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Abstract: In this paper we prove sanity-check bounds for the error of the leave-one-out cross-
validation estimate of the generalization error: that is, bounds showing that the worst-case error
of this estimate is not much worse than that of the training error estimate. The name sanity-check
refersto the fact that although we often expect the leave-one-out estimate to perform considerably
better than the training error estimate, we are here only seeking assurance that its performance will
not be considerably worse. Perhaps surprisingly, such assurance has been given only for rather
limited casesin the prior literature on cross-validation.

Any nontrivial bound on the error of leave-one-out must rely on some notion of algorithmic sta-
bility. Previousboundsrelied on the rather strong notion of hypothesis stability, whose application
was primarily limited to nearest-neighbor and other local algorithms. Here we introduce the new
and weaker notion of error stability, and apply it to obtain sanity-check boundsfor |eave-one-out for
other classes of |earning algorithms, including training error minimization proceduresand Bayesian
algorithms. Weal so providelower bounds demonstrating the necessity of error stability for proving
bounds on the error of the leave-one-out estimate, and the fact that for training error minimization
algorithms, inthe worst case such bounds must still depend on the Vapnik-Chervonenkisdimension
of the hypothesis class.



1 Introduction and Motivation

A fundamental problem in statistics, machine learning, and related areas is that of obtaining an
accurate estimate for the generalization ability of a learning algorithm trained on afinite data set.
Many estimates have been proposed and examined in the literature, some of the most prominent
being the training error (also known as the resubstitution estimate), the various cross-validation
estimates (which include the leave-one-out or deleted estimate, aswell as k-fold cross-validation),
and the holdout estimate. For each of these estimates, the hope is that for a fairly wide class
of learning algorithms A, the estimate will usually produce a value € that is close to the true
(generalization) error € of the hypothesis function chosen by A.

There are surprisingly few previous results providing bounds on the accuracy of the various
estimates [15, 2, 3,17, 9, 8, 12, 10] (see the recent book of Devroye, Gyorfi and Lugosi [1] for an
excellent introduction and survey of thetopic). Perhapsthe most general results are those given for
the (classification) training error estimate by Vapnik [17], who proved that for any target function
and input distribution, and for any learning algorithm that chooses its hypotheses from a class

of VC dimension d, the training error estimate is at most O(y/d/m) * away from the true error,
where m isthe size of the training sample. On the other hand, among the strongest bounds (in the
sense of the quality of the estimate) are those given for the leave-one-out estimate by the work of
Rogers and Wagner [15], and Devroye and Wagner [2, 3]. The (classification error) leave-one-out
estimate is computed by running the learning algorithm m times, each time removing one of them
training examples, and testing the resulting hypothesis on the training example that was del eted;
the fraction of failed tests is the leave-one-out estimate. Rogers and Wagner [15] and Devroye
and Wagner [2, 3] proved that for several specific algorithms, but again for any target function and
input distribution, the leave-one-out estimate can be as close as O(1/4/m) to the true error. The
algorithms considered are primarily variants of nearest-neighbor and other local procedures, and
as such do not draw their hypotheses from a fixed class of bounded VC dimension, which is the
situation we are primarily interested in here.

A tempting and optimistic intuition about the leave-one-out estimate is that it should typically
yield an estimate that fallswithin O(1/4/m) of the true error. This intuition derives from viewing
each deleted test as an independent trial of the true error. The problem, of coursg, is that these
tests are not independent. The Devroye, Rogers and Wagner results demonstrate that for certain
algorithms, the intuition is essentially correct despite the dependencies. In such cases, the leave-
one-out estimate may be vastly preferableto thetraining error, yielding an estimate of thetrue error
whose accuracy is independent of any notion of dimension or hypothesis complexity (although the
true error itself may depend strongly on such quantities).

However, despite such optimism, the prior literature leaves open a disturbing possibility for
the leave-one-out proponent: the possibility that its accuracy may often be, for wide classes of
natural agorithms, arbitrarily poor. We would like to have what we shall informally refer to as
a sanity-check bound: a proof, for large classes of algorithms, that the error of the |eave-one-out
estimate is not much worse than the O(/d/m.) worst-case behavior of the training error estimate.
The name sanity-check refersto the fact that although we believe that under many circumstances,
the leave-one-out estimate will perform much better than the training error (and thus justify its

The O(-) notation hides logarithmic factorsin the same way that O(-) notation hides constants.



computational expense) the goal of the sanity-check bound isto smply prove that it is not much
wor se than the training error. Such aresult isof interest smply because the |eave-one-out estimate
isinwide experimental use (largely because practitionersdo expect it to frequently outperformthe
training error), so it behooves usto understand its performance and limitations.

A moment’ sreflection should makeit intuitively clear that, in contrast to thetraining error, even
a sanity-check bound for leave-one-out cannot come without restrictions on the algorithm under
consideration: some form of algorithmic stability isrequired [3, 9, 13]. If the removal of even a
single example from the training sample may cause the learning algorithm to “jump” to a different
hypothesiswith, say, much larger error than the full-sample hypothesis, it seems hard to expect the
leave-one-out estimate to be accurate. The precise nature of the required form of stability is less
obvious.

Devroye and Wagner [3] first identified a rather strong notion of algorithmic stability that we
shall refer to as hypothesis stability, and showed that bounds on hypothesis stability directly lead
to bounds on the error of the leave-one-out estimate. This notion of stability demands that the
removal of asingle example from the training sample resultsin hypothesesthat are “close” to each
other, in the sense of having small symmetric difference with respect to the input distribution. For
algorithms drawing hypotheses from a class of fixed VC dimension, the first sanity-check bounds
for the leave-one-out estimate were provided by Holden [9] for two specific algorithms in the
realizable case (that is, when the target function is actually contained in the class of hypothesis
functions).

However, in the more realistic unrealizable (or agnostic [11]) case, the notion of hypothesis
stability may simply be too strong to be obeyed by many natural learning algorithms. For example,
if there are many local minima of the true error, an algorithm that managed to always minimize
the training error might be induced to move to arather distant hypothesis by the addition of a new
training example (we shall elaborate on this example shortly). Many gradient descent procedures
use randomized starting points, which may even cause runs on the same sample to end in different
local minima. Algorithms behaving according to Bayesian principles will choose two hypotheses
of equal training error with equal probability, regardlessof their dissimilarity. What we might hope
to berelatively stable in such cases would not be the algorithm’s hypothesisitself, but the error of
the algorithm’s hypothesis.

