:15 PM EDT	Goup		
THE WALL STREET JOURNAL. MARKETS	Welcome, MICHAEL KEARNS Logout My Account - My Journal - Help		
U.S. Edition 🔻 🛛 Today's Paper 🔹 Video 🍨 Columns 🔹 Blogs 🍨 Topics 🔹 Journal Community			
Home World U.S. Business Markets Tech Personal Finance Life &	Style Opinion Careers Real Estate Small Business		
Finance Deals Heard on the Street Market Data Stocks Bonds Commodities Curr	encies World Markets Columns & Blogs MarketWatch.com		
TOP STORIES IN SEC Weighs New Rules on Dark Galleon to Wind Dow Markets SEC Weighs New Rules on Dark Funds	n Hedge ^{9 of 10} Cerberus' Guns Unit Files for IPO		
OCTOBER 21, 2009, 12:16 P.M. ET SEC Weighs New Regulations for Dark Pools			
Article Comments (1)	MORE IN MARKETS MAIN »		
Email Printer Share: 📑 facebook 🔹 Save This 🖸	Text +		
By SARAH N. LYNCH	Zurich HelpPoint		
WASHINGTON The Securities and Exchange Commission unanimously agreed Wedne to consider three proposals aimed at shedding more light on non-public electronic trading entities including dark pools, which match big stock orders privately.	More than just insurance, here to help your world.		
The proposals would require dark pools to make information about an investor's interest in buying or selling a stock available to the public instead of only sharing it with a select gro operating with a dark pool. They would also require dark pools to publicly identify if their p executes a trade.	up		
"We should never underestimate or take for granted the wide spectrum of benefits that come from transparency," SEC Chair Mary Schapiro said. "Transparency plays a vital role in promoti public confidence in the honesty and integrity of financial marke	ng Because change happenz."		
Dark pools, a type of alternative trading system that doesn't dis quotes to the public, are just one part of a broader probe the SE	EC is Email Newsletters and Alerts		
conducting into market structures. Recently, the SEC also vote consider banning flash orders, which let some traders get a sne			

nook at market activity. The agancy is also looking into other groap

TORA Crosspoint Instinet SmartPool Posit/MatchNow from Investment Technology Group (ITG) Liquidnet NYFIX Millennium Pulse Trading BlockCross **RiverCross Pipeline Trading Systems** Barclays Capital - LX Liquidity Cross **BNP** Paribas BNY ConvergEx Group Citi - Citi Match Credit Suisse - CrossFinder **Fidelity Capital Markets GETCO - GETMatched** Goldman Sachs SIGMA X Knight Capital Group - Knight Link, Knight Match Deutsche Bank Global Markets - DBA(Europe), SuperX ATS (US) Merrill Lynch – MLXN Morgan Stanley Nomura - Nomura NX

UBS Investment Bank **Ballista ATS Ballista Securities LLC** BlocSec[citation needed] Bloomberg Tradebook (an affiliate of Bloomberg L.P.) Daiwa – DRECT **BIDS Trading - BIDS ATS** LeveL ATS International Securities Exchange NYSE Euronext **BATS** Trading Direct Edge Swiss Block Nordic@Mid Chi-X Turquoise **Bloomberg Tradebook** Fidessa - Spotlight SuperX+ – Deutsche Bank ASOR – Quod Financial **Progress Apama** ONEPIPE – Weeden & Co. & Pragma Financial Xasax Corporation Crossfire - Credit Agricole Cheuvreux

The Dark Pool (Allocation) Problem

Given a sequence or distribution of "client" or parent orders, how should we distribute the desired volumes over a large number of dark pools? (a.k.a. Smart Order Routing (SOR))

May initially know little about relative quality/properties of pools

- * may be specific to name, volatility, volume,...
- * ...a *learning* problem
- * (related to "newsvendor problem" from OR)

To simplify things, will generally assume:

- * client orders all on one side (e.g. selling)
- * client orders come i.i.d. from a fixed distribution
 - ...even though our "child" submissions to pools will not be i.i.d.
- * statistical properties of a given pool are static

All can be relaxed in various ways, at the cost of complexity

Modeling Available Volume: Single Pool

shares available

A Statistical Sub-Problem

From a given pool P[s], we observe a sequence of censored executions At time t, we submitted v(t) shares and s(t) <= v(t) were executed

