
Algorithmic Stability and Sanity-Check Bounds
for Leave-One-Out Cross-Validation

Michael Kearns
AT&T Labs Research

Murray Hill, New Jersey
mkearns@research.att.com

Dana Ron
MIT

Cambridge, MA
danar@theory.lcs.mit.edu

January 1997

Abstract: In this paper we prove sanity-check bounds for the error of the leave-one-out cross-
validation estimate of the generalization error: that is, bounds showing that the worst-case error
of this estimate is not much worse than that of the training error estimate. The name sanity-check
refers to the fact that although we often expect the leave-one-out estimate to perform considerably
better than the training error estimate, we are here only seeking assurance that its performance will
not be considerably worse. Perhaps surprisingly, such assurance has been given only for rather
limited cases in the prior literature on cross-validation.

Any nontrivial bound on the error of leave-one-out must rely on some notion of algorithmic sta-
bility. Previous bounds relied on the rather strong notion of hypothesis stability, whose application
was primarily limited to nearest-neighbor and other local algorithms. Here we introduce the new
and weaker notion of error stability, and apply it to obtain sanity-check bounds for leave-one-out for
other classes of learning algorithms, including training error minimization procedures and Bayesian
algorithms. We also provide lower bounds demonstrating the necessity of error stability for proving
bounds on the error of the leave-one-out estimate, and the fact that for training error minimization
algorithms, in the worst case such bounds must still depend on the Vapnik-Chervonenkis dimension
of the hypothesis class.

1 Introduction and Motivation

A fundamental problem in statistics, machine learning, and related areas is that of obtaining an
accurate estimate for the generalization ability of a learning algorithm trained on a finite data set.
Many estimates have been proposed and examined in the literature, some of the most prominent
being the training error (also known as the resubstitution estimate), the various cross-validation
estimates (which include the leave-one-out or deleted estimate, as well as k-fold cross-validation),
and the holdout estimate. For each of these estimates, the hope is that for a fairly wide class
of learning algorithms A, the estimate will usually produce a value �̂ that is close to the true
(generalization) error � of the hypothesis function chosen by A.

There are surprisingly few previous results providing bounds on the accuracy of the various
estimates [15, 2, 3, 17, 9, 8, 12, 10] (see the recent book of Devroye, Györfi and Lugosi [1] for an
excellent introduction and survey of the topic). Perhaps the most general results are those given for
the (classification) training error estimate by Vapnik [17], who proved that for any target function
and input distribution, and for any learning algorithm that chooses its hypotheses from a class
of VC dimension d, the training error estimate is at most Õ(

q
d=m) 1 away from the true error,

where m is the size of the training sample. On the other hand, among the strongest bounds (in the
sense of the quality of the estimate) are those given for the leave-one-out estimate by the work of
Rogers and Wagner [15], and Devroye and Wagner [2, 3]. The (classification error) leave-one-out
estimate is computed by running the learning algorithmm times, each time removing one of the m
training examples, and testing the resulting hypothesis on the training example that was deleted;
the fraction of failed tests is the leave-one-out estimate. Rogers and Wagner [15] and Devroye
and Wagner [2, 3] proved that for several specific algorithms, but again for any target function and
input distribution, the leave-one-out estimate can be as close as O(1=

p
m) to the true error. The

algorithms considered are primarily variants of nearest-neighbor and other local procedures, and
as such do not draw their hypotheses from a fixed class of bounded VC dimension, which is the
situation we are primarily interested in here.

A tempting and optimistic intuition about the leave-one-out estimate is that it should typically
yield an estimate that falls within O(1=

p
m) of the true error. This intuition derives from viewing

each deleted test as an independent trial of the true error. The problem, of course, is that these
tests are not independent. The Devroye, Rogers and Wagner results demonstrate that for certain
algorithms, the intuition is essentially correct despite the dependencies. In such cases, the leave-
one-out estimate may be vastly preferable to the training error, yielding an estimate of the true error
whose accuracy is independent of any notion of dimension or hypothesis complexity (although the
true error itself may depend strongly on such quantities).

