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Abstract

We examine a Markovian model for the price evolution of a stock, in
which the probability of local upward or downward movement is arbi-
trarily dependent on the current price itself (and perhaps some auxiliary
state information). Our main result is a “universally profitable” trading
strategy — a single fixed strategy whose profitability competes with the
optimal strategy, which knows all of the underlying parameters of the
infinite and possibly nonstationary Markov process.

1 Introduction

We examine a Markovian model for the price evolution of a stock, in which the probabil-
ity of local upward or downward movement is arbitrarily dependent on the current price
itself (and perhaps some auxiliary state information). Our main result is a “universally
profitable” trading strategy — a single fixed strategy whose profitability competes with the
optimal strategy, which knows all of the underlying parameters of the infinite and possibly
nonstationary Markov process. While we shall make this statement more precise shortly,
our strategy is provably profitable whenever the optimal strategy has significant profits.

The strategy itself is efficient and simple, and employs a “best expert” weighting scheme
(Cesa-Bianchi et al. [1997]) over two substrategies — one of which attempts to do rudimen-
tary learning from past observations (which may be extremely sparse), and one of which
tries to spot significant directional trends in price. Our main technical contribution is a
proof that in our model, one of these two strategies must always have a profit that compares
favorably with the optimal strategy.

There are several motivations for the model we introduce. The language of Wall Street
and finance is riddled with suggestions that the dynamics of price movement may depend
strongly on price itself. Professionals and articles discuss “support” and “resistance” levels
for a stock — specific prices or ranges of prices below or above which the market will
apparently not let the share price fall or rise, respectively. The field of technical analysis
is dominated by simple and complex price patterns whose appearance is thought to signal
future behavior. The common notion of price uptrends or downtrends is predicated on a
series of price levels in which the directional bias is nonzero.

There are also many less speculative reasons price dynamics may change dramatically with
price. For example, one might expect there to be support for the share price at the level
at which market capitalization (share price times number of outstanding shares, which is
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essentially the cost of buying the entire company) equals the liquid assets of the company.
Similarly, many investors become uncomfortable if the ratio of the share price to a com-
pany’s earnings (P/E ratio) becomes excessively large compared to its sector average. Note
that it in these cases, there may be many factors aside from price influencing trading behav-
ior (market cap, P/E) — but such factors do result in different price dynamics at different
prices.

From the perspective of related literature on trading algorithms, we are particularly in-
terested in price models that fall in between the highly adversarial assumptions typical
of competitive analysis and universal portfolio work in computer science (Cover and Or-
dentlich [1996], Blum and Kalai [1999], El-Yaniv et al. [2001], Helmbold et al. [1996]),
and the strong statistical assumptions typical of classical finance random walk and diffu-
sion models and their generalizations (reviewed in Section 3). Our model and result can be
thought of as exhibiting a “sweet spot” in the pantheon of price models, in the sense that
it contains an extremely rich range of statistical behaviors, yet still permits a universally
profitable trading strategy.

The outline of the paper follows. In Section 2, we provide the formal definition of our
model and the optimal trading strategy that knows the process parameters. In Section 3,
we briefly review some of the most common price evolution models in the finance and
computer science literatures and relate our model to these. Section 4 contains our main
result. In Section 5 we generalize our result to permit simple extensions of the state.

2 Model and Definitions

In the most basic version of our model, the probabilistic dynamics of directional price
movement depend only on the current price. More precisely, we assume that for every
integerp between�1 and+1 , there is abiasvalue�(p) 2 [� 1

2 ;
1
2 ]. The interpretation

of this bias is as follows: if the price at timet is pt, then with probability12 + �(pt) we
havept+1 = pt + 1, and with probability12 � �(pt) we havept+1 = pt � 1. Note that
in this model, thejpt+1 � ptj = 1 always; it will be clear that all of our results hold
with only slight degradation in a more general setting in whichpt+1 must only remain in a
bounded range aroundpt, including the possibility of no movement. In our model, prices
movements are additive, prices are always integer values, and negative prices are allowed
for convenience, as all that will matter are the profits made from price movements. (In the
long version of this paper discuss a generalization of our results to multiplicative returns,
wherept represents the log price.) Without loss of generality, we always assume the initial
pricep1 is 0.

