
A Sparse Sampling Algorithm for Near-Optimal

Planning in Large Markov Decision Processes

Michael Kearns�

Syntek Capital

mkearns@cis.upenn.edu

Yishay Mansour

Tel Aviv University

mansour@math.tau.ac.il

Andrew Y. Ng

UC Berkeley

ang@cs.berkeley.edu

October 3, 2001

Abstract

A critical issue for the application of Markov decision processes (MDPs)
to realistic problems is how the complexity of planning scales with the size
of the MDP. In stochastic environments with very large or in�nite state
spaces, traditional planning and reinforcement learning algorithms may
be inapplicable, since their running time typically grows linearly with the
state space size in the worst case. In this paper we present a new algo-
rithm that, given only a generative model (a natural and common type of
simulator) for an arbitrary MDP, performs on-line, near-optimal planning
with a per-state running time that has no dependence on the number
of states. The running time is exponential in the horizon time (which
depends only on the discount factor
 and the desired degree of approx-
imation to the optimal policy). Our algorithm thus provides a di�erent
complexity trade-o� than classical algorithms such as value iteration |
rather than scaling linearly in both horizon time and state space size, our
running time trades an exponential dependence on the former in exchange
for no dependence on the latter.

Our algorithm is based on the idea of sparse sampling . We prove
that a randomly sampled look-ahead tree that covers only a vanishing
fraction of the full look-ahead tree nevertheless suÆces to compute near-
optimal actions from any state of an MDP. Practical implementations of
the algorithm are discussed, and we draw ties to our related recent results
on �nding a near-best strategy from a given class of strategies in very
large partially observable MDPs [KMN00].

1 Introduction

In the past decade, Markov decision processes (MDPs) and reinforcement learn-
ing have become a standard framework for planning and learning under uncer-

�This research was conducted while the author was at AT&T Labs.

1

tainty within the arti�cial intelligence literature. The desire to attack prob-
lems of increasing complexity with this formalism has recently led researchers
to focus particular attention on the case of (exponentially or even in�nitely)
large state spaces. A number of interesting algorithmic and representational
suggestions have been made for coping with such large MDPs. Function ap-
proximation [SB98] is a well-studied approach to learning value functions in
large state spaces, and many authors have recently begun to study the prop-
erties of large MDPs that enjoy compact representations, such as MDPs in
which the state transition probabilities factor into a small number of compo-
nents [BDG95, MHK+98, KP99].

In this paper, we are interested in the problem of computing a near-optimal
policy in a large or in�nite MDP that is given | that is, we are interested in
planning . It should be clear that as we consider very large MDPs, the classi-
cal planning assumption that the MDP is given explicitly by tables of rewards
and transition probabilities becomes infeasible. One approach to this repre-
sentational diÆculty is to assume that the MDP has some special structure
that permits compact representation (such as the factored transition probabili-
ties mentioned above), and to design special-purpose planning algorithms that
exploit this structure.

Here we take a slightly di�erent approach. We consider a setting in which
our planning algorithm is given access to a generative model , or simulator, of
the MDP. Informally, this is a \black box" to which we can give any state-
action pair (s; a), and receive in return a randomly sampled next state and
reward from the distributions associated with (s; a). Generative models have
been used in conjunction with some function approximation schemes [SB98],
and are a natural way in which a large MDP might be speci�ed. Moreover,
they are more general than most structured representations, in the sense that
many structured representations (such as factored models [BDG95, MHK+98,
KP99]) usually provide an eÆcient way of implementing a generative model.
Note also that generative models also provide less information than explicit
tables of probabilities, but more information than a single continuous trajectory
of experience generated according to some exploration policy, and so we view
results obtained via generative models as blurring the distinction between what
is typically called \planning" and \learning" in MDPs.

Our main result is a new algorithm that accesses the given generative model
to perform near-optimal planning in an on-line fashion. By \on-line," we mean
that, similar to real-time search methods [Kor90, BBS95, KS98], our algorithm's
computation at any time is focused on computing an actions for a single \cur-
rent state," and planning is interleaved with taking actions. More precisely,
given any state s, the algorithm uses the generative model to draw samples for
many state-action pairs, and uses these samples to compute a near-optimal ac-
tion from s, which is then executed. The amount of time required to compute a
near-optimal action from any particular state s has no dependence on the num-
ber of states in the MDP, even though the next-state distributions from s may

2

be very di�use (that is, have large support). The key to our analysis is in show-
ing that appropriate sparse sampling suÆces to construct enough information
about the environment near s to compute a near-optimal action. The analysis
relies on a combination of Bellman equation calculations, which are standard
in reinforcement learning, and uniform convergence arguments, which are stan-
dard in supervised learning; this combination of techniques was �rst applied
in [KS99]. As mentioned, the running time required at each state does have an
exponential dependence on the horizon time, which we show to be unavoidable
without further assumptions. However, our results leave open the possiblity of
an algorithm that runs in time polynomial in the accuracy parameter, which
remains an important open problem.

