
Finite-Sample Convergence Rates for

Q-Learning and Indirect Algorithms

Michael Kearns and Satinder Singh
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932

fmkearns,bavejag@research.att.com

Abstract

In this paper, we address two issues of long-standing interest in the re-
inforcement learning literature. First, what kinds of performance guar-
antees can be made for Q-learning after only a �nite number of actions?
Second, what quantitative comparisons can be made between Q-learning
and model-based (indirect) approaches, which use experience to estimate
next-state distributions for o�-line value iteration?

We �rst show that both Q-learning and the indirect approach enjoy
rather rapid convergence to the optimal policy as a function of the num-
ber of state transitions observed. In particular, on the order of only
(N log(1=�)=�2)(log(N) + log log(1=�)) transitions are su�cient for both
algorithms to come within � of the optimal policy, in an idealized model
that assumes the observed transitions are \well-mixed" throughout an
N -state MDP. Thus, the two approaches have roughly the same sample
complexity. Perhaps surprisingly, this sample complexity is far less than
what is required for the model-based approach to actually construct a good
approximation to the next-state distribution. The result also shows that
the amount of memory required by the model-based approach is closer to
N than to N2.

For either approach, to remove the assumption that the observed tran-
sitions are well-mixed, we consider a model in which the transitions are
determined by a �xed, arbitrary exploration policy. Bounds on the number
of transitions required in order to achieve a desired level of performance
are then related to the stationary distribution and mixing time of this
policy.

1 Introduction

There are at least two di�erent approaches to learning in Markov decision processes:
indirect approaches, which use control experience (observed transitions and payo�s)
to estimate a model, and then apply dynamic programming to compute policies from
the estimated model; and direct approaches such as Q-learning [2], which use control

experience to directly learn policies (through value functions) without ever explicitly
estimating a model. Both are known to converge asymptotically to the optimal pol-
icy [1, 3]. However, little is known about the performance of these two approaches
after only a �nite amount of experience.

A common argument o�ered by proponents of direct methods is that it may require
much more experience to learn an accurate model than to simply learn a good policy.
This argument is predicated on the seemingly reasonable assumption that an indirect
method must �rst learn an accurate model in order to compute a good policy. On
the other hand, proponents of indirect methods argue that such methods can do
unlimited o�-line computation on the estimated model, which may give an advantage
over direct methods, at least if the model is accurate. Learning a good model may
also be useful across tasks, permitting the computation of good policies for multiple
reward functions [4]. To date, these arguments have lacked a formal framework for
analysis and veri�cation.

In this paper, we provide such a framework, and use it to derive the �rst �nite-time
convergence rates (sample size bounds) for both Q-learning and the standard indirect
algorithm. An important aspect of our analysis is that we separate the quality of the
policy generating experience from the quality of the two learning algorithms. In
addition to demonstrating that both methods enjoy rather rapid convergence to the
optimal policy as a function of the amount of control experience, the convergence rates
have a number of speci�c and perhaps surprising implications for the hypothetical
di�erences between the two approaches outlined above. Some of these implications,
as well as the rates of convergence we derive, were briey mentioned in the abstract;
in the interests of brevity, we will not repeat them here, but instead proceed directly
into the technical material.

2 MDP Basics

Let M be an unknown N -state MDP with A actions. We use P a
M(ij) to denote the

probability of going to state j, given that we are in state i and execute action a;
and Ra

M(i) to denote the reward received for executing a from i (which we assume is
�xed and bounded between 0 and 1 without loss of generality). A policy � assigns
an action to each state. The value of state i under policy �, V �

M (i), is the expected
discounted sum of rewards received upon starting in state i and executing � forever:
V �
M (i) = E� [r1 + r2 + 2r3 + � � �], where rt is the reward received at time step t

under a random walk governed by � from start state i, and 0 � < 1 is the discount
factor. It is also convenient to de�ne values for state-action pairs (i; a): Q�

M (i; a) =
Ra
M(i)+

P
j P

a
M (ij)V �

M (j). The goal of learning is to approximate the optimal policy
�� that maximizes the value at every state; the optimal value function is denoted Q�M .
Given Q�M , we can compute the optimal policy as ��(i) = argmaxafQ

�
M(i; a)g.