The complete probabilistic dynamics of price movement at all possible prices is given by
the infinite vector of biases�(p) for all integersp, which we shall denote simply by~�. A
model in our class is thus a countably infinite-state Markov process. (Note that~� = ~0
corresponds to an unbiased random walk.) We emphasize from the outset that this Markov
process may be nonstationary and non-recurrent — an infinite walk may never return to its
origin, and may forever visit new prices.

In this paper, we will be concerned with trading algorithms that have no a priori infor-
mation about~�, yet can compete with the optimal algorithm that knows the full vector of
biases. In order to make such comparisons, it is necessary to somehow limit the amount
of risk the optimal algorithm can assume. For instance, if�(p) = 1=2 for some price p,
so upwards movement at pricep is a certainty, the “optimal” algorithm should purchase
an infinite number of shares. We shall thus limit our attention to trading strategies whose
share position (number of shares owned (long) or owed (short)) at any time is at most 1.
Other restrictions are possible, but this one has especially natural properties.
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With this restriction, then, the optimal algorithmAopt = Aopt(~�) is straightforward. If the
current price ispt and�(pt) > 0, thenAopt buys one share; and if�(pt) < 0 thenAopt

sells (shorts) 1 share. If�(pt) = 0, thenAopt takes no action. Whichever actionAopt takes
at timet, at the next time stept + 1, Aopt reverses its action by selling the share bought
or buying the share sold at timet, and then repeating the process onpt+1. Thus after each
time step,Aopt either earns +1 (if it bought a share and the price rose, or it sold a share
and the price fell), or loses -1. Thus, we can viewAopt as an algorithm for 1-step binary
prediction of price movements on the probabilistic sequence of prices. Note that if the price
enters a long period of upwards price movement (for example) thatAopt correctly predicts,
thenAopt will be repeatedly buying a share, selling it at the next step and immediately
buying another share, etc. This behavior is formally equivalent to buying a single share and
holding it for the same period.

For any given bias vector~� and number of stepsT , we will let ~p = (p1; p2; : : : ; pT ) be a
random variable that is a sequence ofT prices generated according to~�. Without loss of
generality, we assumep1 = 0. For any trading algorithmA and price sequence~p, we let
V (A; ~p) denote the total amount earned or lost byA on ~p divided byT (so that earnings
are normalized to per-step averages) andV (A;~�; T ) = E~�;T [V (A; ~p)] is thus the expected
per-step earnings or losses ofA overT -step sequences~p distributed according to~�. We
limit ourselves to only consider algorithmsA which limit their share position to at most1
share, and so it is easy to see thatV (A;~�; T ) is between�1 and1. We note thatV (A;~�; T )
can be highly dependent on the specific value ofT , since we are in an infinite-state Markov
process: larger values ofT may cause us to visit new price levels whose dynamics are
entirely unlike those seen on smaller time scales.

With these definitions, it is easy to show thatV (Aopt;~�; T ) is in fact the optimal expected
value among all trading algorithms whose position must be at most 1 share at all times,
which we shall thus also denote with the shorthandV �(~�; T ). Note thatV �(~�; T ) 2 [0; 1]
always.

For any sequence~p, we define#(~p) to denote the number ofuniqueprices appearing in
~p. ThusE~�;T [#(~p)] is the expected number of unique prices, andE~�;T [#(~p)=T ] is the
expected fraction of steps that are first visits to some price. This expectation will play a
crucial role in our analysis.