The primary goal of this paper is to give sanity-check bounds for the leave-one-out estimate
that are based on the error stability of thealgorithm. In Section 2, we begin by stating some needed
preliminaries. In Section 3, we review the Devroye and Wanger notion of hypothesis stability,
and generalize the results of Holden [9] by showing that in the realizable case this notion can be
used to obtain sanity-check bounds for any consistent learning algorithm; but we also discuss the
limitations of hypothesis stability in the unrealizable case. 1n Section 4, we define our new notion
of error stability, and prove our main results: bounds on the error of the leave-one-estimate that
depend on the VC dimension of the hypothesis class and the error stability of the algorithm. The
bounds apply to a wide class of agorithms meeting a mild condition that includes training error
minimization and Bayesian procedures. In Section 5, we give a number of lower bound results
showing, among other things, the necessity of error stability for proving bounds on leave-one-out,
but also the absence of sufficiency. In Section 6 we conclude with some interesting open problems.



2 Prdiminaries

Let f be a fixed target function from domain X to range Y, and let P be a fixed distribution
over X. Both f and P may be arbitrary 2. We use S,, to denote the random variable S,, =
(Z1,Y1),- -, (Tm, Ym), Wherem isthe sample size, each z; is drawn randomly and independently
according to P, and y; = f(z;). A learning algorithm A is given S,, as input, and outputs
a hypothess h = A(S,,), where h : X — Y belongs to a fixed hypothesis class H. If A is
randomized, it takes an additional input # < {0, 1}* of random bits of the required length & to
make its random choices. In this paper we study mainly the casein which Y = {0, 1}, and briefly
thecaseinwhichY = R. For now we restrict our attention to boolean functions.

For any boolean function &, we define the generalization error of A (with respect to f and P)
by e(h) = €;,p(h) o Pr.ep[h(z) # f(z)]. For any two boolean functions ~ and &', The distance
between h and A’ (with respect to P) isdist(k, h') = distp(h, k') o Przeplh(z) # f(z)]. Sincethe
target function f may or may not belongto H, we definee,,, o Minyeg{e(h)}, and h,,; to besome
functionsuchthat e(k,,:) = €op:. Thus, thefunction k., isthebest approximationto f (with respect
to P) intheclass H, and ¢,,,; measuresthequality of thisapproximation. We definethetraining error
of aboolean function h with respect to S,, by €(h) = €s,,. (k) o {{zi,y:) € Sm : h(z;) # yi}|/m,
and the (generalized) version space VS (S,,) o {h € H : €(h) = minycg{e(h’)}} consists of all
functionsin H that minimize the training error.

Throughout this paper we assume that the algorithm A is symmetric. This means that A is
insensitive to the ordering of the examples in the input sample S,,,, so for every ordering of S,, it
outputs the same hypothesis. (In case A israndomized, it should induce the same distribution on
hypotheses.) Thisisavery mild assumption, as any algorithm can be transformed into a symmetric
algorithm by adding arandomizing preprocessing step. Thus, we may refer to S,,, asan unordered
set of labeled examples rather than as a list of examples. For any index ¢ € [m], we denote by
Si the sample S,, with the ;™ labeled example, (x;, y;), removed. That is, S, © S, \ {{zi,y:)}.
The leave-one-out cross validation estimate, €2 (S,,), of the error of the hypothesish = A(S,,) is
defined to be é4(S,,) % |{i € [m] : hi(z;) # y;}|/m, where hi = A(S: ). We are thus interested
in providing bounds on the error |é4(S,,.) — e(A(Sn))| of the leave-one-out estimate.

The following uniform convergence bound, due to Vapnik [17] will be central to this paper.

THEOREM 2.1 Let H be a hypothesis classwith VC dimension d < m. Then, for every m > 4 and
for any given § > 0, with probability at least 1 — §, for every h € H,

2B — ()| < 2\/d(|n(2m/d)+1)+ln(9/5)‘ 1)

m

We shall denote the quantity 2\/ d(in(2m/ d)il)“”(g/ %) by VC(d, m, §). Thus, for any learning algo-
rithm A using a hypothesis space of VC dimension d, for any § > 0, with probability at least 1 — §
over S, |€(A(Sm)) — e(A(Sm))| < VC(d, m, d).

20ur results generalize to the case in which we alow the target process to be any joint distribution over the sample
space X x Y, but it will be convenient to think of there being a distinct target function.



3 Sanity-Check Bounds via Hypothesis Stability

As we have mentioned aready, it is intuitively clear that the performance of the leave-one-out
estimate must rely on some kind of agorithmic stability (this intuition will be formalized in the
lower bounds of Section 5). Perhaps the strongest notion of stability that an interesting learning
algorithm might be expected to obey is that of hypothesis stability: namely, that small changesin
the sample can only cause the algorithm to moveto “nearby” hypotheses. The notion of hypothesis
stability is due to Devroye and Wagner [3], and is formalized in a way that suits our purposesin
the following definition 3,

DEFINITION 3.1 We say that an algorithm A has hypothesis stability (31, 32) if
Prs 1 aa [AIS(A(Sm), A(Sm-1)) 2 B2] < fBa (2)
where S,, = Sp—1 U {(z,y)}.

We shall shortly argue that hypothesis stability is in fact too demanding a notion in many
realistic situations. But first, we state the elegant theorem of Devroye and Wagner [3] that relates
the error of the leave-one-out estimate for an algorithm to the hypothesis stability.

THEOREM 3.1 Let A be any symmetric algorithm that has hypothesis stability (81, 32). Then for
any é > 0, with probability at least 1 — § over S,,,

E4(5n) — e(A(5, )] < L2 HBE ) ©

Thus, if we are fortunate enough to have an algorithm with strong hypothesis stability (that is,
small 8, and 3,), the leave-one-out estimate for this algorithm will be correspondingly accurate.
What kind of hypothesis stability should we expect for natural algorithms? Devroye, Rogers
and Wagner [15, 3] gave rather strong hypothesis stability results for certain nonparametric local
learning agorithms (such as nearest-neighbor rules), and thus were able to show that the error of
the leave-one-out estimate for such algorithms decreases like 1/m* (for values of o ranging from
1/4t01/2).