If M is given, value iteration can be used to compute a good approximation to the
optimal value function. Setting our initial guess as Q0(i; a) = 0 for all (i; a), we
iterate as follows:

Q`+1(i; a) = Ra
M(i) +

X
j

[P a
M(ij)V`(j)] (1)

where we de�ne V`(j) = maxbfQ`(j; b)g. It can be shown that after ` iterations,
max(i;a)fjQ`(i; a)�Q�M(i; a)jg � `. Given any approximationQ to Q�M we can com-
pute the greedy approximation� to the optimal policy �� as �(i) = argmaxafQ(i; a)g.

3 The Parallel Sampling Model

In reinforcement learning, the transition probabilities P a
M(ij) are not given, and a

good policy must be learned on the basis of observed experience (transitions) in M .
Classical convergence results for algorithms such as Q-learning [1] implicitly assume
that the observed experience is generated by an arbitrary \exploration policy" �, and
then proceed to prove convergence to the optimal policy if � meets certain mini-
mal conditions | namely, � must try every state-action pair in�nitely often, with
probability 1. This approach conates two distinct issues: the quality of the explo-
ration policy �, and the quality of reinforcement learning algorithms using experience
generated by �. In contrast, we choose to separate these issues. If the exploration
policy never or only very rarely visits some state-action pair, we would like to have
this reected as a factor in our bounds that depends only on �; a separate factor
depending only on the learning algorithm will in turn reect how e�ciently a partic-
ular learning algorithm uses the experience generated by �. Thus, for a �xed �, all
learning algorithms are placed on equal footing, and can be directly compared.

There are probably various ways in which this separation can be accomplished; we
now introduce one that is particularly clean and simple. We would like a model of
the ideal exploration policy | one that produces experiences that are \well-mixed",
in the sense that every state-action pair is tried with equal frequency. Thus, let us
de�ne a parallel sampling subroutine PS(M) that behaves as follows: a single call to
PS(M) returns, for every state-action pair (i; a), a random next state j distributed
according to P a

M(ij). Thus, every state-action pair is executed simultaneously, and
the resulting N�A next states are reported. A single call to PS(M) is therefore really
simulating N � A transitions in M , and we must be careful to multiply the number
of calls to PS(M) by this factor if we wish to count the total number of transitions
witnessed.

What is PS(M) modeling? It is modeling the idealized exploration policy that man-
ages to visit every state-action pair in succession, without duplication, and without
fail. It should be intuitively obvious that such an exploration policy would be optimal,
from the viewpoint of gathering experience everywhere as rapidly as possible.

We shall �rst provide an analysis, in Section 5, of both direct and indirect reinforce-
ment learning algorithms, in a setting in which the observed experience is generated
by calls to PS(M). Of course, in any given MDPM , there may not be any exploration
policy that meets the ideal captured by PS(M) | for instance, there may simply be
some states that are very di�cult for any policy to reach, and thus the experience
generated by any policy will certainly not be equally mixed around the entire MDP.
(Indeed, a call to PS(M) will typically return a set of transitions that does not even
correspond to a trajectory in M .) Furthermore, even if PS(M) could be simulated
by some exploration policy, we would like to provide more general results that ex-
press the amount of experience required for reinforcement learning algorithms under
any exploration policy (where the amount of experience will, of course, depend on
properties of the exploration policy).

Thus, in Section 6, we sketch how one can bound the amount of experience required
under any � in order to simulate calls to PS(M). (More detail will be provided in a
longer version of this paper.) The bound depends on natural properties of �, such as
its stationary distribution and mixing time. Combined with the results of Section 5,
we get the desired two-factor bounds discussed above: for both the direct and indirect
approaches, a bound on the total number of transitions required, consisting of one
factor that depends only on the algorithm, and another factor that depends only on
the exploration policy.

