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Abstract

We examine a Markovian model for the price evolution of a stock, in
which the probability of local upward or downward movement is arbi-
trarily dependent on the current price itself (and perhaps some auxiliary
state information). Our main result is a “universally profitable” trading
strategy — a single fixed strategy whose profitability competes with the
optimal strategy, which knows all of the underlying parameters of the
infinite and possibly nonstationary Markov process.

1 Introduction

We examine a Markovian model for the price evolution of a stock, in which the probabil-
ity of local upward or downward movement is arbitrarily dependent on the current price
itself (and perhaps some auxiliary state information). Our main result is a “universally
profitable” trading strategy — a single fixed strategy whose profitability competes with the
optimal strategy, which knows all of the underlying parameters of the infinite and possibly
nonstationary Markov process. While we shall make this statement more precise shortly,
our strategy is provably profitable whenever the optimal strategy has significant profits.

The strategy itself is efficient and simple, and employs a “best expert” weighting scheme
(Cesa-Bianchiet al. [1997]) over two substrategies — one of which attempts to do rudimen-
tary learning from past observations (which may be extremely sparse), and one of which
tries to spot significant directional trends in price. Our main technical contribution is a
proof that in our model, one of these two strategies must always have a profit that compares
favorably with the optimal strategy.

There are several motivations for the model we introduce. The language of Wall Street
and finance is riddled with suggestions that the dynamics of price movement may depend
strongly on price itself. Professionals and articles discuss “support” and “resistance” levels
for a stock — specific prices or ranges of prices below or above which the market will
apparently not let the share price fall or rise, respectively. The field of technical analysis
is dominated by simple and complex price patterns whose appearance is thought to signal
future behavior. The common notion of price uptrends or downtrends is predicated on a
series of price levels in which the directional bias is nonzero.

There are also many less speculative reasons price dynamics may change dramatically with
price. For example, one might expect there to be support for the share price at the level
at which market capitalization (share price times number of outstanding shares, which is
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essentially the cost of buying the entire company) equals the liquid assets of the company.
Similarly, many investors become uncomfortable if the ratio of the share price to a com-
pany’s earnings (P/E ratio) becomes excessively large compared to its sector average. Note
that it in these cases, there may be many factors aside from price influencing trading behav-
ior (market cap, P/E) — but such factors do result in different price dynamics at different
prices.

From the perspective of related literature on trading algorithms, we are particularly in-
terested in price models that fall in between the highly adversarial assumptions typical
of competitive analysis and universal portfolio work in computer science (Cover and Or-
dentlich [1996], Blum and Kalai [1999], El-Yaniv et al. [2001], Helmbold et al. [1996]),
and the strong statistical assumptions typical of classical finance random walk and diffu-
sion models and their generalizations (reviewed in Section 3). Our model and result can be
thought of as exhibiting a “sweet spot” in the pantheon of price models, in the sense that
it contains an extremely rich range of statistical behaviors, yet still permits a universally
profitable trading strategy.

The outline of the paper follows. In Section 2, we provide the formal definition of our
model and the optimal trading strategy that knows the process parameters. In Section 3,
we briefly review some of the most common price evolution models in the finance and
computer science literatures and relate our model to these. Section 4 contains our main
result. In Section 5 we generalize our result to permit simple extensions of the state.

2 Model and Definitions

In the most basic version of our model, the probabilistic dynamics of directional price
movement depend only on the current price. More precisely, we assume that for every
11

integerp between—oo and+oo , there is eiasvaluee(p) € [—3, 5]. The interpretation

of this bias is as follows: if the price at timeis p;, then with probability% + €(pt) we
havep.y1 = p: + 1, and with probability% — ¢(py) we havep,y; = p; — 1. Note that

in this model, thelp,1 — p,| = 1 always; it will be clear that all of our results hold

with only slight degradation in a more general setting in whichy must only remain in a
bounded range aroung, including the possibility of no movement. In our model, prices
movements are additive, prices are always integer values, and negative prices are allowed
for convenience, as all that will matter are the profits made from price movements. (In the
long version of this paper discuss a generalization of our results to multiplicative returns,
wherep, represents the log price.) Without loss of generality, we always assume the initial
pricep, is 0.