Before discussing related prior models in the following section, we quickly highlight some
of the more interesting aspects of the model we have introduced. First, note that setting all
�(p) = 0 yields a standard (additive) random walk, while all�(p) = � for some nonzero
� yields a random walk with drift. One can also program rich mixtures of uptrends, down-
trends, unbiased random walks, support and resistance levels, and other features in a single
instance of our model. Second, while our model does not allow the detailed specification
of time-dependent events (and indeed, our main result would not hold in models such as
a general Ito process, described in Section 3), one can program rich temporal behaviors
in expectation. Third, none of the standard random variables of interest — such as the
price afterT steps, the maximum and minimum prices overT steps, or the profitability
of fixed trading strategies — are (necessarily) unimodal in distribution or sharply peaked
around their means. Fourth, as mentioned above, the infinite Markov process is not neces-
sarily either stationary or recurrent. Fifth, the optimal per-step profitabilityV �(~�; T ) may
be nonmonotonic inT — asT increases the profitability of the optimal algorithm may
increase, decrease, increase again, etc.1

1All of the mentioned properties of the model can be seen in a simulated example available in a
long version of this paper at www.cis.upenn.edu/˜mkearns/papers/pricemodel.pdf. This long version
also contains detailed proofs.
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3 Related Models

There is a rich history of mathematical models for the evolution of price time series. Per-
haps the most basic and well-studied of these are variants of standard random walk or
diffusion processes, often referred to in the literature asWiener processes. Among others,
this category includes pure unbiased random walks of price and random walks with over-
all upward or downward drifts (for instance, to model the overall growth of the securities
markets historically). Perhaps the most general in this line of models is theIto process, in
which the instantaneous drift and variance may depend arbitrarily on both the current price
and the time. A good overview of all of these models can be found in Hull [1993].

Our model can be viewed being considerably more general than a Wiener process with
drift, but considerably less general than a general Ito process. In particular, it will be easy
to see that our results will not hold in such a model. Broadly speaking, if the price process
is allowed to depend arbitrarily on time, it is impossible to compete with the profitability
of an omniscient party who knows exactly the nature of this time dependence.

The popularity of the various random walk models stems in part from their consistency with
broader economic theory, most notably the Efficient Market Hypothesis (EMH), the thesis
that individual trader rationality should drive all (expected) profit and arbitrage opportuni-
ties out of the market for a stock (or at least all those opportunities beyond those implied
by consistent long-term growth, inflation, or drift). However, a long line of relatively re-
cent works have carefully questioned and refuted random walk models and their variants,
primarily on the basis of observed conflicts between historical price data and model pre-
dictions (Lo and MacKinlay [1999]). Some of these studies have suggested behavioral
explanations for the deviations between historical prices and the EMH, an explanation cer-
tainly in the spirit of our model, where the market may react differently to different prices
for psychological reasons.

The extensive field oftechnical analysis(Murphy [1999]), which suggests that certain price
(and other) patterns may presage market behavior, is also clearly at odds with the EMH, at
least in its strongest form. The long-term statistical profitability of certain technical indi-
cators has recently been argued based on historical data (Brock et al. [1992]). The implicit
assumptions of many technical strategies is that price dynamics are largely determined by
the current price and some simple auxiliary state information (such as whether the recent
price has shown an uptrend or downtrend, or the high and low prices over some recent time
window). While our basic model permits only the current price as the Markovian state, in
Section 5 we generalize our main result to hold for simple generalizations that incorporate
many common technical indicators.

As noted in the Introduction, our model is also considerably more specialized (in terms of
the allowed price behavior) than the worst-case price models often examined in computer
science and related fields (Cover and Ordentlich [1996], Blum and Kalai [1999], El-Yaniv
et al. [2001], Helmbold et al. [1996]). Indeed, in such models, one could never prove that
anyfixed collection of strategies always contained one competing with the optimal strategy
that knew the price generation process. The precise point of our model and result is the
introduction of a more limited but still quite powerful statistical model for price evolution,
along with the proof that a fixed and simple strategy that mixes rudimentary learning and
trend-spotting must always be competitive.