Note that one can view our planning algorithm as simply implementing
a (stochastic) policy | a policy that happens to use a generative model as
a subroutine. In this sense, if we view the generative model as providing a
\compact" representation of the MDP, our algorithm provides a correspond-
ingly \compact" representation of a near-optimal policy. We view our result as
complementary to work that proposes and exploits particular compact represen-
tations of MDPs [MHK+98], with both lines of work beginning to demonstrate
the potential feasibility of planning and learning in very large environments.

The remainder of this paper is structured as follows: In Section 2, we give
the formal de�nitions needed in this paper. Section 3 then gives our main result,
an algorithm for planning in large or in�nite MDPs, whose per-state running
time does not depend on the size of the state space. Finally, Section 4 describes
related results and open problems.

2 Preliminaries

We begin with the de�nition of a Markov decision process on a set of N = jSj
states, explicitly allowing the possibility of the number of states being (count-
ably or uncountably) in�nite.

De�nition 1 A Markov decision process M on a set of states S and with
actions fa1; : : : ; akg consists of:

� Transition Probabilities: For each state-action pair (s; a), a next-state
distribution Psa(s

0) that speci�es the probability of transition to each state
s0 upon execution of action a from state s.1

� Reward Distributions: For each state-action pair (s; a), a distribution
Rsa on real-valued rewards for executing action a from state s. We as-
sume rewards are bounded in absolute value by Rmax.

1Henceforth, everything that needs to be measurable is assumed to be measurable.

3

For simplicity, we shall assume in this paper that all rewards are in fact
deterministic | that is, the reward distributions have zero variance, and thus
the reward received for executing a from s is always exactly Rsa. However,
all of our results have easy generalizations for the case of stochastic rewards,
with an appropriate and necessary dependence on the variance of the reward
distributions.

Throughout the paper, we will primarily be interested in MDPs with a very
large (or even in�nite) number of states, thus precluding approaches that com-
pute directly on the full next-state distributions. Instead, we will assume that
our planning algorithms are given M in the form of the ability to sample the
behavior of M . Thus, the model given is simulative rather than explicit. We
call this ability to sample the behavior of M a generative model .

De�nition 2 A generative model for a Markov decision process M is a ran-
domized algorithm that, on input of a state-action pair (s; a), outputs Rsa and
a state s0, where s0 is randomly drawn according to the transition probabilities
Psa(�).

We think of a generative model as falling somewhere in between being given
explicit next-state distributions, and being given only \irreversible" experience
in the MDP (in which the agent follows a single, continuous trajectory, with no
ability to reset to any desired state). On the one hand, a generative model may
often be available when explicit next-state distributions are not; on the other,
a generative model obviates the important issue of exploration that arises in
a setting where we only have irreversible experience. In this sense, planning
results using generative models blur the distinction between what is typically
called \planning" and what is typically called \learning".

Following standard terminology, we de�ne a (stochastic) policy to be any
mapping � : S 7! fa1; : : : ; akg. Thus �(s) may be a random variable, but
depends only on the current state s. We will be primarily concerned with
discounted MDPs,2 so we assume we are given a number 0 �
 < 1 called the
discount factor, with which we then de�ne the value function V � for any
policy �:

V �(s) = E

"
1X
i=1

i�1ri

����� s; �
#

(1)

where ri is the reward received on the ith step of executing the policy � from
state s, and the expectation is over the transition probabilities and any random-
ization in �. Note that for any s and any �, jV �(s)j � Vmax , where we de�ne
Vmax = Rmax=(1�
).

We also de�ne the Q-function for a given policy � as

Q�(s; a) = Rsa +
Es0�Psa(�) [V
�(s0)] (2)

2However, our results can be generalized to the undiscounted �nite-horizon case for any
�xed horizon H [MS99a].

4

(where the notation s0 � Psa(�) means that s
0 is drawn according to the dis-

tribution Psa(�)). We will later describe an algorithm A that takes as input
any state s and (stochastically) outputs an action a, and which therefore im-
plements a policy. When we have such an algorithm, we will also write V A and
QA to denote the value function and Q-function of the policy implemented by
A. Finally, we de�ne the optimal value function and the optimal Q-function as
V �(s) = sup� V

�(s) and Q�(s; a) = sup�Q
�(s; a), and the optimal policy ��,

��(s) = argmaxaQ
�(s; a) for all s 2 S.

3 Planning in Large or In�nite MDPs

Usually, one considers the planning problem in MDPs to be that of computing
a good policy, given as input the transition probabilities Psa(�) and the rewards
Rsa (for instance, by solving the MDP for the optimal policy). Thus, the input
is a complete and exact model, and the output is a total mapping from states to
actions. Without additional assumptions about the structure of the MDP, such
an approach is clearly infeasible in very large state spaces, where even reading
all of the input can take N2 time, and even specifying a general policy requires
space on the order of N . In such MDPs, a more fruitful way of thinking about
planning might be an on-line view, in which we examine the per-state complexity
of planning. Thus, the input to a planning algorithm would be a single state,
and the output would be which single action to take from that state. In this
on-line view, a planning algorithm is itself simply a policy (but one that may
need to perform some nontrivial computation at each state).