The complete probabilistic dynamics of price movement at all possible prices is given by
the infinite vector of biaseqp) for all integersp, which we shall denote simply by A

model in our class is thus a countably infinite-state Markov process. (Noté taaf
corresponds to an unbiased random walk.) We emphasize from the outset that this Markov
process may be nonstationary and non-recurrent— an infinite walk may never return to its
origin, and may forever visit new prices.

In this paper, we will be concerned with trading algorithms that have no a priori infor-
mation aboug, yet can compete with the optimal algorithm that knows the full vector of
biases. In order to make such comparisons, it is necessary to somehow limit the amount
of risk the optimal algorithm can assume. For instance(ipj = 1/2 for some price p,

so upwards movement at prigeis a certainty, the “optimal” algorithm should purchase

an infinite number of shares. We shall thus limit our attention to trading strategies whose
share position (number of shares ownkah§) or owed €hord) at any time is at most 1.
Other restrictions are possible, but this one has especially natural properties.
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With this restriction, then, the optimal algorithiy,, = Aope (€) is straightforward. If the
current price i, ande(p;) > 0, then A,y buys one share; andd{p;) < 0 thenA,p;

sells (shorts) 1 share. ¢fp;) = 0, thenA,,;, takes no action. Whichever actioh,;, takes

at timet, at the next time step+ 1, A, reverses its action by selling the share bought
or buying the share sold at tiniteand then repeating the processpen;. Thus after each

time step,A4,,, either earns +1 (if it bought a share and the price rose, or it sold a share
and the price fell), or loses -1. Thus, we can vidw,; as an algorithm for 1-step binary
prediction of price movements on the probabilistic sequence of prices. Note that if the price
enters a long period of upwards price movement (for example)hatcorrectly predicts,

then A, will be repeatedly buying a share, selling it at the next step and immediately
buying another share, etc. This behavior is formally equivalent to buying a single share and
holding it for the same period.

For any given bias vectafand number of stepf, we will let g’ = (p1,ps,...,pr) be a
random variable that is a sequenceloprices generated according&o Without loss of
generality, we assum@ = 0. For any trading algorithm and price sequenggé we let

V (A, p) denote the total amount earned or lostdyn p divided byT' (so that earnings
are normalized to per-step averages) &iidL, €,7') = Ez [V (4, p)] is thus the expected
per-step earnings or losses 4foverT'-step sequencesdistributed according té. We
limit ourselves to only consider algorithmswhich limit their share position to at most
share, and so it is easy to see thdt4, €, T') is between-1 and1. We note thal’ (A, €, T")
can be highly dependent on the specific valug& pdince we are in an infinite-state Markov
process: larger values @ may cause us to visit new price levels whose dynamics are
entirely unlike those seen on smaller time scales.

With these definitions, it is easy to show thatA,p, €, T') is in fact the optimal expected
value among all trading algorithms whose position must be at most 1 share at all times,
which we shall thus also denote with the shorth&itde, 7). Note thatV*(€,T) € [0, 1]
always.

For any sequencg we define#(p) to denote the number efniqueprices appearing in

p. ThusE;p[#(p)] is the expected number of unique prices, &l [#(p)/T] is the
expected fraction of steps that are first visits to some price. This expectation will play a
crucial role in our analysis.

Before discussing related prior models in the following section, we quickly highlight some
of the more interesting aspects of the model we have introduced. First, note that setting all
e(p) = 0 yields a standard (additive) random walk, whiled}h) = « for some nonzero

« yields a random walk with drift. One can also program rich mixtures of uptrends, down-
trends, unbiased random walks, support and resistance levels, and other features in a single
instance of our model. Second, while our model does not allow the detailed specification
of time-dependent events (and indeed, our main result would not hold in models such as
a general Ito process, described in Section 3), one can program rich temporal behaviors
in expectation Third, none of the standard random variables of interest — such as the
price afterT steps, the maximum and minimum prices o¥esteps, or the profitability

of fixed trading strategies — are (necessarily) unimodal in distribution or sharply peaked
around their means. Fourth, as mentioned above, the infinite Markov process is not neces-
sarily either stationary or recurrent. Fifth, the optimal per-step profitaldilitye, ') may

be nonmonotonic id" — asT increases the profitability of the optimal algorithm may
increase, decrease, increase again,’etc.