4 Main Result

In this section, we develop our main result: a trading strategy that knows nothing about the
underlying model parameters~�, but whose per-step profitability can be provably related to
V �(~�; T ). While the analysis is rather involved, the strategy itself and the intuition behind
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it are appealingly simple and are now sketched briefly.

The key to the analysis is the quantityE~�;T [#(~p)=T ], the expected fraction of first visits to
prices. The first insight is that if this expectation is “small”, then we make “enough” repeat
visits to prices to obtain a slight advantage in estimating the biases. For the final result to
work out, we must show that this intuition holds even when the average number of visits
per state is far too small (such as a constant) to apply concentration inequalities such as
the Chernoff bound. Essentially, while we may not have large enough samples to assert an
advantage in estimating the bias of anyparticular price, we prove that an advantage exists
on averageacross the prices visited. In this case a rather rudimentary learning strategy
fares well.

The second insight is that ifE~�;T [#(~p)=T ] is “large”, the price must be following a strong
trend that is driven by an overall directional bias, and cannot be easily reversedon a com-
parable time scale(even though it may be reversed on much longer time scales). In this
case a simple trend-following or momentum strategy is profitable.

The challenge in the analysis is to make these intuitions precise, and to prove that prof-
itability is possible for all values ofE~�;T [#(~p)=T ]. In Section 4.1 we provide the analysis
for the case of “small ” values forE~�;T [#(~p)=T ], and in Section 4.2 we consider the case
of large values. Section 4.3 stitches the pieces together to give our main result, which we
now state:

Theorem 1 (Main Result) Let
 > 0, and letT 0 satisfyT 0e�
2T 0=100 < 
=32 (which is
satisfied forT 0 = 
((1=
2) log(1=
))). Then for all~� andT � T 0, as long asV �(~�; T ) �
2
p

, we have

V (Amaster(
);~�; T ) � 


4
V �(~�; T )�

p
2 log(2)=T : (1)

Let us interpret this result briefly. If the profitability of the optimal algorithm is too small
(quantified as being below2

p

), we simply “give up” and are not competitive. The pa-

rameter
 thus provides a trade-off to the user ofAmaster. Smaller values of
 will cause
the lower bound onV (Amaster;~�; T ) to take effect at smaller values ofV �(~�; T ), but the
competitive ratio (which is essentially
=4) degrades accordingly. Larger values of
 cause
us to not compete at all for a wider range ofV �(~�; T ), but give a better competitive ratio
whenV �(~�; T ) is sufficiently large.

Note also that Theorem 1 provides an “anytime” result, in that the strategyAmaster is
competitivesimultaneouslyon all time scales, and does not requireT as an input. This is
important in light of the fact thatV �(~�; T ) may be nonmonotonic inT .

The remainder of this section is devoted to developingAmaster and proving Theorem 1.

4.1 A Statistical Strategy

We now define a simple trading algorithm that makes minimal use of past observations.
We shall denote this algorithmAstat. If the current pricept is being visited for the first
time (that is, timet is the earliest appearance of pricept in the sequence~p), Astat makes
no trade. In this case, afterpt+1 is revealed,Astat stores afirst-visit recordconsisting of
the pricept along with an indication of whetherpt+1 went up or down frompt.

If t is not the first time pricept has been visited, thenAstat looks up the first-visit record for
pt and trades according to this record — that is, if after the first visit topt the price went
up,Astat buys one share, otherwise it sells one share, respectively. To obey the 1-share
position limit, at timet + 1 Astat sells off or buys back the position it accumulated and
repeats the process onpt+1.
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Thus,Astat is the algorithm that makes perhaps the least possible use of statistical history,
simply predicting that what happened after the very first visit to a price will continue to
happen. Obviously, it would make more intuitive sense to collect statistics onall the visits
to a given price, and trade based on these cumulative statistics. But it turns out thatAstat

must operate with sample sizes that are far too small to usefully apply large-deviation
bounds such as the Chernoff inequality. Hence, one can’t provide a general bound in which
our expected value is a linear fraction of the optimal value. Instead, we compete against
the square of the optimal value (which we conjecture is essentially the best possible). More
formally, we have:

