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Background on Market Microstructure

Consider a typical exchange for some specific stock =T
Limit order: specify price (away from the market) f) MSFT psFT aol
. Symbal Search
(Non-executable) Orders are placed in the buy or sell book
— sorted by price; top prices are the bid and ask LASTMATCH  TODAY'S ACTIVITY
(Partially) Executable orders are filled immediately Te 1457007 voame 10240212
— prices determined by standing orders in the book
— one order may execute at multiple prices e e SR ONPERS
— the “mechanical” component of market impact U S L
. . . . 6,000 240610 H00 24 0630
Market order: limit order with an extreme price 5000 240600 500 24.0700
1ol 1 1 100 24 0600 200 24 0800
Full order books now visible in real time — =
What are they gOOd for? 100 240500 412 240900
5000 240500 3,000 240980
200 24 0500 500 24 1000
3294 240500 100 241200
1,000 240500 2800 241400
3.000 240430 5000 241400
100 240400 1,000 241400
5503 240400 5,000 241500
2100 240300 400 24.1600
2800 240300 1,000 241700
(412 more) (694 more)

Acof 14.57.18.178



Optimized Trade Execution

« Canonical execution problem: sell V shares in T time steps
— must place market order for any unexecuted shares at time T
— trade-off between price, time... and liquidity
— problem is ubiquitous

e Canonical goal: Volume Weighted Average Price (VWAP)

« attempt to attain per-share average price of executions
« widely used on Wall Street; reduces risk sources to execution



RL for Optimized Execution

e Basic idea: execution as state-based stochastic optimal control
— state: time and shares remaining... what else?
— actions: position(s) of orders within the book
— rewards: prices received for executions
— stochastic: because same state may evolve differently in time

« This work: large-scale application of RL to microstructure

 Related work:
— Bertsimas and Lo
— Coggins, Blazejewski, Aitken
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“No Impact” State Factorization
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OB execution simulation = reward (share prices)
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1 1 1 Massive saving
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l l l computation...
Will it work?
a(T) a(T-1) a(T-2) Action: limit price for
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Experimental Details

Stocks: AMZN, NVDA, QCOM (varying liquidities)
V = 5K and 10K shares
— divided into 1, 4 or 8 levels of observed discretization
T =2 and 8 mins
— divided into 4 or 8 decision points
Explored a variety of OB state features
Learned optimal strategy on 1 year of INET training data
Tested strategy on subsequent 6 months of test data
Evaluation: .

— compare to optimized submit and leave strategies
* best single limit order price at start of trading interval
» simplest form of learning

— performance criterion: implementation shortfall
* basis points compared to all shares at initial spread midpoint |
* an unattainable ideal (infinite liquidity assumption)
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Trading Cost vs. Limit Price
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Results



Private State Variables Only: Time and Inventory Remaining
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Average Improvement Over Optimized Submit-and-Leave

T=41=1 |27.16% |T=81=1 31.15%
T=41=4 |30.99% |T=81=4 34.90%
T=41=8 |31.59% |T=81=8 35.50%




Strategy Visualization (10K, 2min)
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General shape is intuitive, but (stock-specific) numerical optimization matters!



Improvement From Order Book Features

Bid Volume -0.06% | Ask Volume -0.28%
Bid-Ask Volume Misbalance 0.13% | Bid-Ask Spread 7.97%
Price Level 0.26% | Immediate Market Order Cost 4.26%
Signed Transaction Volume 2.81% | Price Volatility -0.55%
Spread Volatility 1.89% | Signed Incoming Volume 0.59%
Spread + Immediate Cost 8.69% | Spread+ImmCost+Signed Vol | 12.85%




Optimal Action

Strategy Visualization Il
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Q-Values: Trading Costs vs. Actions

Bid-Ask Volume Misbalance

Bid-Ask Spread
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Future Work

e “Fancier’ RL
— function approximation
— may permit richer feature set, but...

 RL for other stylized trading problems
— market-making strategies

e Theory: low-impact RL?
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