LAll of the mentioned properties of the model can be seen in a simulated example available in a
long version of this paper at www.cis.upenn.edu/"mkearns/papers/pricemodel.pdf. This long version
also contains detailed proofs.



3 Related Models

There is a rich history of mathematical models for the evolution of price time series. Per-
haps the most basic and well-studied of these are variants of standard random walk or
diffusion processes, often referred to in the literatur®\Véener processesAmong others,

this category includes pure unbiased random walks of price and random walks with over-
all upward or downward drifts (for instance, to model the overall growth of the securities
markets historically). Perhaps the most general in this line of models Ifotipeocessin

which the instantaneous drift and variance may depend arbitrarily on both the current price
and the time. A good overview of all of these models can be found in Hull [1993].

Our model can be viewed being considerably more general than a Wiener process with
drift, but considerably less general than a general Ito process. In particular, it will be easy
to see that our results will not hold in such a model. Broadly speaking, if the price process
is allowed to depend arbitrarily on time, it is impossible to compete with the profitability
of an omniscient party who knows exactly the nature of this time dependence.

The popularity of the various random walk models stems in part from their consistency with
broader economic theory, most notably the Efficient Market Hypothesis (EMH), the thesis
that individual trader rationality should drive all (expected) profit and arbitrage opportuni-
ties out of the market for a stock (or at least all those opportunities beyond those implied
by consistent long-term growth, inflation, or drift). However, a long line of relatively re-
cent works have carefully questioned and refuted random walk models and their variants,
primarily on the basis of observed conflicts between historical price data and model pre-
dictions (Lo and MacKinlay [1999]). Some of these studies have suggested behavioral
explanations for the deviations between historical prices and the EMH, an explanation cer-
tainly in the spirit of our model, where the market may react differently to different prices
for psychological reasons.

The extensive field alechnical analysigMurphy [1999]), which suggests that certain price
(and other) patterns may presage market behavior, is also clearly at odds with the EMH, at
least in its strongest form. The long-term statistical profitability of certain technical indi-
cators has recently been argued based on historical data (Brock et al. [1992]). The implicit
assumptions of many technical strategies is that price dynamics are largely determined by
the current price and some simple auxiliary state information (such as whether the recent
price has shown an uptrend or downtrend, or the high and low prices over some recent time
window). While our basic model permits only the current price as the Markovian state, in
Section 5 we generalize our main result to hold for simple generalizations that incorporate
many common technical indicators.

As noted in the Introduction, our model is also considerably more specialized (in terms of
the allowed price behavior) than the worst-case price models often examined in computer
science and related fields (Cover and Ordentlich [1996], Blum and Kalai [1999], EI-Yaniv
et al. [2001], Helmbold et al. [1996]). Indeed, in such models, one could never prove that
anyfixed collection of strategies always contained one competing with the optimal strategy
that knew the price generation process. The precise point of our model and result is the
introduction of a more limited but still quite powerful statistical model for price evolution,
along with the proof that a fixed and simple strategy that mixes rudimentary learning and
trend-spotting must always be competitive.

4 Main Result

In this section, we develop our main result: a trading strategy that knows nothing about the
underlying model parametefsbut whose per-step profitability can be provably related to
V*(€,T). While the analysis is rather involved, the strategy itself and the intuition behind
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it are appealingly simple and are now sketched briefly.

The key to the analysis is the quantiy. p[#(p) /T, the expected fraction of first visits to
prices. The first insight is that if this expectation is “small”, then we make “enough” repeat
visits to prices to obtain a slight advantage in estimating the biases. For the final result to
work out, we must show that this intuition holds even when the average number of visits
per state is far too small (such as a constant) to apply concentration inequalities such as
the Chernoff bound. Essentially, while we may not have large enough samples to assert an
advantage in estimating the bias of grarticular price, we prove that an advantage exists

on averageacross the prices visited. In this case a rather rudimentary learning strategy
fares well.

The second insight is thatBz 1 [#(p)/T] is “large”, the price must be following a strong
trend that is driven by an overall directional bias, and cannot be easily revarsedom-
parable time scaléeven though it may be reversed on much longer time scales). In this
case a simple trend-following or momentum strategy is profitable.