4 The Learning Algorithms

We now explicitly state the two reinforcement learning algorithms we shall analyze
and compare. In keeping with the separation between algorithms and exploration
policies already discussed, we will phrase these algorithms in the parallel sampling
framework, and Section 6 indicates how they generalize to the case of arbitrary ex-
ploration policies. We begin with the direct approach.

Rather than directly studying standard Q-learning, we will here instead examine a
variant that is slightly easier to analyze, and is called phased Q-learning. However, we
emphasize that all of our results can be generalized to apply to standard Q-learning
(with learning rate �(i; a) = 1

t(i;a) , where t(i; a) is the number of trials of (i; a) so far).

Basically, rather than updating the value function with every observed transition from
(i; a), phased Q-learning estimates the expected value of the next state from (i; a)
on the basis of many transitions, and only then makes an update. The memory
requirements for phased Q-learning are essentially the same as those for standard
Q-learning.

Direct Algorithm | Phased Q-Learning: As suggested by the name, the algo-
rithm operates in phases. In each phase, the algorithm will make mD calls to PS(M)
(where mD will be determined by the analysis), thus gathering mD trials of every
state-action pair (i; a). At the `th phase, the algorithm updates the estimated value
function as follows: for every (i; a),

bQ`+1(i; a) = Ra
M (i) +

1

mD

mDX
k=1

bV`(j`k) (2)

where j`1; : : : ; j
`
mD

are the mD next states observed from (i; a) on the mD calls to
PS(M) during the `th phase. The policy computed by the algorithm is then the
greedy policy determined by the �nal value function. Note that phased Q-learning
is quite like standard Q-learning, except that we gather statistics (the summation in
Equation (2)) before making an update.

We now proceed to describe the standard indirect approach.

Indirect Algorithm: The algorithm �rst makes mI calls to PS(M) to obtain mI

next state samples for each (i; a). It then builds an empirical model of the transition

probabilities as follows: bP a
M (ij) = #(i!aj)

mI

, where #(i!a j) is the number of times

state j was reached on the mI trials of (i; a). The algorithm then does value iteration

(as described in Section 2) on the �xed model bP a
M (ij) for `I phases. Again, the policy

computed by the algorithm is the greedy policy dictated by the �nal value function.

Thus, in phased Q-learning, the algorithm runs for some number `D phases, and each
phase requires mD calls to PS(M), for a total number of transitions `D�mD�N �A.
The direct algorithm �rst makes mI calls to PS(M), and then runs `I phases of
value iteration (which requires no additional data), for a total number of transitions
mI � N � A. The question we now address is: how large must mD;mI ; `D; `I be
so that, with probability at least 1 � �, the resulting policies have expected return
within � of the optimal policy in M? The answers we give yield perhaps surprisingly
similar bounds on the total number of transitions required for the two approaches in
the parallel sampling model.

5 Bounds on the Number of Transitions

We now state our main result.

Theorem 1 For any MDP M :

� For an appropriate choice of the parameters mI and and `I , the total number
of calls to PS(M) required by the indirect algorithm in order to ensure that,
with probability at least 1� �, the expected return of the resulting policy will
be within � of the optimal policy, is

O((1=�2)(log(N=�) + log log(1=�)): (3)

� For an appropriate choice of the parameters mD and `D , the total number of
calls to PS(M) required by phased Q-learning in order to ensure that, with
probability at least 1 � �, the expected return of the resulting policy will be
within � of the optimal policy, is

O((log(1=�)=�2)(log(N=�) + log log(1=�)): (4)

The bound for phased Q-learning is thus only O(log(1=�)) larger than that for the
indirect algorithm. Bounds on the total number of transitions witnessed in either
case are obtained by multiplying the given bounds by N �A.