- Q: What is the maximum likelihood estimate of P[s]?
- A: The Kaplan-Meier estimator from biostatistics and survival analysis
 - * start with empirical distribution of uncensored observations
 - * process censored observations from largest to smallest
- * distribute over larger values proportional to their current weight Known to converge to P[s] *asymptotically* under *i.i.d.* submissions
 - * also need support conditions on submission distribution
- * for us, i.i.d. violated by dependence between venue submissions Can prove and use a stronger lemma (paraphrased):
 - * for any volume s, |P[s] P'[s]| ~ 1/sqrt(N(s))
 - * N(s) ~ number of times we have submitted > s shares
- For analysis only, define a *cut-off* c[i] for each venue distribution P_i:
 - * we "know" P_i[s] accurately for s <= c[i]
 - * may know little or nothing above c[i]

The Learning Algorithm and Analysis

[Ganchev, K., Nevmyvaka, Wortman UAI, CACM]

Algorithm:

initialize estimated distributions P'_1, P'_2,..., P'_k repeat:

* compute greedy optimal allocations to each venue given the P'_i

* use censored executions to re-estimate P'_i using *optimistic* K-M Analysis:

* if allocation to *every* venue i is < c[i], already near-optimal;

- know "enough" about the P_i to make this allocation ("exploit")
- * if for some venue j, submitted volume > c[j], we "explore";

so eventually c[j] will increase \rightarrow improve P'_j

* optimistic: slight tail modification ensures always exploit/explore

* analogy to E^3/RMAX family for RL

Main Theorem: algorithm efficiently converges to near-optimal

* non-parametric and parametric versions

Algorithm vs. Uniform Allocation

Algorithm vs. Ideal Allocation

Algorithm vs. Bandits*

* Nice no-regret follow-up: Agarwal, Barlett, Dama AISTATS 2010

Outline

- I. Market Microstructure and Optimized Execution
 - online algorithms and competitive analysis
 - reinforcement learning for optimized execution
 - microstructure and market-making
- II. Mechanism Innovation: a Case Study
 - difficult trades and dark pools
 - the order dispersion problem
 - censoring, exploration, and exploitation
- III. No-Regret Learning, Portfolio Optimization, and Risk
 - no-regret learning and finance
 - theoretical guarantees and empirical performance
 - incorporating risk: Sharpe ratio, mean-variance, market benchmarks
 - no-regret and option pricing

Basic Framework

- An underlying universe of K assets U = {S_1,...,S_K}
- Goal: manage a "profitable" portfolio over U
 - each trading period S_i grows/shrinks q_i = (1+r_i), r_i in [-1,infinity]
 - we maintain a distribution w of wealth, fraction w_i in S_i
 - all quantities indexed (superscripted) by time t
- Traditionally: K assets are long positions in common stocks
- More generally: K assets are any collection of investment instruments:
 - long and short positions in common stocks, cash, futures, derivatives
 - technical trading strategies, pairs strategies, etc.
 - generally need instruments/performance to be "stateless": can be entered at any time
- How do we measure performance relative to U?
 - average return (~"the market"): place 1/K of initial wealth in each S_i and leave it there
 - Uniform Constant Rebalanced Portfolio (UCRP): set w_i = 1/K and rebalance every period
 - exponential growth (factor 9/8) on S_1 = (1,1,1,1,1,....) and S_2 = (2,1/2,2,1/2,...); reversion effect
 - Best Single Stock (BSS) in hindsight
 - Best Constant Rebalanced Portfolio (BCRP) in hindsight
 - Note: must place some restrictions on comparison class

Online Algorithms: Theory

- Assume nothing about sequence of returns r_i (except maybe max loss)
- On arbitrary sequence r^1,...r^T, algorithm A dynamically adjusts portfolio w^1,...,w^t
- Compare cumulative return of A to BSS or BCRP (in hindsight)
- Powerful families of no-regret algorithms: for all sequences,
 - Return(A)/T >= Return(BSS)/T O(sqrt(log(K)/T))
 - or $\log(A's wealth)/T \ge \log(BCRP wealth)/T O(K/T)$ (Cover's algorithm; exponential growth)
 - "complexity penalty" for large K; per-step regret is vanishing with T
- How is this possible?
 - note: for this to be interesting, need BSS or BCRP to strongly outperform the average