Theorem 2 (Statistical Strategy) For any biases~� and anyT ,

V (Astat;~�; T ) � V �(~�; T )2 �E~�;T [#(~p)=T ]: (2)

Proof: Let us first write down an explicit expression for theT -step optimal value
V �(~�; T ). At each time stept, the optimal algorithm examines the bias�(pt) to decide
how to trade. Abusing notation slightly, let us denote�(t) = �(pt) whent is a time value
and not a price value and thus there is no risk of confusion. The expected profit ofAopt at
time t is then �

1

2
+ j�(t)j

�
(+1) +

�
1

2
� j�(t)j

�
(�1) = 2j�(t)j: (3)

Now recall thatV �(~�; T ) = E~�;T [V (Aopt; ~p)]. SinceV (Aopt; ~p) is a sum ofT 1-step
returns, by linearity of expectation we may write

V �(~�; T ) =
1

T

TX
t=1

X
~p:j~pj=t

Pr~�;t[~p](2j�(t)j) (4)

where each inner sum over sequences~p of lengtht � T is the expected profit ofAopt on
the stept.

Let us now analyze the 1-step expected profit of algorithmAstat at timet. If t is the first
visit to the pricept in the sequence~p, then then the profit ofAstat is 0. Otherwise, the
profit depends on whether the first visit topt revealed the correct or incorrect sign of�(pt).
More precisely, the expected return ofAstat on non-first visits topt may be written

�
1

2
+ j�(t)j

�
(2j�(t)j) +

�
1

2
� j�(t)j

�
(�2j�(t)j) = 4j�(t)j2: (5)

The logic here is that with probability12 + j�(t)j, the first visit topt reveals the correct sign
of the bias, in which case on all subsequent visits,Astat will behave the same asAopt and
receive2j�(t)j in expected profits; and with probability12�j�(t)j, the first visit topt reveals
the incorrect sign, in which case on all subsequent visits,Astat will receive�2j�(t)j. Thus
the expectation is taken overboth the randomization on the current visit topt, and the
randomization on the first visit.

We would now like to apply this observation on the 1-step profit ofAstat to obtain an ex-
pression forV (Astat;~�; T ); the main challenge is in dealing with the dependencies intro-
duced by conditioning on the number of visits to each price level. The following inequality
can be shown (details omitted):

V (Astat;~�; T ) � 1

T

TX
t=1

X
~p:j~pj=t

Pr~�;t[~p](4j�(t)j2)�E~�;T [#(~p)=T ] (6)
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Combining Equation (4) and Equation (6), we now have:

V (Astat;~�; T )� V �(~�; T )2 =

4

T

TX
t=1

X
~p:j~pj=t

Pr~�;t[~p]j�(t)j2 �
0
@ 2

T

TX
t=1

X
~p:j~pj=t

Pr~�;t[~p]j�(t)j
1
A

2

�E~�;T [#(~p)=T ](7)

It remains to show that the first two terms are positive.

Recall that each�(t) = �(pt) is actually the bias at some price levelpt. Let us define for
each priceq

w(q) =
1

T

TX
t=1

X
~p:j~pj=t;p(t)=q

Pr~�;t[~p]: (8)

It is easy to see that since the price must remain in the range[�T; T ] on sequences of
length at mostT , the valuesw(�T ); : : : ; w(T ) sum to 1 and are all positive, and thus can
be interpreted as a distribution. The first two terms in Equation (7) may be rewritten as

4

0
B@

TX
q=�T

w(q)j�(q)j2 �
0
@ TX

q=�T

w(q)j�(q)j
1
A

2
1
CA (9)

This difference is non-negative as desired, by the convexity of the functionf(x) = x2

(interestingly, note that this difference has the form of the variance of�(q) with respect to
the distributionw(q)).