Our main result is the description and analysis of an algorithm A that, given
access to a generative model for an arbitrary MDP M , takes any state of M as
input and produces an action as output, and meets the following performance
criteria:

� The policy implemented by A is near-optimal in M ;

� The running time of A (that is, the time required to compute an action
at any state) has no dependence on the number of states of M .

This result is obtained under the assumption that there is an O(1) time
and space way to refer to the states, a standard assumption known as the
uniform cost model [AHU74], that is typically adopted to allow analysis of
algorithms that operate on real numbers (such as we require to allow in�nite
state spaces). The uniform cost model essentially posits the availability of
in�nite-precision registers (and constant-size circuitry for performing the basic
arithmetic operations on these registers). If one is unhappy with this model,
then algorithm A will su�er a dependence on the number of states only equal
to the space required to name the states (at worst log(N) for N states).

5

3.1 A Sparse Sampling Planner

Here is our main result:

Theorem 1 There is a randomized algorithm A that, given access to a gener-
ative model for any k-action MDP M , takes as input any state s 2 S and any
value " > 0, outputs an action, and satis�es the following two conditions:

� (EÆciency) The running time of A is O((kC)H), where

H =
�
log
(�=Vmax)

�
;

C =
Vmax

2

�2

�
2H log

kHVmax
2

�2
+ log

Rmax

�

�
;

� = (�(1�
)2)=4; Vmax = Rmax=(1�
):

In particular, the running time depends only on Rmax,
, and ", and does
not depend on N = jSj. If we view Rmax as a constant, the running time
bound can also be written

�
k

"(1�
)

�O� 1
1�

log
�

1
"(1�
)

��
: (3)

� (Near-Optimality) The value function of the stochastic policy implemented
by A satis�es

jV A(s)� V �(s)j � " (4)

simultaneously for all states s 2 S.

As we have already suggested, it will be helpful to think of algorithm A in
two di�erent ways. On the one hand, A is an algorithm that takes a state as
input and has access to a generative model, and as such we shall be interested
in its resource complexity | its running time, and the number of calls it needs
to make to the generative model (both per state input). On the other hand, A
produces an action as output in response to each state given as input, and thus
implements a (possibly stochastic) policy.

The proof of Theorem 1 is given in Appendix A, and detailed pseudo-code
for the algorithm is provided in Figure 1. We now give some high-level intuition
for the algorithm and its analysis.

Given as input a state s, the algorithm must use the generative model to �nd
a near-optimal action to perform from state s. The basic idea of the algorithm
is to sample the generative model from states in the \neighborhood" of s. This
allows us to construct a small \sub-MDP"M 0 ofM such that the optimal action
in M 0 from s is a near-optimal action from s in M .3 There will be no guarantee

3M 0 will not literally be a sub-MDP of M , in the sense of being strictly embedded in M ,
due to the variations of random sampling. But it will be very \near" such an embedded MDP.

6

Function: EstimateQ(h; C;
;G; s)
Input: depth h, width C, discount
, generative model G, state s.
Output: A list (Q̂�

h(s; a1); Q̂
�
h(s; a2); : : : ; Q̂

�
h(s; ak)), of estimates of the Q�(s; ai).

1. If h = 0, return (0; : : : ; 0).

2. For each a 2 A, use G to generate C samples from the next-state distribution Psa(�). Let
Sa be a set containing these C next-states.

3. For each a 2 A and let our estimate of Q�(s; a) be

Q̂
�
h(s; a) = R(s; a) +

1

C

X
s02Sa

EstimateV(h� 1; C;
;G; s0): (5)

4. Return (Q̂�
h(s; a1); Q̂

�
h(s; a2); : : : ; Q̂

�
h(s; ak)).

Function: EstimateV(h;C;
;G; s)
Input: depth h, width C, discount
, generative model G, state s.
Output: A number V̂ �

h (s) that is an estimate of V �
h (s).

1. Let (Q̂�
h(s; a1); Q̂

�
h(s; a2); : : : ; Q̂

�
h(s; ak)) := EstimateQ(h;C;
;G; s).

2. Return maxa2fa1;:::;akgfQ̂
�
h(s; a)g.

Function: Algorithm A(�;
; Rmax ; G; s0)
Input: tolerance �, discount
, max reward Rmax , generative model G, state s0.
Output: An action a.

1. Let the required horizon H and width C parameters be calculated as given as functions of
�,
 and Rmax in Theorem1.

2. Let (Q̂�
H(s; a1); Q̂

�
H(s; a2); : : : ; Q̂

�
H(s; ak)) := EstimateQ(H;C;
;G; s0).