However, despite such optimism, the prior literature leaves open a disturbing possibility for
the leave-one-out proponent: the possibility that its accuracy may often be, for wide classes of
natural algorithms, arbitrarily poor. We would like to have what we shall informally refer to as
a sanity-check bound: a proof, for large classes of algorithms, that the error of the leave-one-out
estimate is not much worse than the Õ(

q
d=m) worst-case behavior of the training error estimate.

The name sanity-check refers to the fact that although we believe that under many circumstances,
the leave-one-out estimate will perform much better than the training error (and thus justify its

1The Õ(�) notation hides logarithmic factors in the same way that O(�) notation hides constants.

1

computational expense) the goal of the sanity-check bound is to simply prove that it is not much
worse than the training error. Such a result is of interest simply because the leave-one-out estimate
is in wide experimental use (largely because practitioners do expect it to frequently outperform the
training error), so it behooves us to understand its performance and limitations.

A moment’s reflection should make it intuitively clear that, in contrast to the training error, even
a sanity-check bound for leave-one-out cannot come without restrictions on the algorithm under
consideration: some form of algorithmic stability is required [3, 9, 13]. If the removal of even a
single example from the training sample may cause the learning algorithm to “jump” to a different
hypothesis with, say, much larger error than the full-sample hypothesis, it seems hard to expect the
leave-one-out estimate to be accurate. The precise nature of the required form of stability is less
obvious.

Devroye and Wagner [3] first identified a rather strong notion of algorithmic stability that we
shall refer to as hypothesis stability, and showed that bounds on hypothesis stability directly lead
to bounds on the error of the leave-one-out estimate. This notion of stability demands that the
removal of a single example from the training sample results in hypotheses that are “close” to each
other, in the sense of having small symmetric difference with respect to the input distribution. For
algorithms drawing hypotheses from a class of fixed VC dimension, the first sanity-check bounds
for the leave-one-out estimate were provided by Holden [9] for two specific algorithms in the
realizable case (that is, when the target function is actually contained in the class of hypothesis
functions).

However, in the more realistic unrealizable (or agnostic [11]) case, the notion of hypothesis
stability may simply be too strong to be obeyed by many natural learning algorithms. For example,
if there are many local minima of the true error, an algorithm that managed to always minimize
the training error might be induced to move to a rather distant hypothesis by the addition of a new
training example (we shall elaborate on this example shortly). Many gradient descent procedures
use randomized starting points, which may even cause runs on the same sample to end in different
local minima. Algorithms behaving according to Bayesian principles will choose two hypotheses
of equal training error with equal probability, regardless of their dissimilarity. What we might hope
to be relatively stable in such cases would not be the algorithm’s hypothesis itself, but the error of
the algorithm’s hypothesis.

The primary goal of this paper is to give sanity-check bounds for the leave-one-out estimate
that are based on the error stability of the algorithm. In Section 2, we begin by stating some needed
preliminaries. In Section 3, we review the Devroye and Wanger notion of hypothesis stability,
and generalize the results of Holden [9] by showing that in the realizable case this notion can be
used to obtain sanity-check bounds for any consistent learning algorithm; but we also discuss the
limitations of hypothesis stability in the unrealizable case. In Section 4, we define our new notion
of error stability, and prove our main results: bounds on the error of the leave-one-estimate that
depend on the VC dimension of the hypothesis class and the error stability of the algorithm. The
bounds apply to a wide class of algorithms meeting a mild condition that includes training error
minimization and Bayesian procedures. In Section 5, we give a number of lower bound results
showing, among other things, the necessity of error stability for proving bounds on leave-one-out,
but also the absence of sufficiency. In Section 6 we conclude with some interesting open problems.

2

2 Preliminaries

Let f be a fixed target function from domain X to range Y , and let P be a fixed distribution
over X . Both f and P may be arbitrary 2. We use Sm to denote the random variable Sm =
hx1; y1i; : : : ; hxm; ymi, where m is the sample size, each xi is drawn randomly and independently
according to P , and yi = f(xi). A learning algorithm A is given Sm as input, and outputs
a hypothesis h = A(Sm), where h : X ! Y belongs to a fixed hypothesis class H . If A is
randomized, it takes an additional input ~r 2 f0; 1gk of random bits of the required length k to
make its random choices. In this paper we study mainly the case in which Y = f0; 1g, and briefly
the case in which Y = <. For now we restrict our attention to boolean functions.