Before sketching some of the ideas behind the proof of this result, we �rst discuss
some of its implications for the debate on direct versus indirect approaches. First of
all, for both approaches, convergence is rather fast: with a total number of transitions
only on the order of N log(N) (�xing � and � for simplicity), near-optimal policies
are obtained. This represents a considerable advance over the classical asymptotic
results: instead of saying that an in�nite number of visits to every state-action pair
are required to converge to the optimal policy, we are claiming that a rather small
number of visits are required to get close to the optimal policy. Second, by our
analysis, the two approaches have similar complexities, with the number of transitions
required di�ering by only a log(1=�) factor in favor of the indirect algorithm. Third
| and perhaps surprisingly | note that since only O(log(N)) calls are being made
to PS(M) (again �xing � and �), and since the number of trials per state-action pair
is exactly the number of calls to PS(M), the total number of non-zero entries in the

model bP a
M (ij) built by the indirect approach is in fact only O(log(N)). In other

words, bP a
M(ij) will be extremely sparse | and thus, a terrible approximation to the

true transition probabilities | yet still good enough to derive a near-optimal policy!
Clever representation of bP a

M(ij) will thus result in total memory requirements that
are only O(N log(N)) rather than O(N2). Fourth, although we do not have space
to provide any details, if instead of a single reward function, we are provided with L
reward functions (where the L reward functions are given in advance of observing any
experience), then for both algorithms, the number of transitions required to compute
near-optimal policies for all L reward functions simultaneously is only a factor of
O(log(L)) greater than the bounds given above.

Our own view of the result and its implications is:

� Both algorithms enjoy rapid convergence to the optimal policy as a function
of the amount of experience.

� In general, neither approach enjoys a signi�cant advantage in convergence
rate, memory requirements, or handling multiple reward functions. Both are
quite e�cient on all counts.

We do not have space to provide a detailed proof of Theorem 1, but instead provide
some highlights of the main ideas. The proofs for both the indirect algorithm and
phased Q-learning are actually quite similar, and have at their heart two slightly

di�erent uniform convergence lemmas. For phased Q-learning, it is possible to show
that, for any bound `D on the number of phases to be executed, and for any � > 0,
we can choose mD so that������(1=mD)

mDX
k=1

bV`(j`k) �X
j

P a
ij
bV`(j)

������ � � (5)

will hold simultaneously for every (i; a) and for every phase ` = 1; : : : ; `D. In other
words, at the end of every phase, the empirical estimate of the expected next-state
value for every (i; a) will be close to the true expectation, where here the expectation

is with respect to the current estimated value function bV`.
For the indirect algorithm, a slightly more subtle uniform convergence argument is
required. Here we show that it is possible to choose, for any bound `I on the number

of iterations of value iteration to be executed on the bP a
M(ij), and for any � > 0, a

value mI such that ������
X
j

bP a
ijV`(j) �

X
j

P a
ijV`(j)

������ � � (6)

for every (i; a) and every phase ` = 1; : : : ; `I , where the V`(j) are the value functions
resulting from performing true value iteration (that is, on the P a

M (ij)). Equation (6)
essentially says that expectations of the true value functions are quite similar under
either the true or estimated model, even though the indirect algorithm never has
access to the true value functions.

In either case, the uniform convergence results allow us to argue that the corre-
sponding algorithms still achieve successive contractions, as in the classical proof
of value iteration. For instance, in the case of phased Q-learning, if we de�ne

�` = max(i;a)fj bQ`(i; a) � Q`(i; a)jg, we can derive a recurrence relation for �`+1

as follows:

j bQ`+1(i; a)� Q`+1(i; a)j =

������(1=m)
mX
k=1

bV`(j`k)�
X
j

P a
ijV`(j)

������ (7)

� max
�2f�;��g

8<
:
������
0
@X

j

P a
ij
bV`(j) + �

1
A�

X
j

P a
ijV`(j)