3. Return argmaxa2fa1;:::;akgfQ̂
�
H(s; a)g.

Figure 1: Algorithm A for planning in large or in�nite state spaces. EstimateV �nds the V̂ �
h

described in the text, and EstimateQ �nds analogously de�ned Q̂�
h
. AlgorithmA implements

the policy.

that M 0 will contain enough information to compute a good action from any
state other than s. However, in exchange for this limited applicability, the MDP
M 0 will have a number of states that does not depend on the number of states
in M .

The graphical structure of M 0 will be given by a directed tree in which each
node is labeled by a state, and each directed edge to a child is labeled by an
action and a reward. For the sake of simplicity, let us consider only the two-
action case here, with actions a1 and a2. Each node will have C children in
which the edge to the child is labeled a1, and C children in which the edge to
the child is labeled a2.

7

The root node ofM 0 is labeled by the state of interest s, and we generate the
2C children of s in the obvious way: we call the generative model C times on
the state-action pair (s; a1) to get the a1-children, and on C times on (s; a2) to
get the a2-children. The edges to these children are also labeled by the rewards
returned by the generative model, and the child nodes themselves are labeled
by the states returned. We will build this (2C)-ary tree to some depth to be
determined. Note that M 0 is essentially a sparse look-ahead tree.

We can also think ofM 0 as an MDP in which the start state is s, and in which
taking an action from a node in the tree causes a transition to a (uniformly)
random child of that node with the corresponding action label; the childless
leaf nodes are considered absorbing states. Under this interpretation, we can
compute the optimal action to take from the root s in M 0. Figure 2 shows a
conceptual picture of this tree for a run of the algorithm from an input state
s0, for C = 3. (C will typically be much larger.) From the root s0, we try
action a1 three times and action a2 three times. From each of the resulting
states, we also try each action C times, and so on down to depth H in the
tree. Zero values assigned to the leaves then correspond to our estimates of V̂ �

0 ,
which are \backed-up" to �nd estimates of V̂ �

1 for their parents, which are in
turn backed-up to their parents, and so on, up to the root to �nd an estimate
of V̂ �

H(s0).
The central claim we establish about M 0 is that its size can be independent

of the number of states inM , yet still result in our choosing near-optimal actions
at the root. We do this by establishing bounds on the required depth H of the
tree and the required degree C.

Recall that the optimal policy at s is given by ��(s) = argmaxaQ
�(s; a),

and therefore is completely determined by, and easily calculated from, Q�(s; �).
Estimating the Q-values is a common way of planning in MDPs. >From the
standard duality betweenQ-functions and value functions, the task of estimating
Q-functions is very similar to that of estimating value functions. So while the
algorithm uses the Q-function, we will, purely for expository purposes, actually
describe here how we estimate V �(s).

There are two parts to the approximation we use. First, rather than esti-
mating V �, we will actually estimate, for a value of H to be speci�ed later, the
H-step expected discounted reward V �

H (s), given by

V �
h (s) = E

"
hX
i=1

i�1ri

����� s; ��
#

(6)

where ri is the reward received on the ith time step upon executing the optimal
policy �� from s. Moreover, we see that the V �

h (s), for h � 1, are recursively
given by

V �
h (s) = Rsa� +
Es0�Psa� (�)[V

�
h�1(s

0)]

� max
a
fRsa +
Es0�Psa(�)[V

�
h�1(s

0)]g (7)

8

where a� is the action taken by the optimal policy from state s, and V �
0 (s) = 0.

The quality of the approximation in Equation (7) becomes better for larger
values of h, and is controllably tight for the largest value h = H we eventu-
ally choose. One of the main e�orts in the proof is establishing that the error
incurred by the recursive application of this approximation can be made con-
trollably small by choosing H suÆciently large.

Thus, if we are able to obtain an estimate V̂ �
h�1(s

0) of V �
h�1(s

0) for any s0, we

can inductively de�ne an algorithm for �nding an estimate V̂ �
h (s) of V

�
h (s) by

making use of Equation (7). Our algorithm will approximate the expectation in
Equation (7) by a sample of C random next states from the generative model,
where C is a parameter to be determined (and which, for reasons that will
become clear later, we call the \width"). Recursively, given a way of �nding the
estimator V̂ �

h�1(s
0) for any s0, we �nd our estimate V̂ �

h (s) of V
�
h (s) as follows:

1. For each action a, use the generative model to get Rsa and to sample a
set Sa of C independently sampled states from the next-state distribution
Psa(�).

2. Use our procedure for �nding V̂ �
h�1 to estimate V̂ �

h�1(s
0) for each state s0

in any of the sets Sa.

