Reinforcement Learning for Optimized Trade Execution

Yuriy Nevmyvaka, Lehman Brothers (& CMU) Yi Feng, Penn Michael Kearns, Penn (& Lehman Brothers)

ICML 2006

Background on Market Microstructure

- Consider a typical exchange for some specific stock
- Limit order: specify price (away from the market)
- (Non-executable) Orders are placed in the buy or sell book
 - sorted by price; top prices are the bid and ask
- (Partially) Executable orders are filled immediately
 - prices determined by standing orders in the book
 - one order may execute at multiple prices
 - the "mechanical" component of market impact
- Market order: limit order with an extreme price
- Full order books now visible in real time
- What are they good for?

LAST MATCH		TODAY'S ACTIVITY	
Price	24.0700	Orders	52,983
Time	14:57:07.72	Volume	10,243,212

BUY ORDERS		SELL ORDERS	
SHARES	PRICE	SHARES	PRICE
<u>500</u>	24.0620	<u>500</u>	24.0690
<u>6,000</u>	24.0610	<u> </u>	24.0690
<u>5,000</u>	24.0600	<u> </u>	24.0700
<u>100</u>	24.0600	<u>200</u>	24.0800
<u>1,100</u>	24.0550	<u>1,981</u>	24.0900
<u> </u>	24.0500	<u>412</u>	24.0900
<u>5,000</u>	24.0500	<u>3,000</u>	24.0980
<u>200</u>	24.0500	<u> </u>	24.1000
<u>3,294</u>	24.0500	<u>100</u>	24.1200
<u>1,000</u>	24.0500	<u>2,800</u>	24.1400
<u>3,000</u>	24.0430	<u>5,000</u>	24.1400
<u>100</u>	24.0400	<u>1,000</u>	24.1400
<u>5,503</u>	24.0400	<u>5,000</u>	24.1500
<u>2,100</u>	24.0300	<u>400</u>	24.1600
<u>2,800</u>	24.0300	<u>1,000</u>	24.1700
(412 more)		(694 more)	

Optimized Trade Execution

- Canonical execution problem: sell V shares in T time steps
 - must place market order for any unexecuted shares at time T
 - trade-off between price, time... and liquidity
 - problem is ubiquitous
- Canonical goal: Volume Weighted Average Price (VWAP)
 - attempt to attain per-share average price of executions
 - widely used on Wall Street; reduces risk sources to execution

RL for Optimized Execution

- Basic idea: execution as state-based stochastic optimal control
 - state: time and shares remaining... what else?
 - actions: position(s) of orders within the book
 - rewards: prices received for executions
 - stochastic: because same state may evolve differently in time
- This work: large-scale application of RL to microstructure
- Related work:
 - Bertsimas and Lo
 - Coggins, Blazejewski, Aitken

"No Impact" State Factorization

Experimental Details

- Stocks: AMZN, NVDA, QCOM (varying liquidities)
- V = 5K and 10K shares
 - divided into 1, 4 or 8 levels of observed discretization
- T = 2 and 8 mins
 - divided into 4 or 8 decision points
- Explored a variety of OB state features
- Learned optimal strategy on 1 year of INET training data
- Tested strategy on subsequent 6 months of test data
- Evaluation:
 - compare to optimized submit and leave strategies
 - best single limit order price at start of trading interval
 - simplest form of learning
 - performance criterion: implementation shortfall
 - basis points compared to all shares at initial spread midpoint
 - an unattainable ideal (infinite liquidity assumption)

Results

Private State Variables Only: Time and Inventory Remaining

Average Improvement Over Optimized Submit-and-Leave

T=4 I=1	27.16%	T=8 I=1	31.15%
T=4 I=4	30.99%	T=8 I=4	34.90%
T=4 I=8	31.59%	T=8 I=8	35.50%

Strategy Visualization (10K, 2min)

General shape is intuitive, but (stock-specific) numerical optimization matters!

Improvement From Order Book Features

Bid Volume	-0.06%	Ask Volume	-0.28%
Bid-Ask Volume Misbalance	0.13%	Bid-Ask Spread	7.97%
Price Level	0.26%	Immediate Market Order Cost	4.26%
Signed Transaction Volume	2.81%	Price Volatility	-0.55%
Spread Volatility	1.89%	Signed Incoming Volume	0.59%
Spread + Immediate Cost	8.69%	Spread+ImmCost+Signed Vol	12.85%

Strategy Visualization II

Q-Values: Trading Costs vs. Actions

predictive and actionable

predictive but not actionable

Future Work

• "Fancier" RL

- function approximation
- may permit richer feature set, but...
- RL for other stylized trading problems
 - market-making strategies
- Theory: low-impact RL?