������
9=
;(8)

� � + �`: (9)

Here we have made use of Equation (5). Since �0 = 0 (bQ0 = Q0), this recurrence
gives �` � � (=(1�)) for any `. From this it is not hard to show that for any (i; a)

j bQ`(i; a)�Q�(i; a)j � � (=(1 �)) + `: (10)

From this it can be shown that the regret in expected return su�ered by the policy
computed by phased Q-Learning after ` phases is at most (�=(1�)+`)(2=(1�)).
The proof proceeds by setting this regret smaller than the desired �, solving for ` and
� , and obtaining the resulting bound onmD. The derivation of bounds for the indirect
algorithm is similar.

6 Handling General Exploration Policies

As promised, we conclude our technical results by briey sketching how we can trans-
late the bounds obtained in Section 5 under the idealized parallel sampling model into

bounds applicable when any �xed policy � is guiding the exploration. Such bounds
must, of course, depend on properties of �. Due to space limitations, we can only
outline the main ideas; the formal statements and proofs are deferred to a longer
version of the paper.

Let us assume for simplicity that � (which may be a stochastic policy) de�nes an
ergodic Markov process in the MDP M . Thus, � induces a unique stationary distri-
bution PM;�(i; a) over state-action pairs | intuitively, PM;�(i; a) is the frequency of
executing action a from state i during an in�nite random walk in M according to
�. Furthermore, we can introduce the standard notion of the mixing time of � to
its stationary distribution | informally, this is the number T� of steps required such
that the distribution induced on state-action pairs by T�-step walks according to �
will be \very close" to PM;�

1. Finally, let us de�ne �� = min(i;a)fPM;�(i; a)g.

Armed with these notions, it is not di�cult to show that the number of steps we must
take under � in order to simulate, with high probability, a call to the oracle PS(M),
is polynomial in the quantity T�=��. The intuition is straightforward: at most every
T� steps, we obtain an \almost independent" draw from PM;�(i; a); and with each
independent draw, we have at least probability � of drawing any particular (i; a)
pair. Once we have sampled every (i; a) pair, we have simulated a call to PS(M).
The formalization of these intuitions leads to a version of Theorem 1 applicable to
any �, in which the bound is multiplied by a factor polynomial in T�=�� , as desired.

However, a better result is possible. In cases where �� may be small or even 0 (which
would occur when � simply does not ever execute some action from some state), the
factor T�=�� is large or in�nite and our bounds become weak or vacuous. In such
cases, it is better to de�ne the sub-MDPM�(�), which is obtained fromM by simply
deleting any (i; a) for which PM;�(i; a) < �, where � > 0 is a parameter of our choos-
ing. In M�(�), �� > � by construction, and we may now obtain convergence rates
to the optimal policy in M�(�) for both Q-learning and the indirect approach like
those given in Theorem 1, multiplied by a factor polynomial in T�=�. (Technically,
we must slightly alter the algorithms to have an initial phase that detects and elim-
inates small-probability state-action pairs, but this is a minor detail.) By allowing
� to become smaller as the amount of experience we receive from � grows, we can
obtain an \anytime" result, since the sub-MDP M�(�) approaches the full MDP M
as �! 0.

References

[1] Jaakkola, T., Jordan, M. I., Singh, S. On the convergence of stochastic iterative dy-
namic programming algorithms. Neural Computation, 6 (6), 1185{1201, 1994.

[2] C. J. C. H. Watkins. Learning from Delayed Rewards. Ph.D. thesis, Cambridge Uni-
versity, 1989.

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[4] S. Mahadevan. Enhancing Transfer in Reinforcement Learning by Building Stochastic
Models of Robot Actions. In Machine Learning: Proceedings of the Ninth International

Conference, 1992.

1Formally, the degree of closeness is measured by the distance between the transient and
stationary distributions. For brevity here we will simply assume this parameter is set to a
very small, constant value.