3. Following Equation (7), our estimate of V �
h (s) is then given by

V̂ �
h (s) = max

a

(
Rsa +

1

C

X
s02Sa

V̂ �
h�1(s

0)

)
: (8)

To complete the description of the algorithm, all that remains is to choose the
depth H and the parameter C, which controls the width of the tree. Bounding
the required depth H is the easy and standard part. It is not hard to see that if
we choose depth H = log
 �(1�
)=Rmax (the so-called �-horizon time), then the
discounted sum of the rewards that is obtained by considering rewards beyond
this horizon is bounded by �.

The central claim we establish about C is that it can be chosen independent
of the number of states in M , yet still result in choosing near-optimal actions
at the root. The key to the argument is that even though small samples may
give very poor approximations to the next-state distribution at each state in
the tree, they will, nevertheless, give good estimates of the expectation terms
of Equation (7), and that is really all we need. For this we apply a careful
combination of uniform convergence methods and inductive arguments on the
tree depth. Again, the technical details of the proof are in Appendix A.

In general, the resulting tree may represent only a vanishing fraction of
all of the H-step paths starting from s0 that have non-zero probability in the
MDP | that is, the sparse look-ahead tree covers only a vanishing part of the

9

 a2a1 a2a1 a2a1 a1 a2

a1 a2

a1 a1 a2a2

a1 a2

 H
Depth

... ...

...

 s0

Figure 2: Sparse look-ahead tree of states constructed by the algorithm. (Shown with C = 3,
actions a1, a2.)

full look-ahead tree. In this sense, our algorithm is clearly related to and in-
spired by classical look-ahead search techniques [RN95] including various real-
time search algorithms [Kor90, BBS95, BLG97, KS98] and receding horizon
controllers. Most of these classical search algorithms, however, run into diÆ-
culties in very large or in�nite MDPs with di�use transitions, since their search
trees can have arbitrarily large (or even in�nite) branching factors. Our main
contribution is showing that in large stochastic environments, clever random
sampling suÆces to reconstruct nearly all of the information available in the
(exponentially or in�nitely) large full look-ahead tree. Note that in the case
of deterministic environments, where from each state-action pair we can reach
only a single next state, the sparse and full trees coincide (assuming a memoiza-
tion trick described below), and our algorithm reduces to classical deterministic
look-ahead search.

3.2 Practical Issues and Lower Bounds

Even though the running time of algorithm A does not depend on the size of
the MDP, it still runs in time exponential in the �-horizon time H , and therefore
exponential in 1=(1�
). It would seem that the algorithm would be practical
only if
 is not too close to 1. In a moment, we will give a lower bound showing

10

it is not possible to do much better without further assumptions on the MDP.
Nevertheless, there are a couple of simple tricks that may help to reduce the
running time in certain cases, and we describe these tricks �rst.

The �rst idea is to allow di�erent amounts of sampling at each level of the
tree. The intuition is that the further we are from the root, the less in
uence
our estimates will have on the Q-values at the root (due to the discounting).
Thus, we can sample more sparsely at deeper levels of the tree without having
too adverse an impact on our approximation.

We have analyzed various schemes for letting the amount of sampling at a
node depend on its depth. None of the methods we investigated result in a
running time which is polynomial in 1=�. However, one speci�c scheme that
reduces the running time signi�cantly is to let the number of samples per action
at depth i be Ci =
2iC, where the parameter C now controls the amount of
sampling done at the root. The error in the Q-values using such a scheme does
not increase by much, and the running time is the square root of our original
running time. Beyond this and analogous to how classical search trees can often
be pruned in ways that signi�cantly reduce running time, a number of stan-
dard tree pruning methods may also be applied to our algorithm's trees [RN95]
(see also [DB94]), and we anticipate that this may signi�cantly speed up the
algorithm in practice.

Another way in which signi�cant savings might be achieved is through the
use of memoization in our subroutines for calculating the V̂ �

h (s)'s. In Figure 2,
this means that whenever there are two nodes at the same level of the tree that
correspond to the same state, we collapse them into one node (keeping just one
of their subtrees). While it is straightforward to show the correctness of such
memoization procedures for deterministic procedures, one must be careful when
addressing randomized procedures. We can show that the important properties
of our algorithm are maintained under this optimization. Indeed, this optimiza-
tion is particularly nice when the domain is actually deterministic: if each action
deterministically causes a transition to a �xed next-state, then the tree would
grow only as kH (where k is the number of actions). If the domain is \nearly
deterministic," then we have behavior somewhere in between. Similarly, if there
are only some N0 � jSj states reachable from s0, then the tree would also never
grow wider than N0, giving it a size of O(N0H).

In implementing the algorithm, one may wish not to specify a targeted ac-
curacy � in advance, but rather to try to do as well as is possible with the
computational resources available. In this case, an \iterative-deepening" ap-
proach may be taken. This would entail simultaneously increasing C and H by
decreasing the target �. Also, as studied in Davies, Ng and Moore [DNM98], if
we have access to an initial estimate of the value function, we can replace our
estimates V̂ �

0 (s) = 0 at the leaves with the estimated value function at those
states. Though we shall not do so here, it is again easy to make formal per-
formance guarantees depending on C, H and the supremum error of the value
function estimate we are using.