For any boolean function h, we define the generalization error of h (with respect to f and P)
by �(h) = �f;P (h)

def
= Prx2P [h(x) 6= f(x)]. For any two boolean functions h and h0, The distance

between h and h0 (with respect to P) is dist(h; h0) = distP (h; h0)
def
= Prx2P [h(x) 6= f(x)]. Since the

target function f may or may not belong toH , we define �opt
def
= minh2Hf�(h)g, and hopt to be some

function such that �(hopt) = �opt . Thus, the functionhopt is the best approximation to f (with respect
toP) in the classH , and �opt measures the quality of this approximation. We define the training error

of a boolean function h with respect to Sm by �̂(h) = �̂Sm(h)
def
= jfhxi; yii 2 Sm : h(xi) 6= yigj=m,

and the (generalized) version space VS (Sm)
def
= fh 2 H : �̂(h) = minh02Hf�̂(h0)gg consists of all

functions in H that minimize the training error.

Throughout this paper we assume that the algorithm A is symmetric. This means that A is
insensitive to the ordering of the examples in the input sample Sm, so for every ordering of Sm it
outputs the same hypothesis. (In case A is randomized, it should induce the same distribution on
hypotheses.) This is a very mild assumption, as any algorithm can be transformed into a symmetric
algorithm by adding a randomizing preprocessing step. Thus, we may refer to Sm as an unordered
set of labeled examples rather than as a list of examples. For any index i 2 [m], we denote by

Si
m the sample Sm with the ith labeled example, hxi; yii, removed. That is, Si

m
def
= Sm n fhxi; yiig.

The leave-one-out cross validation estimate, �̂A
CV
(Sm), of the error of the hypothesis h = A(Sm) is

defined to be �̂A
CV
(Sm)

def
= jfi 2 [m] : hi(xi) 6= yigj=m, where hi = A(Si

m). We are thus interested
in providing bounds on the error j�̂A

CV
(Sm)� �(A(Sm))j of the leave-one-out estimate.

The following uniform convergence bound, due to Vapnik [17] will be central to this paper.

THEOREM 2.1 Let H be a hypothesis class with VC dimension d < m. Then, for every m > 4 and
for any given � > 0, with probability at least 1 � �, for every h 2 H ,

j�̂(h)� �(h)j < 2

s
d
�
ln(2m=d) + 1

�
+ ln(9=�)

m
: (1)

We shall denote the quantity 2

r
d(ln(2m=d)+1)+ln(9=�)

m
by VC(d;m; �). Thus, for any learning algo-

rithm A using a hypothesis space of VC dimension d, for any � > 0, with probability at least 1� �
over Sm, j�̂(A(Sm))� �(A(Sm))j < VC(d;m; �).

2Our results generalize to the case in which we allow the target process to be any joint distribution over the sample
space X � Y , but it will be convenient to think of there being a distinct target function.

3

3 Sanity-Check Bounds via Hypothesis Stability

As we have mentioned already, it is intuitively clear that the performance of the leave-one-out
estimate must rely on some kind of algorithmic stability (this intuition will be formalized in the
lower bounds of Section 5). Perhaps the strongest notion of stability that an interesting learning
algorithm might be expected to obey is that of hypothesis stability: namely, that small changes in
the sample can only cause the algorithm to move to “nearby” hypotheses. The notion of hypothesis
stability is due to Devroye and Wagner [3], and is formalized in a way that suits our purposes in
the following definition 3.

DEFINITION 3.1 We say that an algorithm A has hypothesis stability (�1; �2) if

PrSm�1;hx;yi[dist(A(Sm); A(Sm�1)) � �2] � �1 (2)

where Sm = Sm�1 [fhx; yig.

We shall shortly argue that hypothesis stability is in fact too demanding a notion in many
realistic situations. But first, we state the elegant theorem of Devroye and Wagner [3] that relates
the error of the leave-one-out estimate for an algorithm to the hypothesis stability.