Note that for nearest-neighbor algorithms, there is no fixed “hypothesis class’ of limited VC
dimension— the a gorithm may choose arbitrarily complex hypotheses. Thisunlimited complexity
often makesit difficult to quantify the performance of the learning algorithm except in termsof the
asymptotic generalization error (see Devroye, Gyorfi and Lugosi [1] for adetailed survey of results
for nearest-neighbor algorithms). For this and other reasons, practitioners often prefer to commit
to ahypothesisclass H of fixed VC dimension d, and use heuristicsto find agood functionin A. In
this case, we gain the possibility of finite-sample generalization error bounds (where we compare
the error to that of the optimal model from H). However, in such asituation, the goal of hypothesis
stability may in fact be at odds with the goal of good performance in the sense of learning. To see

3Devroyeand Wagner [3] formalized hypothesi sstability in termsof the expected difference between the hypotheses;
here we trand ate to the “ high probability” form for consistency.
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this, imagine that the input distribution and target function define a generalization error “surface”
over thefunction space H, and that thissurfacehasminimaat h,,: € H, wheree(h,pt) = €ops > 0,
andasoat ' € H, wheree(h') = €(hopt) + a for some small o > 0. Thus, h,,; iSthe “global”
minimum, and A’ isa“local” minimum. Note that dist(h,,:, ') could be as large as 2¢,,:, which
we are assuming may be arather large (constant) quantity. Now if the algorithm A minimizes the
training error over H, then we expect that asm — oo, agorithm A will settle on hypotheses closer
and closer to h,,:. But for m << 1/a, A may well choose hypotheses closeto h'. Thus, as more
examples are seen, at some point A may need to move from A’ to the rather distant ;.

We do not know how to rule out such behavior for training error minimization algorithms, and
so cannot apply Theorem 3.1. Perhaps more importantly, for certain natural classes of agorithms
(such as the Bayesian algorithms discussed later), and for popular heuristics such as C4.5 and
backpropagation, it is far from obvious that any nontrivial statement about hypothesis stability can
be made. For this reason, we would like to have bounds on the error of the leave-one-out estimate
that rely on the weakest possible notion of stability. Notethat in theinformal example given above,
the quantity that we might hope would exhibit some stability is not the hypothesis itself, but the
error of the hypothesis: even though h,,; and b’ may be far apart, if A chooses »’ then oo must
not be “too large”. The main question addressed in this paper is when this weaker notion of error
stability is sufficient to prove nontrivial bounds on the leave-one-out error, and we turn to thisin
Section 4.

First, however, note that the instability of the hypothesis above relied on the assumption that
€opt > 0 — that is, that we are in the unrealizable setting. In the realizable ¢,,; = O case, there
is still hope for applying hypothesis stability. Indeed, Holden [9] was the first to apply uniform
convergence resultsto obtai n sanity-check boundsfor |eave-one-out viahypothesis stability, for two
particular (consistent) algorithms in the realizable setting . Here we generalize Holden's results
by giving a sanity-check bound on the leave-one-out error for any consistent algorithm. The simple
proof idea again highlights why hypothesis stability seems difficult to apply in the unrealizable
case: intherealizable case, minimizing the training error forces the hypothesisto be close to some
fixed function (namely, the target). Inthe unrealizable case, there may be many different functions,
all with optimal or near-optimal error.

THEOREM 3.2 Let H beaclassof VC dimension d, and let the target function f be contained in H
(realizable case). Let A be a symmetric algorithm that alwaysfindsan h € H consistent with the
input sample. Then for every § > 0, with probability at least 1 — §,

EJ&J—dAWMHZO(VMM”ﬁmmMQ- @

PrROOF: By uniform convergence, with probability at least 1 — ¢,

dlog(m/d) + Iog(1/5’))

m

dM&MZmﬂLM&MZO( (5)

4Holden [8] has recently obtained sanity-check bounds, again for the realizable setting, for other cross-validation
estimates.



and

(6)

(Herewe are using the stronger O(d /m) uniform convergence bounds that are special to therealiz-
able case.) Thusby thetriangleinequality, with probability at least 1— &, dist(A(Sp), A(Sm-1)) =
O (Hedlm/4Hool/7)) Thetheoremfollowsfrom Theorem3.1, whered' issettod/m.

(A(Sm_1)) = di(F, A(Sm_1)) = O (d 'Og(m/i) _+1log(1/5')) |

D(Theoremm3.2)

We should note immediately that the bound of Theorem 3.2 has a dependence on m , 8
opposed to the log(1/é) dependence for the training error given by Theorem 2.1. Unfortunately,
it is well-known [1] (and demonstrated in Section 5) that, at least in the unrealizable setting, a
1/8 dependence is in genera unavoidable for the leave-one-out estimate. Thus, it appears that
in order to gain whatever benefits leave-one-out offers, we must accept a worst-case dependence
on ¢ inferior to that of the training error. Also, we note in passing that Theorem 3.2 can aso be
generaized (perhapswith aworse power of d/m) to the case wherethetarget functionliesin H but
is corrupted by random classification noise: again, minimizing training error forcesthe hypothesis
to be close to the target.

It is possible to give examplesin the realizable case for which the leave-one-out estimate has
error O(1/4/m) while the training error has error Q(y/d/m); such examples merely reinforce the
intuition discussed in the introduction that leave-one-out may often be superior to the training
error. Furthermore, there are unrealizable examples for which the error of leave-one-out is again
independent of d, but for which no nontrivial leave-one-out bound can be obtained by appealing to
hypothesis stability. It seems that a more general notion of stability is called for.

4 Sanity-Check Boundsvia Error Stability

Inthissection, weintroducethe notion of error stability and useit to prove our mainresults. Wegive
bounds on the error of the leave-one-out estimate that are analogous to those given in Theorem 3.1,
in that the quality of the boundsis directly related to the error stability of the algorithm. However,
unlike Theorem 3.1, in all of our bounds there will be a residual O(y/d/m) term that appears
regardless of the stability; thisisthe pricewe pay for using aweaker — but morewidely applicable
— type of stability. In Section 5, we will show that the dependence on the error stability is aways
necessary, and also that a dependence on d/m cannot be removed in the case of algorithms which
minimize the training error without further assumptions on the agorithm.

For expository purposes, we limit our attention to deterministic algorithms for now. The
generalization to randomized algorithms will be discussed shortly. Our key definition mirrorsthe
form of Definition 3.1.

DEFINITION 4.1 We say that a deterministic algorithm A has error stability (51, 82) if
Prsm s u|€(A(Sm)) — e(A(Sm-1))| > B2] < B (7)

where S,, = S,,—1 U {{(z,y)}, and both 8; and 3, may be functions of m.



Our goal isthus to prove bounds on the error of the leave-one-out estimate that depend on 3,
and ;. This will require an additional (and hopefully mild) assumption on the algorithm that is
quantified by thefollowing definition. Wewill shortly prove that some natural classes of algorithms
do indeed meet this assumption, thus allowing us to prove sanity-check bounds for these classes.