Cover's Algorithm

- K stocks, T periods
- W_t(p) = wealth of portfolio/distribution p after t periods
- Invest initial wealth uniformly across all CRPs and leave it
- Equivalent:
 - initial portfolio $p_1 = (1/K, ..., 1/K)$
 - $p_{t+1} = \inf_{p} W_t(p)p dp/integral_{p} W_t(p) dp$
- Learning at the stock level, but not at the portfolio level!
- Now let p* maximize W(p*) = W_T(p*) (BCRP in hindsight)
- Then for any c: W(A) >= r^K (1-r)^T W(p*)
 - r^K: amount of weight in r-ball around p*
 - (1-r)^AT: if p is within r of p*, must make at worst factor (1-r) less at each period
- Picking r = 1/T: W(A) >= $(1/T)^{K} (1 1/T)^{T} W(p^{*}) \sim (1/T)^{K} W(p^{*})$
- So log W(A) >= log W(p*) K log T
- Only interesting for exponential growth

Tractable Algorithms

- Most update weights multiplicatively, not additively
- Flavor of a typical algorithm (e.g. Exponential Weights):
 - w_i $\leftarrow exp(\eta^*r_i)w_i$, renormalize
- One (crucial) parameter: learning rate η
 - for the theory, need to optimize $\eta \sim 1/sqrt(T)$
 - generally are assuming momentum rather than mean reversion
 - note: η = 0 (no learning) is UCRP; a form of mean reversion
 - value of η also strongly influences portfolio concentration \rightarrow variance/risk
- Let's look at some empirical performance

Data Period: early 2005 – end 2011 (~7 years) Underlying Instruments: stocks in S&P 500 (selection bias) Daily (closing) returns Wealth of investing \$1 in each stock

long positions only UCRP: magenta Cover's algorithm: red Exponential Weights (optimized): green

long and short position UCRP long only: magenta UCRP short only: yellow Cover's algorithm: red Exponential Weights: green

What About Risk?

- Sharpe Ratio = (mean of returns)/(standard deviation of returns)
- Mean-Variance (MV) criterion = mean variance
- Maximum Drawdown; Value at Risk (VaR)
- Concentration limits
- Market index/average as a lower bound

Some Relevant Theory

- What about no regret compared to BSS in hindsight w.r.t. risk-return metrics?
 - e.g. BSS Sharpe, BSS M-V,...
 - can prove any online algorithm must have constant regret...
 - ...in fact, even offline competitive ratio must be constant
 - variance constraints introduce switching costs or state
 - [Even-Dar, K., Wortman ALT 2006]
- But can preserve traditional no-regret with benchmarking to average
 - additive reward setting
 - guarantee O(sqrt(T)) cumulative regret to best, O(1) to average
 - Idea: only increase η as data "proves" best will beat average
 - worst case: track the market
 - [Even-Dar, K, Mansour, Wortman COLT 2007]
- "State" generally ruins no-regret theory
- Lots of room for innovation/improvement

No-Regret and Option Pricing

- Option (European call): right, but not obligation, to purchase shares at a fixed price and future time
- E.g. AAPL now trading ~\$546; option to purchase at \$600 in a year
- Option should cost something --- but what?
 - depends on uncertainty/fluctuations
- Black-Scholes:
 - assume future price evolution follows geometric Brownian motion
 - B: borrow money to buy options now; if options "in the money", exercise and pay back loan
 - S: sell options now for cash; if options in the money, pay counterparty
 - correct option price: neither B nor S has positive expected profit
- What if the future price evolution is arbitrary?
- DeMarzo, Kremer, Mansour STOC 06:
 - hedging strategy that has no regret to option payoff
 - multiplicative weight update algorithm
- Abernethy, Frongillo, Wibisono STOC 2012:
 - view option pricing as an adversarial game
 - minimax price is same as Black-Sholes under Brownian motion!
- More complex derivatives with asymmetric info may be intractable to price
 - "pay 1\$ if AAPL price increases x% where x matches last two digits of a prime factor of N"
 - intractability of planted dense subgraph \rightarrow difficulty in pricing natural derivatives (e.g. CDS)
 - Arora, Barak, Brunnermeier, Ge

Conclusions

- Many algorithmic challenges in modern finance
- Lower level: market microstructure, optimized execution metrics & problems
- Higher level: portfolio optimization, option pricing, no-regret algorithms
- New market mechanisms lead to new algorithmic challenges (e.g. dark pools)