11

Unfortunately, despite these tricks, it is not diÆcult to prove a lower bound
that shows that any planning algorithm with access only to a generative model,
and which implements a policy that is �-close to optimal in a general MDP, must
have running time at least exponential in the �-horizon time. We now describe
this lower bound.

Theorem 2 Let A be any algorithm that is given access only to a generative
model for an MDP M , and inputs s (a state in M) and �. Let the stochastic
policy implemented by A satisfy

jV A(s)� V �(s)j � � (9)

simultaneously for all states s 2 S. Then there exists an MDP M on which A
makes at least
(2H) =
((1=�)(1= log(1=
))) calls to the generative model.

Proof: Let H = log
 � = log(1=�)= log(1=
). Consider a binary tree T of
depth H . We use T to de�ne an MDP in the following way. The states of the
MDP are the nodes of the tree. The actions of the MDP are f0; 1g. When
we are in state s and perform an action b we reach (deterministically) state sb,
where sb is the b-child of s in T . If s is a leaf of T then we move to an absorbing
state. We choose a random leaf v in the tree. The reward function for v and
any action is Rmax , and the reward at any other state and action is zero.

Algorithm A is given s0, the root of T . For algorithm A to compute a near
optimal policy, it has to \�nd" the node v, and therefore has to perform at least

(2H) calls to the generative model. 2

4 Summary and Related Work

We have described an algorithm for near-optimal planning from a generative
model, that has a per-state running time that does not depend on the size of the
state space, but which is still exponential in the �-horizon time. An important
open problem is to close the gap between our lower and upper bound. Our lower
bound shows that the number of steps has to grow polynomially in 1=� while
in the upper bound the number of steps grows sub-exponentially in 1=�, more
precisely (1=�)O(log(1=�)). Closing this gap, either by giving an algorithm that
would be polynomial in 1=� or by proving a better lower bound, is an interesting
open problem.

Two interesting directions for improvement are to allow partially observable
MDPs (POMDPs), and to �nd more eÆcient algorithms that do not have ex-
ponential dependence on the horizon time. As a �rst step towards both of these
goals, in a separate paper [KMN00] we investigate a framework in which the goal
is to use a generative model to �nd a near-best strategy within a restricted class
of strategies for a POMDP. Typical examples of such restricted strategy classes
include limited-memory strategies in POMDPs, or policies in large MDPs that

12

implement a linear mapping from state vectors to actions. Our main result in
this framework says that as long as the restricted class of strategies is not too
\complex" (where this is formalized using appropriate generalizations of stan-
dard notions like VC dimension from supervised learning), then it is possible
to �nd a near-best strategy from within the class, in time that again has no
dependence on the size of the state space. If the restricted class of strategies is
smoothly parameterized, then this further leads to a number of fast, practical
algorithms for doing gradient descent to �nd the near-best strategy within the
class, where the running time of each gradient descent step now has only linear
rather than exponential dependence on the horizon time.

Another approach to planning in POMDPs that is based on the algorithm
presented here is investigated by McAllester and Singh [MS99b], who show how
the approximate belief-state tracking methods of Boyen and Koller [BK98] can
be combined with our algorithm.

Acknowledgements

We give warm thanks to Satinder Singh for many enlightening discussions and
numerous insights on the ideas presented here.

References

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[BBS95] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learn-
ing to act using Real-Time Dynamic Programming. Arti�cial Intel-
ligence, 72:81{138, 1995.

[BDG95] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Ex-
ploiting structure in policy construction. In Proceedings of the
Fourteenth International Joint Conference on Arti�cial Intelligence,
pages 1104{1111, 1995.

[BK98] X. Boyen and D. Koller. Tractable inference for complex stochastic
processes. In Proceedings of the 1998 Conference on Uncertainty in
Arti�cial Intelligence. Morgan Kau�mann, 1998.

[BLG97] Blai Bonet, G�obor Loerincs, and H�ector Ge�ner. A robust and
fast action selection mechanism for planning. In Proceedings of the
Fourteenth National Conference on Arti�al Intelligence, 1997.

[DB94] Richard Dearden and Craig Boutilier. Integrating planning and
execution in stochastic domains. In Proceedings of the Tenth Annual
Conference on Uncertainty in Arti�cial Intelligence, 1994.

13

[DNM98] Scott Davies, Andrew Y. Ng, and Andrew Moore. Applying online-
search to reinforcement learning. In Proceedings of AAAI-98, pages
753{760. AAAI Press, 1998.

[KMN00] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate
planning in large POMDPs via reusable trajectories. In Neural In-
formation Processing Systems 13, (to appear) 2000.

[Kor90] R. E. Korf. Real-time heuristic search. Arti�cial Intelligence,
42:189{211, 1990.