DEFINITION 4.2 For any deterministic algorithm A, we say that the |eave-one-out estimate (1, v2)-
overestimates the training error for A if

P, e [€0(Sm) <EA(SR)) =72 < m (8)
where S,, = Sp,—1 U {(z,y)}, and both v, and -, may be functions of m.

While we cannot claim that training error overstimation isin general necessary for obtaining
bounds on the error of the leave-one-out estimate, we note that it is clearly necessary whenever the
training error underestimates the true error, asis the case for algorithms that minimize the training
error. Inany case, in Section 5 we show that some additional assumptions (beyond error stability)
arerequired to obtain nontrivial bounds for the error of leave-one-out.

Before stating the main theorem of this section, we give the following ssimple but important
lemmacthat is well-known [1].

LEMMA 4.1 For any symmetric learning algorithm A,
Es,u[€5(Sm)] = Espy[e(A(Sm-1))]: (9)

PrROOF: For any fixedsample Sy, let h* = A(S;,), andlete; € {0, 1} belifand onlyif h*(z;) # y;.
Then

o fe4(5n)) = s |Z3e| = LY Ealel = Esled — Es, l(A(Sn)]

(10)

The first equality follows from the definition of leave-one-out, the second from the additiv-
ity of expectation, the third from the symmetry of A, and the fourth from the definition of e;.
O(Lemma4.1)

The first of our main results follows.
THEOREM 4.1 Let A be any deterministic algorithmusing a hypothesis space H of VC dimension d

such that A haserror stability (81, 32), and leave-one-out (1, v2)-overestimates the training error
for A. Then for any § > O, with probability at least 1 — § over S,

E4(50) — e(AlSn)| < (swd“)('“fjm/d)“)+3ﬁ1+ﬂ2+71+72) s



Let usbriefly discuss theform of the bound given in Theorem 4.1. First of all, aswe mentioned

earlier, thereis aresidual O(,/d/m) term that remains no matter how error-stable the algorithm
this. This means that we cannot hope to get something better than a sanity-check bound from this
result. Our main applications of Theorem 4.1 will be to show specific, natural cases in which +;
and ~, can be eliminated from the bound, leaving us with a bound that depends only on the error

stability and the residual O(,/d/m) term. We now turn to the proof of the theorem.

PrOOF: From Theorem 2.1 and thefact that |eave-one-out (1, 2)-0overestimatesthe training error,
we have that with probability at least 1 — 6" — 71, (where §’ will be determined by the analysis)

€(Sm) > EA(Sm) =712 > €(A(Sm)) - VO(d,m, &) — 2. (12)

cv

Thus, the fact that |eave-one-out does not underestimate the training error by more than -+, (with
probability at least 1 — ;) immediately lets us bound the amount by which leave-one-out could
underestimate the true error ¢(A(S,)) (where here we set §’ to be §/2 and note that whenever
v1 > &/2, thebound holdstrivially). It remainsto bound the amount by which |eave-one-out could
overestimate the true error.

Let us define the random variable x(S..) by €2(S..) = €(A(Sm)) + x(Sm), and let us define
r ¥ vC(d,m,8) + 72, and p € § + ~1. Then Equation (12) says that with probability at most
p, X(Sm) < —7. Furthermore, it follows from the error stability of A that with probability at |east

1-—p, A
x(Sm) < €4(Sm) — €(A(Sm_1)) + B2 (13)

(where S—1U{(z,y)} = Sm). By Lemmad.1weknow that Es,, , (s [€4(Sm)—€(A(Sm-1))] = 0,
and hence on those samples for which Equation (13) holds (whosetotal probability weight isat least
1 — B4), the expected value of €4(S,,) — e(A(Sm_1)) isat most 31/(1 — B1). Assuming 3; < 1/2
(since otherwise the bound holdstrivially), and using the fact that |x (S )| < 1, we have that

Es.[x(5m)] < 361+ B2 (14)

Let a be such that with probability exactly &, x(Sm) > a. Then

301+82 2 Esx(Sm)] 2 da+p(-1)+(1-6-p)(-7) = da—p—7 (19
where we have again used the fact that |x (S )| < 1 aways. Thus
361+ B+p+T

< 3 (16)

From the above we have that with probability at least 1 — 4,
€(Sm) < e(A(Sm)) + (301+ B2+ p+7)/8 (17)
= €(A(Sm)) + (VC(d,m,8") + 301+ B2+ 71+ 72+ &) /6. (18)

If we set §' = d/m, we get that with probability at least 1 — §,

R d+1)(In(9m/d) + 1
EA(Sm) < €(A(Sm)) + (3\/( I nfn /d) +1) + 361+ B2+ 71+ ’)’2) /8 (19)
which together with Equation (12) proves the theorem. ((Theorem 4.1)
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4.1 Application to Training Error Minimization

In this section, we give one of our main applications of Theorem 4.1, by showing that for training

error minimization agorithms, a O(y/d/m) bound on the error of leave-one-out can be obtained
from error stability arguments. We proceed by giving two lemmas, the first bounding the error
stability of such agorithms, and the second proving that |eave-one-out overestimates their training
error.

LEMMA 4.2 Let A beany algorithmperforming training error minimization over a hypothesisclass
H of VC dimension d. Thenfor any 8; > 0, A haserror stability (81, 2VC(d, m — 1, 81/2))).

PrROOF: From uniform convergence (Theorem 2.1), we know that with probability at least 1 — 3,
both e(A(Sm-1)) < €opt + 2VC(d,m — 1,51/2) and e(A(Sm)) < €ope + 2VC(d, m, £1/2) hold,
while it is always true that both €(A(Sy.)) > €ope, AN €(A(Sm—1)) > €ope. Thus with probability
aleast 1 — B, |e(A(Sm-1)) — €(A(Sm))| < 2VC(d,m — 1, 1/2)). O(Lemmad4.2)

LEMMA 4.3 Let A beany algorithmperforming training error minimization over a hypothesisclass
H. Then leave-one-out (0O, 0)-overestimates the training error for A.