4.2 A Momentum Strategy

We now turn attention to a strategy that will succeed for large values ofE~�;T [#(~p)=T ].
For any given values of
 andT , the momentum strategyAmom(
; T ) can be described as
follows:

1. For allp 2 (�
T=4; 
T=4), take no action.

2. For allp � 
T=4, purchase one share and sell it back at the next time step.

3. For allp � �
T=4, sell one share and purchase it back at the next time step.

Note this strategy uses knowledge of the timeT ; however, this dependency can be removed
(details omitted) to yield an algorithm that is competitive on all time scales simultaneously.

The following definitions will be necessary in our analysis ofAmom. For the remainder of
this subsection,~p will denote a price sequence of lengthT for some fixedT . Letmax(~p)
(min(~p), respectively) be the maximum (minimum, respectively) price reached on~p. Let
drop(~p) be the absolute value of the difference betweenmax(~p) and thesmallestprice
reached on~p after the first visit tomax(~p). Thus,drop(~p) measures the “fall” from the
high price. Similarly, we definerise(~p) to be the absolute value of the difference between
min(~p) and thelargestprice reached on~p after the first visit tomin(~p).

Amom enjoys the following performance guarantee.

Theorem 3 (Momentum Strategy) Let
 > 0, and letT 0 be such thatT 0e�
2T 0=48 < 
=16.
If T > T 0 and if eitherE~�;T [max(~p)=T ] � 
 or E~�;T [jmin(~p)=T j] � 
 then

V (Amom(
; T );~�; T ) � 


2
� 


2
V �(~�; T ) (10)
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Note that unlike the guarantee forAstat, Amom must be run for a time larger than some
threshold time. Essentially, this time is the time long enough to discover the trend. Also,
note that we always must have eitherE~�;T [max(~p)] � E~�;T [#(~p)]=2 orE~�;T [jmin(~p)j] �
E~�;T [#(~p)]=2.

At the heart of the proof of Theorem 3 is the following simple probabilistic lemma. The
lemma essentially states that if the price makes large moves on some time scale, then with
high probability it cannot return to its starting value on a comparable time scale.

Lemma 4 For any constanta > 0, we have

1. For all~�, T andz � aT ,Pr~�;T [max(~p) = z and drop(~p) � aT=2] � e�a2T=12.

2. For all~�, T andz � �aT ,Pr~�;T [min(~p) = z and rise(~p) � aT=2] � e�a2T=12.

Proof: (Sketch) We sketch only Part 1, as Part 2 is entirely symmetric. First let us suppose
that among the biases�(0); : : : ; �(z) there are more thanaT=4 which are negative. In this
case we show that the probability ofmax(~p) even reaching the pricez is small. In order for
the price to reachz, it clearly must “get through” these negative biases — in other words,
the price must have a net upwards movement of at leastaT=4 even when restricted only
to those visits to prices with negative bias. If we modify all of these negative biases to be
equal to 0 (unbiased), we can clearly onlyincreasethe probability thatmax(p) reaches the
pricez.

We can thus boundPr~�;T [max(~p) = z] by the probability that inT independent flips
of a fair coin, we would see an excess of heads over tails of at leastaT=4. By the
standard Chernoff bound, the probability of seeing such an excess inT flips is at most
e�(a2=2)2T=3 = e�a2T=12. Since the probability ofmax(~p) even reachingz has been thus
bounded, the lemma holds in this case.

Otherwise, we must have that at mostaT=4 of the biases�(0); : : : ; �(z) are negative. In
this case we show thatPr~�;T [drop(~p) � aT=2] is small. Since the price can drop by a
net amount of at mostaT=4 when restricted only to visits to prices with negative biases, in
order to drop by a total of at leastaT=2, it must drop a further net amount of at leastaT=4
when restricted only to visits to prices with positive biases. Using a similar argument, it is
straightforward to see that this probability being bounded bye�a2T=12.