The challenge in the analysis is to make these intuitions precise, and to prove that prof-
itability is possible for all values dE; [#(p)/T]. In Section 4.1 we provide the analysis

for the case of “small " values fdEz 1 [#(5) /T, and in Section 4.2 we consider the case

of large values. Section 4.3 stitches the pieces together to give our main result, which we
now state:

Theorem 1 (Main Result) Lety > 0, and letT" satisfyT”e=7"T'/100 < - /32 (which is
satisfied forT” = Q((1/7?)log(1/7))). Then for alleandT > T, as long as/* (€, T') >
2,/7, we have

V(Amasier(1),&T) > TV*(ET) = /21og(D)/T. (1)

Let us interpret this result briefly. If the profitability of the optimal algorithm is too small
(quantified as being belo&, /), we simply “give up” and are not competitive. The pa-
rametery thus provides a trade-off to the user4f,.s;... Smaller values of will cause
the lower bound oV (A aster, €, T') to take effect at smaller values & (€, T'), but the
competitive ratio (which is essentialy/4) degrades accordingly. Larger valuesyafause

us to not compete at all for a wider rangelof (€, T'), but give a better competitive ratio
whenV*(&, T') is sufficiently large.

Note also that Theorem 1 provides an “anytime” result, in that the stragegyier IS
competitivesimultaneouslyn all time scales, and does not requitas an input. This is
important in light of the fact that* (€, T') may be nonmonotonic iffi.

The remainder of this section is devoted to developingsi.. and proving Theorem 1.

4.1 A Statistical Strategy

We now define a simple trading algorithm that makes minimal use of past observations.
We shall denote this algorithm,;.;. If the current pricep, is being visited for the first

time (that is, timet is the earliest appearance of prigein the sequencg), Agi.; makes

no trade. In this case, aftgf; is revealed Ag.y Stores dirst-visit recordconsisting of

the pricep; along with an indication of whethet, went up or down fronp;.

If ¢ is notthe first time pricey; has been visited, thef; ., looks up the first-visit record for

p¢ and trades according to this record — that is, if after the first visit; tthe price went

up, Asias buys one share, otherwise it sells one share, respectively. To obey the 1-share
position limit, at timet + 1 Agat Sells off or buys back the position it accumulated and
repeats the process pp, ;.



Thus, A is the algorithm that makes perhaps the least possible use of statistical history,
simply predicting that what happened after the very first visit to a price will continue to
happen. Obviously, it would make more intuitive sense to collect statistied tme visits

to a given price, and trade based on these cumulative statistics. But it turns odfthat

must operate with sample sizes that are far too small to usefully apply large-deviation
bounds such as the Chernoff inequality. Hence, one can’t provide a general bound in which
our expected value is a linear fraction of the optimal value. Instead, we compete against
the square of the optimal value (which we conjecture is essentially the best possible). More
formally, we have:

Theorem 2 (Statistical Strategy) For any bias€and anyT’,
V(Astata E: T) Z V*(a T)2 - EE‘,T[#(@/T] (2)

Proof: Let us first write down an explicit expression for tliéstep optimal value
V*(€,T). At each time step, the optimal algorithm examines the bia®;) to decide
how to trade. Abusing notation slightly, let us denet® = ¢(p;) whent is a time value
and not a price value and thus there is no risk of confusion. The expected prdfifcdt

timet is then

<% + |e(t)|> (+1) + (% - |e(t)|> (—1) = 2|e(t)|- ®)

Now recall thatV*(€,T) = Egz 7 [V (Aopt,P)]. SinceV (Aqpt,p) is a sum ofl" 1-step
returns, by linearity of expectation we may write

T
Tz 3 PreCl0) @)

=1 pi|p|=t

where each inner sum over sequenges lengtht < T is the expected profit afi,,,; on
the step.

Let us now analyze the 1-step expected profit of algorithyn; at timet. If ¢ is the first
visit to the pricep; in the sequencg, then then the profit ofls.; is 0. Otherwise, the
profit depends on whether the first visitiiprevealed the correct or incorrect signegp: ).
More precisely, the expected return4f;.; on non-first visits tgy; may be written

(5 +1eC01) lett + 5~ 1e]) (=21 = 41 ©

The logic here is that with probablllt§'+ le(t)], the first visit top; reveals the correct sign
of the bias, in which case on all subsequent visitg,; will behave the same a4, and
receive2|e(t)| in expected profits; and with probabilify— |e(¢)|, the first visit top; reveals
the incorrect sign, in which case on all subsequent vidifs,. will receive—2|e(t)|. Thus
the expectation is taken oveoth the randomization on the current visit tp, and the
randomization on the first visit.