PrROOF: Let h = A(S,,) and ht = A(S:). Let err(S,) be the subset of unlabeled examples
in S,, on which h errs. We claim that for every (z;,y;) € err(Sn,), h* errson (z;,y;) as well,
implying that €4(S,,) > €(A(S»)). Assume, contrary to the claim, that for some s, h(z;) # v
while hi(z;) = y;. For any function g and sample S, let e,(.S) denote the number of errors made
by g on S (thuse,(S) = €(g) - |S|). Since A performstraining error minimization, for any function
h' € H we have en(Sm) > en(Sm). Similarly, for any &' € H, we have en(S%) > exi(SE).
In particular this must be true for h, and thus ex(S:,) > eni(S:). Since h errs on (z;,y;),
en(SE,) = en(Sm) — 1, and hence e;:(S%,) < en(Sm) — 1. But since h* does not err on (z;, y;),
eni(Sm) = eni(SE,) < en(Sm) — 1 < en(Sm), contradicting the assumption that A minimizes the
training error on S,,. O(Lemma4.3)

THEOREM 4.2 Let A be any algorithm performing training error minimization over a hypothesis
class H of VC dimension d. Then for every § > 0O, with probability at least 1 — §,

24(S,) — (A(Sm))| < (8\/ (d+1) (In(Sm/d) + 2)) /6. (20)

m

ProOOF: Follows immediately from Lemma 4.2 (where 8, is set to 2d/m), Lemma 4.3, and
Theorem 4.1. [(Theorem 4.2)

Thus, for training error minimization algorithms, the wor st-case behavior of the leave-one-out
estimate is not worse than that of the training error (modulo the inferior dependenceon 1/§ and
constant factors). We would like to infer that a similar statement is true if the algorithm almost
minimizesthetraining error. Unfortunately, Lemma4.3 isextremely sengitive, forcingusto ssmply
assume that |eave-one-out overestimates the training error in the following theorem. We will later
discuss how reasonable such an assumption might be for natural algorithms; in any case, we will
show in Section 5 that some assumptions beyond just error stability arerequired to obtain interesting
bounds for |leave-one-out.



THEOREM 4.3 Let A be a deterministic algorithm that comes within A of minimizing the training
error over H (that is, on any sample S, €(A(Sn)) < mineg{e(h)} + A), and suppose that
leave-one-out (0, 0)-overestimates the training error for A. Then with probability at least 1 — 4,

12.(Sm) — €(A(Sn))| < (8\/ (d+1)(n(2m/d) +2) | A) /6. (22)

m

ProOF: The theorem follows from the fact any agorithm that comes within A of minimizing the
training error has error stability (81,A 4+ 2VC(d,m — 1,31/2)) (the proof is similar to that of
Lemma4.2), and from Theorem 4.1. ((Theorem 4.3)

4.2 Application to Bayesian Algorithms

We have just seen that training error minimization in fact implies error stability sufficient to obtain
a sanity-check bound on the error of leave-one-out. More generally, we might hope to obtain
bounds that depend on whatever error stability an algorithm does possess (but not better bounds;
see Section 5). In this section, we show that this hope can be realized for a natural class of
randomized algorithmsthat behave in a Bayesian manner.

To begin with, we generalize Definitions 4.1 and 4.2 to include randomization ssmply by letting
the probability in both definitions be taken over both the sample S,,, and any randomization required
by thea gorithm. Weusethenotation A(S, 7 ) to denote the hypothesisoutput by A oninput sample
S and random string 7, and €4(S,,, 71, - . ., 7 ) to denote the leave-one-out estimate when the
random string 7; isused on thecall to A on S¢,.

DEFINITION 4.3 We say that a randomized algorithm A has error stability (81, 32) if
Prssfen)m 7 |E€(A(Sm, 7)) — €(A(Sm-0,7"))| 2 B2 < Ba (22)
where S,, = Sp_1 U {(z,y)}.

DEFINITION 4.4 For anyrandomized algorithm A, wesaythat leave-one-out (1, v2)-overestimates
the training error for A if

PrSm—ly(ﬂ-‘,y%F,Fl,---,Fm [EQ(SM7F17 cee 7’Fm ) < g(A(SrmF)) - 72] < Y1 (23)
where S,, = Sp_1 U {(z,y)}.

The proof of the following theorem is essentially the same as the proof of Theorem 4.1 where
the only differenceisthat all probabilities are taken over the sample S,,, and the randomization of
the algorithm.

THEOREM 4.4 Let A be any randomized algorithm using a hypothesis space H of VC dimension
d such that leave-one-out (-1, v2)-overestimates the training error for A, and A haserror stability
(B1,82). Thenfor any § > 0, with probability at least 1 — §,

3/ @ DVFH) L 38 4 Bty 4
4oy 7y 1T ) — (A(Smy 7)) | = ™ - L (24

10



Here the probability is taken over the choice of S,,, and over the coin flips+i,...,7, andr of A
onthe St and S,,.

We now apply Theorem 4.1 to the class of Bayesian algorithms — that is, algorithms that
choose their hypotheses according to a posterior distribution, obtained from a prior that is modified
by the sample data and a temperature parameter. Such algorithms are frequently studied in the
smulated annealing and statistical physics literature on learning [16, 5].

DEFINITION 4.5 We say that a randomized algorithm A using hypothesis space H is a Bayesian
algorithmif there exists a prior P over H and atemperature 7' > 0 such that for any sample S,
andany h € H,

Pre[A(Sm, ) = W = FP(h) o0 (~ 2 S 1(h(ad) # ). (25)

Here Z = Y 1cp P(h) exp (—% i L(h(z;) # yi)) isthe appropriate normalization.

Note that we till do not assume anything about the target function (for instance, it is not
necessarily drawn according to P or any other distribution) — it isonly the algorithm that behaves
in a Bayesian manner. Also, note that the special case in which T = 0 and the support of P is H
results in training error minimization.

We begin by giving ageneral lemmathat identifiesthe only property about Bayesian algorithms
that we will need; thus, all of our subsequent results will hold for any algorithm meeting the
conclusion of thislemma.

LEMMA 4.4 Let A be a Bayesian algorithm. For any sample S and any example (z,y) € S, let
p be the probability over 7 that A(S,7") errson (z,y), and let p’ be the probability over '’ that
A(S —{(z,y)},7" ) errson (z,y). Thenp’ > p.

PrROOF: Let P bethedistributioninduced over H when Aiscalledon S, andlet P’ bethedistribution
over H induced when A iscaledon S — {(z,y)}. Thenforany h € H, P(h) = (1/Z)P'(h)
if h does not err on (z,y), and P(h) = (1/Z) exp(—£)P’(h) if h does err on (z,y). Thusthe
only change from P’ to P is to decrease the probability of drawing an k which errson (z,y).

O(Lemma4.4)

The key result leading to a sanity-check bound for Bayesian algorithmsfollows. It bounds the
extent to which leave-one-out overestimates the training error in terms of the error stability of the
algorithm.