[KP99] Daphne Koller and Ronald Parr. Computing factored value func-
tions for policies in structured MDPs. In Proceedings of the Sixteenth
International Joint Conference on Arti�cial Intelligence, 1999.

[KS98] Sven Koenig and Reid Simmons. Solving robot navigation prob-
lems with initial pose uncertainty using real-time heuristic search.
In Proceedings of the Fourth International Conference on Arti�cial
Intelligence Planning Systems, 1998.

[KS99] Michael Kearns and Satinder Singh. Finite-sample convergence rates
for Q-learning and indirect algorithms. In Neural Information Pro-
cessing Systems 12. MIT Press, 1999.

[MHK+98] N. Meuleau, M. Hauskrecht, K-E. Kim, L. Peshkin, L.P. Kaelbling,
T. Dean, and C. Boutilier. Solving very large weakly coupled Markov
decision processes. In Proceedings of AAAI, pages 165{172, 1998.

[MS99a] D. McAllester and S. Singh. 1999. Personal Communication.

[MS99b] D. McAllester and S. Singh. Approximate planning for factored
POMDPs using belief state simpli�cation. 1999. Preprint.

[RN95] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern
Approach. Prentice-Hall, 1995.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning.
MIT Press, 1998.

[SY94] Satinder Singh and Richard Yee. An upper bound on the loss from
approximate optimal-value functions. Machine Learning, 16:227{
233, 1994.

Appendix A: Proof Sketch of Theorem 1

In this appendix, we give the proof of Theorem 1.

14

Theorem 1 There is a randomized algorithm A that, given access to a gener-
ative model for any k-action MDP M , takes as input any state s 2 S and any
value " > 0, outputs an action, and satis�es the following two conditions:

� (EÆciency) The running time of A is O((kC)H), where

H =
�
log
(�=Vmax)

�
;

C =
Vmax

2

�2

�
2H log

kHVmax
2

�2
+ log

Rmax

�

�
;

� = (�(1�
)2)=4;

Æ = �=Rmax;

Vmax = Rmax=(1�
):

In particular, the running time depends only on Rmax,
, and ", and does
not depend on N = jSj. If we view Rmax as a constant, the running time
bound can also be written�

k

"(1�
)

�O� 1
1�

log
�

1
"(1�
)

��
: (10)

� (Near-Optimality) The value function of the stochastic policy implemented
by A satis�es

jV A(s)� V �(s)j � " (11)

simultaneously for all states s 2 S.

Throughout the analysis we will rely on the pseudo-code provided for algorithm
A given in Figure 1.

The claim on the running time is immediate from the de�nition of algorithm
A. Each call to EstimateQ generates kC calls to EstimateV, C calls for each
action. Each recursive call also reduces the depth parameter h by one, so the
depth of the recursion is at most H . Therefore the running time is O((kC)H).

The main e�ort is in showing that the values of EstimateQ are indeed good
estimates of Q� for the chosen values of C and H . There are two sources of
inaccuracy in these estimates. The �rst is that we use only a �nite sample to
approximate an expectation | we draw only C states from the next-state dis-
tributions. The second source of inaccuracy is that in computing EstimateQ,
we are not actually using the values of V �(�) but rather values returned by Es-
timateV, which are themselves only estimates. The crucial step in the proof is
to show that as h increases, the overall inaccuracy decreases.

Let us �rst de�ne an intermediate random variable that will capture the
inaccuracy due to the limited sampling. De�ne U�(s; a) as follows:

U�(s; a) = Rsa +

1

C

CX
i=1

V �(si) (12)

15

where the si are drawn according to Psa(�). Note that U�(s; a) is averaging
values of V �(�), the unknown value function. Since U�(s; a) is used only for the
proof and not in the algorithm, there is no problem in de�ning it this way. The
next lemma shows that with high probability, the di�erence between U�(s; a)
and Q�(s; a) is at most �.

Lemma 3 For any state s and action a, with probability at least 1�e��
2C=Vmax

2

we have

jQ�(s; a)� U�(s; a)j =

�����Es�Psa(�)[V
�(s)]�

1

C

X
i

V �(si)

����� � �;

where the probability is taken over the draw of the si from Psa(�).

Proof:Note that Q�(s; a) = Rsa +
Es�Psa(�)[V
�(s)]. The proof is immediate

from the Cherno� bound. 2

Now that we have quanti�ed the error due to �nite sampling, we can bound
the error from our using values returned by EstimateV rather than V �(�). We
bound this error as the di�erence between U�(s; a) and EstimateV. In order to
make our notation simpler, let V n(s) be the value returned by EstimateV(n;C;
;G; s),
and let Qn(s; a) be the component in the output of EstimateQ(n;C;
;G; s)
that corresponds to action a. Using this notation, our algorithm computes

Qn(s; a) = Rsa +

1

C

CX
i=1

V n�1(si) (13)

where V n�1(s) = maxafQ
n�1(s; a)g, and Q0(s; a) = 0 for every state s and

action a.
We now de�ne a parameter �n that will eventually bound the di�erence

between Q�(s; a) and Qn(s; a). We de�ne �n recursively:

�n+1 =
(�+ �n) (14)

where �0 = Vmax . Solving for �H we obtain

�H =

HX
i=1

i�

!
+
HVmax �

�

1�

+
HVmax : (15)

The next lemma bounds the error in the estimation, at level n, by �n.
Intuitively, the error due to �nite sampling contributes �, while the errors in
estimation contribute �n. The combined error is � + �n, but since we are
discounting, the e�ective error is only
(�+ �n), which by de�nition is �n+1.