We would now like to apply this observation on the 1-step profitigf; to obtain an ex-
pression folV (Asas, €, 7'); the main challenge is in dealing with the dependencies intro-
duced by conditioning on the number of visits to each price level. The following inequality
can be shown (details omitted):

T
V(A 6T) > Z ZPretm@ue()n Bor[#0)/T]  (6)

1 p:[pl=

’ﬂ |
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Combining Equation (4) and Equation (6), we now have:

V(Astat:aT) - V*(a T)2 =
2

T T
4 2
T D> Predplle(t) - T Y > Predille®)] | — Eer[#(0)/T17)
t=1 p|p|=t t=1 p:|p|=t
It remains to show that the first two terms are positive.

Recall that eacla(t) = ¢(p;) is actually the bias at some price leygl Let us define for
each pricey

T
v =5 Y Prad (®)

t=1 p|pl=t,p(t)=q

It is easy to see that since the price must remain in the r&n@eT’] on sequences of
length at mosft’, the valuesv(—T'),...,w(T") sum to 1 and are all positive, and thus can
be interpreted as a distribution. The first two terms in Equation (7) may be rewritten as

T T 2
4| > waleol - (Z w(tz)lﬁ@)l) )

q=—T q=—T

This difference is non-negative as desired, by the convexity of the fungtion = 22
(interestingly, note that this difference has the form of the varianeég@fwith respect to
the distributionw(q)).

4.2 A Momentum Strategy

We now turn attention to a strategy that will succeed for large valuds:af[#(p)/T].
For any given values of andT', the momentum strateg¥,,,om (7, T') can be described as
follows:

1. Forallp € (—yT'/4,7T/4), take no action.
2. Forallp > vT'/4, purchase one share and sell it back at the next time step.
3. Forallp < —+T'/4, sell one share and purchase it back at the next time step.

Note this strategy uses knowledge of the tiliénowever, this dependency can be removed
(details omitted) to yield an algorithm that is competitive on all time scales simultaneously.

The following definitions will be necessary in our analysisdf,... For the remainder of
this subsectiony will denote a price sequence of lendgthfor some fixedl'. Let max(p)
(min(p), respectively) be the maximum (minimum, respectively) price reachedl aet
drop(p) be the absolute value of the difference betweetx(p) and thesmallestprice
reached oy after the first visit tomax(p). Thus,drop(p) measures the “fall” from the
high price. Similarly, we defineise(p) to be the absolute value of the difference between
min(p) and thelargestprice reached off after the first visit tomin(7).

Amom €njoys the following performance guarantee.

Theorem 3 (Momentum Strategy) Let> 0, and letT” be such thal”e~7"1"/48 < /16,
If T > T" and if eitherE; r[max(p) /T] > v or Ez ¢[|min(p)/T|] > ~ then

V(Aumom (1, T), &) 2 3 > JVHET) (10)
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Note that unlike the guarantee fdr;.;, Amnom Must be run for a time larger than some
threshold time. Essentially, this time is the time long enough to discover the trend. Also,
note that we always must have eitli&f - [max(p)] > Ez ¢ [#(P)]/2 or E¢ ¢[|min(p)|] >
Ez7[#()]/2.

At the heart of the proof of Theorem 3 is the following simple probabilistic lemma. The
lemma essentially states that if the price makes large moves on some time scale, then with
high probability it cannot return to its starting value on a comparable time scale.

Lemma 4 For any constant > 0, we have
1. Forall€, T andz > aT, Przr[max(p) = z and drop(p) > aT'/2] < e— @’ T/12,
2. Forallg, T andz < —aT', Prgp[min(p) = z and rise(p) > aT/2] < e=@°T/12,

Proof: (Sketch) We sketch only Part 1, as Part 2 is entirely symmetric. First let us suppose
that among the biase$0), ..., (z) there are more thasl'/4 which are negative. In this
case we show that the probabilitymfix(p) even reaching the priceis small. In order for

the price to reach, it clearly must “get through” these negative biases — in other words,
the price must have a net upwards movement of at l€Bgt even when restricted only

to those visits to prices with negative bias. If we modify all of these negative biases to be
equal to 0 (unbiased), we can clearly oitlgreasethe probability thatnax(p) reaches the
pricez.

