Empirical Limitations on High Frequency Trading Profitability

Michael Kearns
Computer and Information Science, University of Pennsylvania
SAC Capital, New York

Market Microstructure: Confronting Many Viewpoints
Paris, 9 December 2010

Joint work with:
Yuriy Nevmyvaka (SAC Capital)
Alex Kulesza (University of Pennsylvania)
Background and Motivation

• HFT media/furor/controversy/witch hunt/investigations
• Many activities we might regard as fundamentally distinct are being conflated:
 - co-location, low-latency access
 - algorithmic trading (optimized execution)
 - dark pools and flash trading
 - market-making, liquidity provision
 - front-running
• Lots of “guesstimates” and back-of-the-envelope calculations of HFT profits
• Almost no careful, data-centric empirical studies (Brogaard 2010)
• This talk: a large-scale, systematic, data-centric and “model-free” (almost) calculation of the maximum profitability (overestimate) of certain types of HFT
• An extensive accounting exercise
To conduct precise experiments, must commit to some definition of HFT

- Equate HFT with *short holding periods*
- Rationale: if your alpha is consistently realized over minutes or hours, you don’t need picosecond latency
- Divide HFT strategies into two (very) broad categories:
 - aggressive: cross the spread to enter every trade
 - passive: exclusively employ (non-marketable) limit orders every trade
- Here: focus exclusively on *aggressive HFT*

- Rationale: passive HFT is liquidity provision and therefore “benign” (Brogaard 2010)
- This work: empirically (over)estimate *total market size* (profitability) of aggressive HFT in 2008 for all ~6K U.S. equities
- Note: Sharpe ratios generally a misleading/inappropriate measure for HFT
 - returns vs. capacity
- Fundamental tension: trading costs (spreads) vs. short-term price changes
Methodology: Overview

• Using internal QAT (ITCH) message data from NASDAQ, perform full reconstruction of order books throughout all of 2008 (9:45AM – 3:45PM).

• Divide time into discrete “instances” at 10ms intervals, conditioned on there being any change to the top of the books since the last instance.

• Permit trading at every instance. Use the order books only to compute the prices of entering and exiting trades crossing the spread and walking the books. Books are reset to their historical states at every new instance; thus there is no long-term market impact in our simulations.

• Simulate the Omniscient Trader at every instance, and compute its total profitability for a given name in 2008.

• Apply the above methodology to 19 higher-liquidity NASDAQ names; use TAQ data and regression methodology to scale to larger universe and composite exchange (details later).
The Omniscient Trader (OT)

- Has a single parameter: *holding period* h (seconds)

- At each time t, the OT may either buy or sell v shares, for any integer $v \geq 0$. The purchase or sale of the v shares occurs at *market prices*; thus the OT must cross the spread and (potentially) walk the book for the v shares.

- If at time t the OT bought/sold v shares, at time $t+h$ it *must liquidate* this position and sell/buy the shares back, again by crossing the spread and paying market prices on the opposing book.

- At each time t, the OT makes only that trade (buying or selling, and the choice of v) that *optimizes (absolute) profitability*. This may often mean doing nothing.

- Holding periods examined: 10ms, 100ms, 500ms, 1s, 2s, 3s, 4s, 5s, 10s

- Also permitted *variable* holding period
Sources of Optimism/Overestimation

- Omniscience! In reality must *predict* profitable direction and size
- No fees or commissions paid by OT
- Zero latency for OT
- No market impact for OT
- Overcounting of instances
What We’re Not Accounting For

• Passive HFT: market-making/liquidity provision (*Are these “benign”?*)
• Conditional holding periods (*What does “high frequency” mean?*)
• Positive market impact: e.g. inducing momentum
• Cross-exchange plays: dark pools, flash trading
• Non-equity instruments: futures, FX, ETFs, etc.
• Non-U.S. markets
Results on the 19 Names
Aggregated Statistics vs. Holding Period

(A) OT profits vs. holding period

(B) OT number of trades vs. holding period

(C) OT number of shares vs. holding period

(D) OT average shares per trade vs. holding period

(E) OT profit per trade vs. holding period

(F) OT average return vs. holding period

$3.4B
Per-Name Breakdown, h = 10s
2008 Aggregate Monthly Profits

![Graph showing monthly total profits at holding 10 sec (blue), 5 sec (green), 1 sec (red)]

Crise peak
Scaling to the Full Universe
Scaling Methodology: Overview

• Computation (can’t even uncompress statically) and data (only have NASDAQ OBs) preclude running methodology on all names and exchanges

• TAQ data includes bid/ask prices and volumes for primary and secondary

• Can thus run *modified OT* on TAQ data: can only consume bid/ask volumes

• On original 19 names, check correspondence between OT profits on full NASDAQ OBs and TAQ primary data (sanity check)

• On original 19 names and TAQ composite data, estimate OT profitability

• Now have 19 <name, composite profitability> pairs

• Fit two-parameter, non-linear regression model mapping number of TAQ quotes to profitability

• Use TAQ quotes to (over)estimate profitability on full universe of 6,279 US stocks
Composite/Primary Ratios (10s)
Regression Fit (10s)
Histogram of 2008 Composite Profit Overestimates (10s)
Profit Bound vs. Holding Period, Full Universe

$21B vs. $21M
Closing Remarks

• $21B vs $52 trillion (TAQ) trading volume in same universe annually (<0.05%)
• 10% omniscience & no losses → $2.1B (consistent with Brogaard 2010)
• Allow optimal exit point within a bounded window → ~50% increase
• Already simulating zero latency; no market impact or fees for taking liquidity
• Figures for 2009/10 likely much lower due to 2008 volatility

• Some parties are getting rich from HFT. Should society be concerned?
Scaling Methodology: Overview

- Computation (can’t even uncompressed statically) and data (only have NASDAQ OBs) preclude running methodology on all names and exchanges

- TAQ data includes bid/ask prices and volumes for primary and secondary

- Can thus run modified OT on TAQ data: can only consume bid/ask volumes

- On original 19 names, check correspondence between OT profits on full NASDAQ OBs and TAQ primary data (sanity check)

- On original 19 names and TAQ composite data, estimate OT profitability

- Now have 19 <name, composite profitability> pairs

- Fit two-parameter, non-linear regression model mapping number of TAQ quotes to profitability

- Use TAQ quotes to (over)estimate profitability on full universe of 6,279 US stocks
$21B vs ~ $52 trillion trading volume (TAQ) annually in same universe (<%0.05)