Lemma 4 With probability at least 1� (kC)ne��
2C=Vmax

2

we have that

jQ�(s; a)�Qn(s; a)j � �n: (16)

16

Proof:The proof is by induction on n. It clearly holds for n = 0. Now

jQ�(s; a)�Qn(s; a)j =

�����Es�Ps;a(�)[V
�(s)]�

1

C

X
i

V n�1(si)

�����
�

 �����Es�Ps;a(�)[V
�(s)]�

1

C

X
i

V �(si)

�����
+

����� 1C
X
i

V �(si)�
1

C

X
i

V n�1(si)

�����
!

�
(�+ �n) = �n+1

We require that all of the C child estimates be good, for each of the k actions.
This means that the probability of a bad estimate increases by a factor of kC,
for each n. By Lemma 3 the probability of a single bad estimate is bounded
by e��

2C=Vmax
2

. Therefore the probability of some bad estimate is bounded by
1� (kC)ne��

2C=Vmax
2

. 2

From �H �
HVmax+�=(1�
), we also see that forH = log
(�=Vmax), with

probability 1 � (kC)He��
2C=Vmax

2

all the �nal estimates QH(s0; a) are within
2�=(1 �
) from the true Q-values. The next step is to choose C such that

Æ = �=Rmax � (kC)He��
2C=Vmax

2

will bound the probability of a bad estimate
during the entire computation. Speci�cally,

C =
Vmax

2

�2

�
2H log

kHVmax
2

�2
+ log

1

Æ

�
(17)

is suÆcient to ensure that with probability 1� Æ all the estimates are accurate.
At this point we have shown that with high probability, algorithm A com-

putes a good estimate of Q�(s0; a) for all a, where s0 is the input state. To
complete the proof, we need to relate this to the expected value of a stochastic
policy. We give a fairly general result about MDPs, which does not depend on
our speci�c algorithm. (A similar result appears in [SY94].)

Lemma 5 Assume that � is a stochastic policy, so that �(s) is a random vari-
able. If for each state s, the probability that Q�(s; ��(s)) � Q�(s; �(s)) < �
is at least 1 � Æ, then the discounted in�nite horizon return of � is at most
(�+2ÆVmax)=(1�
) from the optimal return, i.e., for any state s V �(s)�V �(s) �
(�+ 2ÆVmax)=(1�
).

Proof: Since we assume that the rewards are bounded by Rmax , it implies
that the expected return of � at each state s is at least

E[Q�(s; �(s))] � (1� Æ)(Q�(s; ��(s))��)� ÆVmax � Q�(s; ��(s))���2ÆVmax :
(18)

17

Now we show that if � has the property that at each state s the di�erence
between E[Q�(s; �(s))] and Q�(s; ��(s)) is at most �, then V �(s) � V �(s) �
�=(1�
). (A similar result was proved by Singh and Yee [SY94], for the case
that each action chosen has Q�(s; ��(s)) �Q(s; �(s)) � �. It is easy to extend
their proof to handle the case here, and we sketch a proof only for completeness.)

The assumption on the Q� values immediately implies jE[R(s; ��(s))] �
E[R(s; �(s))]j � �. Consider a policy �j that executes � for the �rst j + 1
steps and then executes ��. We can show by induction on j that for every state
s, V �(s)� V �j (s) �

Pj
i=0 �

i. This implies that V �(s)� V �(s) �
P1

i=0 �

i =

�=(1�
).
By setting � = �+ 2ÆVmax the lemma follows. 2

Now we can combine all the lemmas to prove our main theorem.
Proof of Theorem 1: As discussed before, the running time is immediate from
the algorithm, and the main work is showing that we compute a near-optimal
policy. By Lemma 4 we have that the error in the estimation of Q� is at most
�H , with probability 1 � (kC)He��

2C=Vmax
2

. Using the values we chose for C
and H we have that with probability 1� Æ the error is at most 2�=(1�
). By
Lemma 5 this implies that such a policy � has the property that from every
state s,

V �(s)� V �(s) �
2�

(1�
)2
+
2ÆVmax
1�

: (19)

Substituting back the values of Æ = �=Rmax and � = �(1 �
)2=4 that we had
chosen, it follows that

V �(s)� V �(s) �
4�

(1�
)2
= �: (20)

2

18