We can thus boun®r:[max(p) = z] by the probability that irfll" independent flips
of a fair coin, we would see an excess of heads over tails of at t&36t. By the
standard Chernoff bound, the probability of seeing such an exceBsflips is at most
e~ (a°/2°T/3 — ¢=a’T/12_gjnce the probability ofnax(j5) even reaching has been thus
bounded, the lemma holds in this case.

Otherwise, we must have that at madt/4 of the biases(0), ..., e(z) are negative. In

this case we show th®r: r[drop(p) > aT'/2] is small. Since the price can drop by a
net amount of at mosi7'/4 when restricted only to visits to prices with negative biases, in
order to drop by a total of at leasf’/2, it must drop a further net amount of at leagt/4

when restricted only to visits to prices with positive biases. Using a similar argument, it is

straightforward to see that this probability being bounded /12, O
Lemma 4 is used to prove the following result (and a similar result holds in terms of
E; r[min(p)/T1).

Lemma5 Lety > 0, and letT” be such thafl"e=""7'/48 < ~/16. If T > T', then for
any biaseg’

V(Amom (7, T),€T) > Egp[max(p)/T] — /2 (11)
Proof: (Sketch) First, using a Markov inequality argument, one can show:
> Pregpmax(p) = 2)(z — yI/4) > Eer[max(p)] — vI/4. (12)
z>~T/4

Informally, this summation is the expected profit from the cases in which the maximum
price exceedsT' /4, conditioned on the subsequent drop being at m@3t.

Now one can use Lemma 4 to show that the valud gf... is close to the above. O

Theorem 3 follows from Lemma 5 under the assumption Bxaf[max(p)] > 7', and
noting thatV*(€,7") < 1.



4.3 Putting the Pieces Together

Theorems 2 and 3 establish that for any bia&asd anyl’, at least onef the two strategies

Agiar @and Ao Must have a expected profit that compares “favorably” with that of the
optimal algorithm that knows. We now wish to define aingle strategy accomplishing

this same criterion. Of course, one way of doing this is to have a strategy that simply flips a
fair coin at the outset of trading to decide witl;., and A, t0 use, at a cost of a factor

of 2 in our expected return in comparisontd (€, 7"). While this cost is insignificant in

light of the other constant factors we are already absorbing, we prefer to apply the so-called
“experts” methods of worst-case on-line analysis. When we generalize our results to permit
the biaseg to depend on an underlying state variable more complex than just the current
price, the experts methodology will be necessary.

In order to apply the experts framework, it is important to recall the observation made in
Section 2 that our trading model can really be viewed as an instance of on-line binary pre-
diction. We view trading strategies (antl;.;, Amom and the optimal trading algorithm

in particular) as making a series of trades or predictions, each of which wins or loses im-
mediately. We can thus immediately apply the on-line weighting scheme of Cesa-Bianchi
et al. [1997] to the strategied,;.; and Anom (in this case, an especially small set of
experts); let us call the resulting stratedy,.ster,» SinCe it can be viewed as a “master”
strategy allocating capital between the two subordinate strategies. Combining Theorem 16
of Cesa-Bianchi et al. [1997] with Theorems 2 and 3 allows one to show that

V(Amasters & 7) 2 min (V¥(ET)? =7, TV (ET)) - V2IogD/T  (13)

always holds. Notice that this lower bound may actually be near zero for small values of
V*(€,T). From this equation, Theorem 1 follows.

5 Extending the State

So far we have focused exclusively on a model in which the directional bias of the price
movement may depend arbitrarily on the current price itself. In this section we generalize
our results to a considerably richer class of models, in which the directional biagp, s)

may depend on both prigeand someobservableauxiliary informations. For example,

one might posit that a more realistic model for price dynamics is that the directional bias
depends not only on the current price, but also on whether the current price was arrived
at from below or above. We can model this letting the probability that = p; + 1 be

3 +€(pe, 5¢), wheree(py, s¢) € [—3, 5] ands; € {0,1} equals 1ifp; = p; 1 + 1 (uptrend)

and O ifp; = p;—1 —1 (downtrend). We again have an infinite Markov process, but with the
Markovian state now being the paifs s) rather than jusp alone. We will continue to use

the notatiore’to denote the infinite set of biase®, s) for all integer pricep and auxiliary
informations. Note that the following discussion assumes that the auxiliary information

is observable, but it does not necessarily need to be a function of the price time series.