Lemma 4 is used to prove the following result (and a similar result holds in terms of
E~�;T [min(~p)=T ]).

Lemma 5 Let 
 > 0, and letT 0 be such thatT 0e�
2T 0=48 < 
=16. If T > T 0, then for
any biases~�

V (Amom(
; T );~�; T ) � E~�;T [max(~p)=T ]� 
=2 (11)

Proof: (Sketch) First, using a Markov inequality argument, one can show:
X

x>
T=4

Pr~�;T [max(~p) = x](x � 
T=4) � E~�;T [max(~p)]� 
T=4: (12)

Informally, this summation is the expected profit from the cases in which the maximum
price exceeds
T=4, conditioned on the subsequent drop being at most
T=4.

Now one can use Lemma 4 to show that the value ofAmom is close to the above.

Theorem 3 follows from Lemma 5 under the assumption thatE~�;T [max(~p)] > 
T , and
noting thatV �(~�; T ) � 1.
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4.3 Putting the Pieces Together

Theorems 2 and 3 establish that for any biases~� and anyT , at least oneof the two strategies
Astat andAmom must have a expected profit that compares “favorably” with that of the
optimal algorithm that knows~�. We now wish to define asinglestrategy accomplishing
this same criterion. Of course, one way of doing this is to have a strategy that simply flips a
fair coin at the outset of trading to decide withAstat andAmom to use, at a cost of a factor
of 2 in our expected return in comparison toV �(~�; T ). While this cost is insignificant in
light of the other constant factors we are already absorbing, we prefer to apply the so-called
“experts” methods of worst-case on-line analysis. When we generalize our results to permit
the biases~� to depend on an underlying state variable more complex than just the current
price, the experts methodology will be necessary.

In order to apply the experts framework, it is important to recall the observation made in
Section 2 that our trading model can really be viewed as an instance of on-line binary pre-
diction. We view trading strategies (andAstat, Amom and the optimal trading algorithm
in particular) as making a series of trades or predictions, each of which wins or loses im-
mediately. We can thus immediately apply the on-line weighting scheme of Cesa-Bianchi
et al. [1997] to the strategiesAstat andAmom (in this case, an especially small set of
experts); let us call the resulting strategyAmaster, since it can be viewed as a “master”
strategy allocating capital between the two subordinate strategies. Combining Theorem 16
of Cesa-Bianchi et al. [1997] with Theorems 2 and 3 allows one to show that

V (Amaster;~�; T ) � min
�
V �(~�; T )2 � 
;




4
V �(~�; T )

�
�
p
2 log(2)=T (13)

always holds. Notice that this lower bound may actually be near zero for small values of
V �(~�; T ). From this equation, Theorem 1 follows.

5 Extending the State

So far we have focused exclusively on a model in which the directional bias of the price
movement may depend arbitrarily on the current price itself. In this section we generalize
our results to a considerably richer class of models, in which the directional bias� = �(p; s)
may depend on both pricep and someobservableauxiliary informations. For example,
one might posit that a more realistic model for price dynamics is that the directional bias
depends not only on the current price, but also on whether the current price was arrived
at from below or above. We can model this letting the probability thatpt+1 = pt + 1 be
1
2 +�(pt; st), where�(pt; st) 2 [� 1

2 ;
1
2 ] andst 2 f0; 1g equals 1 ifpt = pt�1+1 (uptrend)

and 0 ifpt = pt�1�1 (downtrend). We again have an infinite Markov process, but with the
Markovian state now being the pairs(p; s) rather than justp alone. We will continue to use
the notation~� to denote the infinite set of biases�(p; s) for all integer pricesp and auxiliary
informations. Note that the following discussion assumes that the auxiliary informations
is observable, but it does not necessarily need to be a function of the price time series.