THEOREM 4.5 Let A be a Bayesian algorithm (or any other algorithm satisfying the conclusion of
Lemma 4.4) that has error stability (81, 32). Then for any v > 0, leave-one-out

(27 + 3\/B1, 2/B1 + 482 + 4VC(d,m, ) + \/log(L/7)/m)) (26)

-overestimates the training error for A.

11



In order to prove Theorem 4.5, we will first need the following lemma, which says that with
respect to the randomization of a Bayesian algorithm, the leave-one-out estimate is likely to
overestimate the expected training error.

LEMMA 4.5 Let A beaBayesan algorithm(or any randomized algorithm satisfying the conclusion
of Lemma 4.4). Then for any fixed sample S,, = Sn—1 U {(z,y)}, with probability at least 1 — ¢
over ry, ..., andr,

EA (S Ty -y ) > Ex [E(A(Sm, 7))] — 1/l0g(1/8) /m. (27)

PrROOF: For each (z;,y;) € Sm, let p; be the probability over ' that A(S,.,7 ) errson (z;,y;)
and let p! be the probability over 7; that A(S:,,7; ) errson (z;,y;). By Lemma 4.4 we know that
p; > pi. Then

Er [2(A(Sm, 7))] = IEIP& [A(Sm, ) = h] - &(h) (28)
- h;{ Prs [A(Sm, 7 Z I(h(z:) # y:) (29)
= = Zh;{ Pri[A(Sm) = h] - I(h(z:) # v:) (30)
- Iy (31)

Denote (1/m) Y; p; by p, and (1/m) 3, pl by p’. Let e; beaBernoulli random variable determined
by 7; whichislif A(S¢ ,7; )errson{z;,y;) and O otherwise. By definition, €4 (S,,, 71, ..., 7m ) =
(1/m) Y ; e;, and

Ei“l ----- Trm [EA(SM7T17"'7FM )] = Ei“l ----- Trm [(1/m)261] = I;r > p_ - EF’[E(A(SWHF))]

By Chernoff’sinequdlity, for any «,
Pra,.... [(1/m) Zez <p —a] < exp(—2a’m) (33)

By setting a = (1/2)4/10g(1/4)/m, we have that with probability at least 1 — § over the choice of

EA(Smy ™1, -y Tm ) > Er[6(A(Sm,7))] — (1/2)4/10g(1/8)/m. (34)
(Lemma4.5)

Now we can give the proof of Theorem 4.5.

PROOF (Theorem 4.5):  Because A has error stability (81, 82), if we draw S,,,_1 and (z,y) at
random we have probability at least 1 — /3 of obtaining an .S,,, such that

Pre 1 [[e(A(Sm, 7)) — e(A(Smo1, 7" )| > B2) < /B1. (35)

12



Equation (35) relates the error when A iscalled on S, and S,,,_1. We would like to trandate this
to a statement relating the error when A iscalled on S, twice. But if S,,, satisfies Equation (35), it
follows that

Pre 1 [|e(A(Sm, 7)) — e(A(Sm, 7" )| > 282 < 2¢/B1. (36)

Thereasonisthat if |e(A(Sm, ™)) — €(A(Sm, 7" ))| > 282, then e(A(Sm—1,7" )) can be within 3,
of only one of e(A(Sm, 7)) and e(A(Sm, 7' )), and each isequally likely to result fromacall to A
on S,,,. From Equation (36) and Theorem 2.1, we have that with probability at least 1 — v — /1,
S Will satisfy

Pre 1 [[6(A(Sm, 7)) — E(A(Sm, 7" ))| > 262+ 2VC(dym,7)] < 2¢/B1  (37)
If S, satisfies Equation (37), it follows that there must be a fixed value €, € [0, 1] such that

Prz [|(A(Sm, 7)) = &| > 28, + 2VC(dym,7)] < 2,/By. (38)

Assuming that Equation (38) holds, how far can Ez [€(A(Sm, 7 ))] be from é,? The extreme cases
are
Er [E(A(Sm, 7)) = (1 24/B1) (0 + 282 + 2VC(d,m, 7)) + 2¢/B1 - 1 (39)
and
Ex [6(A(Sm, 7))] = (1 2y/B1)(é0 — 282 — 2VO(d, m, 7)) + 24/B1 - 0. (40)
In either case,
Ex [6(A(Sm, 7)) — &0l < 2y/B1+ 282+ 2VO(d, m, 7)) (42)

and thus by Equation (38), with probability at least 1 — v — /81 over thedraw of S,,, S, will be
such that the probability

P [E(A(Sm, 7)) = Es [A(A(Sm, 7)) = (282+ 2VC(d,m,)) + (24/B1 + 262 + 2VO(dym, )|
(42)
isat most 24/8;. Combined with Lemma4.5, we obtain that with probability at least 1 — 2y — 3/51
over Sy, 71,...,7m andr,
A (Sms Ty oy ) > &(Smy7) — 2¢/B1— 48, — 4VO(d,m,7) — \Jlog(L/y)/m  (43)
asdesired. ((Theorem 4.5)

Now we can give the main result of this section.

THEOREM 4.6 Let A bea Bayesian algorithm (or any randomized algorithm satisfying the conclu-
sion of Lemma 4.4) that has error stability (81, 82). Then for any § > 0O, with probability at least
1-46,

(9m/d) + 1

m

B4 (Soms Py o ) — €(A(Smy )| < (10\/(“l+ 1) (In ) +8,/81+ 5[32) /6.

(44)
Here the probability is taken over the choice of S,,, and over the coin flips+i,...,7, andr of A
onthe St and S,,.

13



Thus, Theorem 4.6 relates the error of |eave-one-out to the stability of a Bayesian agorithm:

as 31, B> — 0, we obtain a@(\ /d/m) bound. Again, in Section 5 we show that some dependence
on 31 and 3, isrequired.

4.3 Application to Linear Functionsand Squared Error

In this section, we briefly describe an extension of the ideas devel oped so far to problemsin which
the outputs of both the target function and the hypothesis functions are real-valued, and the error
measure is squared loss. The importance of this extension is due to the fact that for squared error,
thereisaparticularly nice case (linear hypothesisfunctions) for which empirical error minimization
can be efficiently implemented, and the |eave-one-out estimate can be efficiently computed.

Our samples S,,, now consist of examples (z;,y;), where z; € ®? and y; € [—1,1]. For any
function A : R¢ — [—1, 1], we now define the generalization error by e(h) = E, ,»[(h(z) — y)?],
and similarly thetraining error becomes é(h) = ¥, ,.yes(h(z:) — y;)*. For any algorithm A, if h*
denotes A(S,), the leave-one-out estimate isNOW €5 (Sm) = Xz wiyesnm (B (i) — 3:).