We now outline why the results of Section 4 continue to hold with some additional ma-
chinery, after which we will provide a more general and formal statement 5 lbet the
sequence of prices, and lets be the corresponding sequence of auxiliary vakjed et

us definef#t(p, 5) to be the number ofiniquestates(p;, s;) visited on(p,s). Then it is
easily verified that Theorem 2 holds wily 7[#(p)/T replaced byE, r[#(p, §)/T]. In

this case, the obvious modification of stratedyy,, — namely, to always trade according

to the observed behavior of the price on finst visit to state(p, s) — permits an identical
analysis.

The extension of Theorem 3 is slightly more involved. In particular, in our new model
Lemma 4 simply no longer holds — we can now easily “program” behavior that (for ex-
ample) causes the price to deterministically rise to some price and then deterministically
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fall back to its starting value. In the price-only model, such behavior was excluded by
Lemma 4, which states that the probability of the conjunction of a steep rise in price and a
subsequent drop is exponentially small.

However, in the new model it remains true thalif r[#(p, 5)/T] is larger thany, then
eitherE; p[max(p)] or E¢ r[min(5)] must be large — namely, one of them must be at least
~T'/4 (as opposed taT'/2 in the price-only model). This is because for everynique
stateswe visit, we must visit at least/2 uniquepricesas well, since for each prige
there are only two associated stafps0) and(p, 1). To exploit this, despite the fact that
Lemma 4 no longer holds, we make richer use of the Cesa-Bianchi et al. [1997] results.
For eachl < i < T, we introduce two simple trading strategies,; and A_;. Strategy

A4, buys a single share at the outset of trading, and sells it back if and only if the price
reaches the valueabove its starting point. Strategy ; sells a single share at the outset

of trading, and buys it back if and only if the price reaches the valoelow its starting
point. If eitherE; r[max(p)] or Ez[|lmin(p)|] is leastyT /4, then clearly the expected
maximum per-step profit among the stratedids.;, A_; }1<i<7 is at leasty/4.

The new overall algorithm is thus to apply the weighting scheme of Cesa-Bianchi et al.
[1997] to the strategiefA 1 ;, A_; }1<i<7 along with the strategyls.... Regardless of the
value ofE; r[#(p, §) /T, one of thes@T + 1 strategies will be profitable.

To generalize the analysis above, note that the only property we required of the state space
(p, s) is that each possible prigehave only a “small” number of possible extensions

(2 in the example above). This motivates the following definition: for any pridet us
definex(p) to be|{(p, s) € S}|, whereS is the set of possible states. For instance, in the
example above, for any given only the state$p, 0) and(p, 1) are possible, sa(p) = 2

always. We then definey,.x = max,{x(p)}. Note thatk,.x can be finite and small even
though an infinite number of values efare possible as we range over all valueg.ofFor
example, ifs is defined to be the maximum price in the l&gtme steps, then for any,

there are at mog/ possible values fas; but the domain of is all the integers.

Let Ageneral (1) refer to this more general algorithm which takéss an input and which
weights the strategieds..; and{A,;, A_;}1<i<7 as discussed above. Then we have the
following theorem.

Theorem 6 (Main Result, Extended State) Lgt.. be as defined above. Let> 0, and

let T’ be such thafl"e 7"7'/190 < ~/32 (satisfied forT’ = Q((1/+2)log(1/7))). If
T > T', then for any¢and as long as

VHET) > 2\/('72/4’%13)() + 4y (14)
we have
V (Ageneral(T), &, T) > 2}; V*(@,T) — \/21og(T)/T. (15)

Note that this differs from the price-only result of Theorem 1 in that our competitive ratio

is now proportional toy/kmax rather thany, and the regret terry/21og(T")/T of the
weighting scheme now hdsg(T') replacinglog(2). Also, this result is not anytime since
Ageneral takes as input the timg.

Thus for constant,,.x, our bound essentially suffers only a constant factor degradation.
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