We now outline why the results of Section 4 continue to hold with some additional ma-
chinery, after which we will provide a more general and formal statement. Let~p be the
sequence of pricespt, and let~s be the corresponding sequence of auxiliary valuesst. Let
us define#(~p;~s) to be the number ofuniquestates(pt; st) visited on(~p;~s). Then it is
easily verified that Theorem 2 holds withE�;T [#(~p)=T ] replaced byE�;T [#(~p;~s)=T ]. In
this case, the obvious modification of strategyAstat — namely, to always trade according
to the observed behavior of the price on thefirst visit to state(p; s) — permits an identical
analysis.

The extension of Theorem 3 is slightly more involved. In particular, in our new model
Lemma 4 simply no longer holds — we can now easily “program” behavior that (for ex-
ample) causes the price to deterministically rise to some price and then deterministically
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fall back to its starting value. In the price-only model, such behavior was excluded by
Lemma 4, which states that the probability of the conjunction of a steep rise in price and a
subsequent drop is exponentially small.

However, in the new model it remains true that ifE~�;T [#(~p;~s)=T ] is larger than
, then
eitherE~�;T [max(~p)] orE~�;T [min(~p)] must be large — namely, one of them must be at least

T=4 (as opposed to
T=2 in the price-only model). This is because for everyn unique
stateswe visit, we must visit at leastn=2 uniquepricesas well, since for each pricep
there are only two associated states(p; 0) and(p; 1). To exploit this, despite the fact that
Lemma 4 no longer holds, we make richer use of the Cesa-Bianchi et al. [1997] results.
For each1 � i � T , we introduce two simple trading strategies,A+i andA�i. Strategy
A+i buys a single share at the outset of trading, and sells it back if and only if the price
reaches the valuei above its starting point. StrategyA�i sells a single share at the outset
of trading, and buys it back if and only if the price reaches the valuei below its starting
point. If eitherE~�;T [max(~p)] or E~�;T [jmin(~p)j] is least
T=4, then clearly the expected
maximum per-step profit among the strategiesfA+i; A�ig1�i�T is at least
=4.

The new overall algorithm is thus to apply the weighting scheme of Cesa-Bianchi et al.
[1997] to the strategiesfA+i; A�ig1�i�T along with the strategyAstat. Regardless of the
value ofE~�;T [#(~p;~s)=T ], one of these2T + 1 strategies will be profitable.

To generalize the analysis above, note that the only property we required of the state space
(p; s) is that each possible pricep have only a “small” number of possible extensionss
(2 in the example above). This motivates the following definition: for any pricep, let us
define�(p) to bejf(p; s) 2 Sgj, whereS is the set of possible states. For instance, in the
example above, for any givenp, only the states(p; 0) and(p; 1) are possible, so�(p) = 2
always. We then define�max = maxpf�(p)g. Note that�max can be finite and small even
though an infinite number of values ofs are possible as we range over all values ofp. For
example, ifs is defined to be the maximum price in the last` time steps, then for anyp,
there are at most2` possible values fors; but the domain ofs is all the integers.

Let Ageneral(T ) refer to this more general algorithm which takesT as an input and which
weights the strategiesAstat andfA+i; A�ig1�i�T as discussed above. Then we have the
following theorem.

Theorem 6 (Main Result, Extended State) Let�max be as defined above. Let
 > 0, and
let T 0 be such thatT 0e�
2T 0=100 < 
=32 (satisfied forT 0 = 
((1=
2) log(1=
))). If
T � T 0, then for any~� and as long as

V �(~�; T ) � 2
p
(
2=4�max) + 4
 (14)

we have
V (Ageneral(T );~�; T ) � 


2�max
V �(~�; T )�

p
2 log(T )=T: (15)

Note that this differs from the price-only result of Theorem 1 in that our competitive ratio
is now proportional to
=�max rather than
, and the regret term

p
2 log(T )=T of the

weighting scheme now haslog(T ) replacinglog(2). Also, this result is not anytime since
Ageneral takes as input the timeT .

Thus for constant�max, our bound essentially suffers only a constant factor degradation.
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