It can be verified that in such situations, provided that a uniform convergence result anal ogousto
Theorem 2.1 can be proved, then the anal ogue to Theorem 4.2 can be obtained (with essentially the
same proof), where the expression VC(d, m, é) in the bound must be replaced by the appropriate
uniform convergence expression. Wewill not statethe general theorem here, but instead concentrate
on an important special case. It can easily be verified that Lemma 4.3 still holds in the squared
error case: that is, if A performs (squared) training error minimization, then for any sample S,,,,
é4(Sm) > €(A(Sm)). Furthermore, if the hypothesis space H consists of only linear functions
w - z, then provided the squared loss is bounded for each w, nice uniform convergence bounds are
known.

THEOREM 4.7 Let the target function be an arbitrary mapping ®¢ — [~ B, B], where B > Oisa
constant, and let P be any input distribution over [ B, B]¢. Let A perform squared training error
minimization over the class of all linear functionsw - z obeying ||w|| < B. Then for every § > O,
with probability at least 1 — 4,

24(Sm) — e(A(Sm))| = O (4/(d/m)(10g(d/m) 6 . (45)

Two very fortunate properties of the combination of linear functions and squared error make
the sanity-check bound given in Theorem 4.7 of particular interest:

e There exist polynomia-time algorithms for performing minimization of squared training
error [4] by linear functions. These algorithms do not necessarily obey the constraint
llw|| < B, but we suspect this is not an obstacle to the validity of Theorem 4.7 in most
practical settings.

e Thereis an efficient procedure for computing the leave-one-out estimate for training error
minimization of squared error over linear functions[14]. Thus, it is not necessary to run the
error minimization procedure m times; thereis a closed-form solution for the |eave-one-out
estimate that can be computed directly from the data much more quickly.

14



More generally, many of theresultsgiven inthispaper can be generalized to other lossfunctions
viathe proper generalizations of uniform convergence [7].

4.4 Other Algorithms

We now comment briefly on the application of Theorem 4.1 to algorithmsother than error minimiza-
tion and Bayesian procedures. Aswe have aready noted, the only barrier to applying Theorems 4.1
to obtain bounds on the leave-one-out error that depend only on the error stability and O(,/d/m)
lies in proving that leave-one-out sufficiently overestimates the training error (or more precisely,
that with high probability it does not underestimate the training error by much). We believe that
while it may be difficult to prove this property in full generality for many types of algorithms, it
may nevertheless often hold for natural algorithms running on natural problems.

For instance, note that in the deterministic case, leave-one-out will (O, 0)-overestimate the
training error aslong as A hasthe stronger property that if A(S,,,) erred onanexample(z,y) € S,
then A(S,, —{(z,y)}) errson (z,y) aswell. Inother words, theremoval of apoint fromthe sample
cannot improve the algorithm’s performance on that point. This stronger property is exactly what
was proven in Lemma4.3 for training error minimization, and its randomized algorithm anal ogue
was shown for Bayesian algorithms in Lemma 4.4. To see why this property is plausible for a
natural heuristic, consider (in the squared error case) an algorithm that is performing a gradient
descent on the training error over some continuous parameter space w. Then the gradient with
respect to w can be written as a sum of gradients, one for each example in S,,,. The gradient term
for (z,y) gives aforce on w in adirection that causes the error on (z,y) to decrease. Thus, the
main effect on the algorithm of removing (z,y) is to remove this term from the gradient, which
intuitively should cause the algorithm’s performance on (z,y) to degrade. (The reason why this
argument cannot be turned into a proof of training error overestimation is that it technically is
valid only for one step of the gradient descent.) It is an interesting open problem to prove that the
required property holds for widely used heurigtics.

5 Lowe Bounds

In this section, we establish the following:

e That the dependence on 1/4§ isin general unavoidable for the leave-one-out estimate;

e That in the case of algorithms that perform error minimization, the dependence of the error
of leave-one-out on the V C dimension cannot be removed without additional assumptionson
tbe agorithm.

e That for any algorithm, the error of the leave-one-out estimate islower bounded by the error
stability;

e That there exist algorithms with perfect error stability for which the leave-one-out estimate
is arbitrarily poor, and furthermore, these algorithms use a hypothesis class with constant
VC dimension.
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Theselast two pointsare especially important: they establish that whileerror stability isanecessary
conditionfor nontrivial bounds on the leave-one-out error, it isnot by itself sufficient even when the
hypothesis class has very small VC dimension. Therefore, additional assumptions on the algorithm
must be made. The additional assumptions made in Theorem 4.1 were sufficient training error
overestimation and bounded VC dimension. In contrast, hypothesis stability alone is a sufficient
condition for nontrivial bounds, but is far from necessary.

We begin with the lower bound giving an example where there is an Q(1/4/m) chance of
constant error for the leave-one-out estimate. Setting d = 1 in Theorem 4.1 shows that the
dependence on § given thereis tight (upto logarithmic factors).

THEOREM 5.1 There exists an input distribution P, a target function f, a hypothesis class H of
VC dimension 1, and an algorithm A that minimizes the training error over H such that with
probability Q(1/+/m), [€4(Sm) — e(A(Sm))| = Q(1).

PrROOF: Let the input space X consist of a single point z, and let the target function f be the
probabilistic function that flips a fair coin on each tria to determine the label to be given with z.
Thus, the generalization error of any hypothesisis exactly 1/2. The algorithm A simply takes the
majority label of the sample asits hypothesis. Now with probability Q(1/4/m), the sample S,,, will
have a balanced number of positive and negative examples, in which case €4(S,,) = 1, proving the
theorem. [(Theorem 5.1)

The following theorem shows that in the case of agorithms that perform training error min-
imization, the dependence of the error of the leave-one-out estimate on the VC dimension is
unavoidable without further assumptions on the algorithm.

THEOREM 5.2 For any d, there exists an input distribution P, a target function f, a hypothesis
class H of VC dimension d, and an algorithm A that minimizesthe training error over H such that
with probability Q(1), [€4(S,,) — €(A(Sm))| = Q(d/m).

PROOF: Let X = [0,1] U 21, 2o, Where z; and z, are “specia” points. Each of z; and z, will have
weight 1/4 under P, while the interval [0,1] will have weight 1/2 uniformly distributed. Each
functionin H must label exactly oneof z; and z, positively, and may be any d-switch function over
[0,1]. Let k4 bethe d-switch function over [0,1] in which the switches are evenly spaced 1/d apart.

Theagorithm A behavesasfollows: if thesamplesizem iseven, A first checksif Ay minimizes
the training error on those sample pointsin [0,1]. If so, A chooses the hypothesis that |abels 2,
negatively, z, postively, and is hg on [0,1]. Otherwise, A chooses to label z; negatively, z,
positively, and on [0,1] chooses the “leftmost” hypothesis that minimizes the training error over
[0,1] (that is, the hypothesisthat minimizesthe training error and always choosesits switchesto be
asfar to the left as possible between the two sample points where the switch occurs). If the sample
sizeis odd, A chooses the hypothesis that labels z; positively, z, negatively, and is the leftmost
hypothesis minimizing the training error over [0,1]. Thus, on even samples, A has a strong bias
towards choosing k4 over [0,1], but on odd samples, has no such bias.

Now suppose that the target function labelsboth z; and z, negatively, and labels[0,1] according
to hy. Then it isclear that with high probability, A comes within O(1/+/m) of minimizing the
training error (since A must label either z; or z, positively, and each of these choices will incur
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approximately the same number of training errors, and A always minimizes the training error on
[0,1]). Furthermore, if m iseven, then thetrue error of A’shypothesiswill bewithin O(1/+/m) of
1/4. But is easy to verify that é4(S,,) will exceed 1/4 + d/m with high probability, as desired.
Finally, the behavior of A on the points z; and z, gives the desired Q(1) lower bound on
P[A(Sm)AA(SE)]- [(Theorem 5.2)

We next show that error stability is essential for providing upper bounds on the error of the
|eave-one-out estimate.

THEOREM 5.3 Let A be any algorithm which does not have error stability (81, 82). Then for any

>0,
Pro,[[E4(Sm) — (A(S) 2 7] > PP (46)

PROOF: Since A does not have error stability (81, 82), it is either the case that with probability at
least 81/2, (A(Sm)) — €(A(Sm—1)) > B2, or that with probability at least 81/2, e(A(Sm-1)) —
e(A(Sm)) > B2. Without loss of generality, assume the latter is true. Let x(S,,) be a random
variable which is defined as follows: x(S) = €2(Sm) — €(A(Sm)). Thus,

X(Sm) = €5,(Sm) — €(A(Sm-1)) + €(A(Sm-1)) — €(A(Sm)) (47)
and
Es, [X(Sm)] = Esp_i o) [€5(Sm) — €(A(Sm-1))] + Esp_s (o) [€(A(Sm-1)) — (A(Sm))]  (48)
where S,, = Sm—1 U {(z,y)}. By Lemma 4.1 and the fact that with probability at least 8,/2,
e(A(Sm-1)) — €(A(Sm)) > B2, we get that
Es, [X(Sm)] > 2 -, (49
Let p be the exact probability that |x(Sx)| < 7. Then
PP < Eslx(Sm) (50
< pt+(1-p)-1 (51)
— P(T — 1) +1 (52)
Thus, p < (1 — (B8182/2))(1 — 7), and equivaently,
1_ (ﬂlﬁz/z) -7 ﬂlﬁz . (53)

—T
which means that with probability at least ﬁ1ﬁ2/2 -7, € (Sm) —€(A(Sm)) > 7. (Theorem 5.3)

As an example, consider the application of the theorem to the case in which the probability that
|e(A(Sm)) — €(A(Sm-1))| > B2 isgreater than 1/2 for some B,. Then by setting = to be 8,/8, we
get that with probability at least 3,/8, the error of the leave-one-out estimateis at least 3,/8.

Finally, we show that, unlike hypothesis stability, error stability alone is not sufficient to give
nontrivial bounds on the error of |eave-one-out even when the hypothesis class has very small VC
dimension, and hence additional assumptions are required.
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THEOREM 5.4 There exists an input distribution P, a target function f, a hypothesis class H with
constant VC dimension, and an algorithm A such that A has error stability (0, 0) with respect to P
and £, but with probability 1, [¢4(S,,) — e(A(Sm))| = 1/2.

PrOOF: Let X = {0,..., N — 1} where N iseven, let f be the constant O function, let P be the
uniform distribution on X, and let H be the following class of (boolean) threshold functions:

HE{h,:tc{0,...,N—1}, whereh,(z) =1 iff (¢t+z)modN < N/2} (54)

Clearly, the VC dimension of H is2. Furthermore, for every h € H, theerror of A with respect to f
and P isexactly 1/2, and hence any algorithm using hypothesisclass H haserror stability (0, 0). It
thus remains to show that there exists an algorithm A for which the leave-one-out estimate always
haslarge error.

For agivensample S, = {(z1,v1), -, (Tm,yYm)}, l€tt = (X7, @;) mod N, and let A(S,,) =
h:, where h; is as defined in Equation (54). Thus, the algorithm’s hypothesisis determined by the
sum of the (unlabeled) examples. We next compute the |eave-one-estimate of the algorithmon S, .
Assume first that S, issuch that (37, ;) mod N < N/2. Then, by definition of A, for each z;,
the hypothesis bt = A(S:) will label z; by 1, whereas f(z;) = 0. Similarly, if S,, is such that
(X7, z;) mod N > N/2, then for each z;, h*(z;) = 0, which isthe correct label according to f.
In other words, for half of the samples S, we have €4(S,,) = 1, which means that |eave-one-out
overestimates e( A(S,,)) = 1/2 by 1/2, and for half of the sample it underestimates the error by
1/2. [((Theorem 5.4)

6 Extensionsand Open Problems

It is worth mentioning explicitly that in the many situations when uniform convergence bounds
better than V' C(d, m, §) can be obtained [16, 6] our resulting bounds for |eave-one-out will be
correspondingly better as well. In the full paper we will also detail the generalizations of our
results for other loss functions, and give resultsfor k-fold cross-validation as well.

There are a number of interesting open problems, both theoretical and experimental. On the
experimental side, it would be interesting to determine the “typical” dependence of the leave-one-
out estimate’s performance on the VC dimension for various commonly used algorithms, and aso
to establish the extent to which |eave-one-out overestimates the training error. On the theoretical
side, it would be nice to prove sanity-check bounds for leave-one-out for popular heuristics like
C4.5 and backpropagation. Also, itisan open problem whether error stability together with limited
V C dimension of the hypothesis class suffice to prove sanity-check bounds. Finally, thereisamost
certainly room for improvement in both our upper and lower bounds: our emphasis has been on the
qualitative behavior of leave-one-out in terms of a number of natural parameters of the problem,
not the quantitative behavior.
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