THEOREM 3.1 Let A be any symmetric algorithm that has hypothesis stability (�1; �2). Then for
any � > 0, with probability at least 1 � � over Sm,

j�̂A
CV
(Sm)� �(A(Sm))j �

s
1=(2m) + 3(�1 + �2)

�
: (3)

Thus, if we are fortunate enough to have an algorithm with strong hypothesis stability (that is,
small �1 and �2), the leave-one-out estimate for this algorithm will be correspondingly accurate.
What kind of hypothesis stability should we expect for natural algorithms? Devroye, Rogers
and Wagner [15, 3] gave rather strong hypothesis stability results for certain nonparametric local
learning algorithms (such as nearest-neighbor rules), and thus were able to show that the error of
the leave-one-out estimate for such algorithms decreases like 1=m� (for values of � ranging from
1=4 to 1=2).

Note that for nearest-neighbor algorithms, there is no fixed “hypothesis class” of limited VC
dimension — the algorithm may choose arbitrarily complex hypotheses. This unlimited complexity
often makes it difficult to quantify the performance of the learning algorithm except in terms of the
asymptotic generalization error (see Devroye, Györfi and Lugosi [1] for a detailed survey of results
for nearest-neighbor algorithms). For this and other reasons, practitioners often prefer to commit
to a hypothesis class H of fixed VC dimension d, and use heuristics to find a good function inH . In
this case, we gain the possibility of finite-sample generalization error bounds (where we compare
the error to that of the optimal model from H). However, in such a situation, the goal of hypothesis
stability may in fact be at odds with the goal of good performance in the sense of learning. To see

3Devroye and Wagner [3] formalized hypothesis stability in terms of the expected difference between the hypotheses;
here we translate to the “high probability” form for consistency.

4

this, imagine that the input distribution and target function define a generalization error “surface”
over the function space H , and that this surface has minima at hopt 2 H , where �(hopt) = �opt > 0,
and also at h0 2 H , where �(h0) = �(hopt) + � for some small � > 0. Thus, hopt is the “global”
minimum, and h0 is a “local” minimum. Note that dist(hopt ; h

0) could be as large as 2�opt , which
we are assuming may be a rather large (constant) quantity. Now if the algorithm A minimizes the
training error over H , then we expect that as m!1, algorithmA will settle on hypotheses closer
and closer to hopt . But for m << 1=�, A may well choose hypotheses close to h0. Thus, as more
examples are seen, at some point A may need to move from h0 to the rather distant hopt .

We do not know how to rule out such behavior for training error minimization algorithms, and
so cannot apply Theorem 3.1. Perhaps more importantly, for certain natural classes of algorithms
(such as the Bayesian algorithms discussed later), and for popular heuristics such as C4.5 and
backpropagation, it is far from obvious that any nontrivial statement about hypothesis stability can
be made. For this reason, we would like to have bounds on the error of the leave-one-out estimate
that rely on the weakest possible notion of stability. Note that in the informal example given above,
the quantity that we might hope would exhibit some stability is not the hypothesis itself, but the
error of the hypothesis: even though hopt and h0 may be far apart, if A chooses h0 then � must
not be “too large”. The main question addressed in this paper is when this weaker notion of error
stability is sufficient to prove nontrivial bounds on the leave-one-out error, and we turn to this in
Section 4.

First, however, note that the instability of the hypothesis above relied on the assumption that
�opt > 0 — that is, that we are in the unrealizable setting. In the realizable �opt = 0 case, there
is still hope for applying hypothesis stability. Indeed, Holden [9] was the first to apply uniform
convergence results to obtain sanity-check bounds for leave-one-out via hypothesis stability, for two
particular (consistent) algorithms in the realizable setting 4. Here we generalize Holden’s results
by giving a sanity-check bound on the leave-one-out error for any consistent algorithm. The simple
proof idea again highlights why hypothesis stability seems difficult to apply in the unrealizable
case: in the realizable case, minimizing the training error forces the hypothesis to be close to some
fixed function (namely, the target). In the unrealizable case, there may be many different functions,
all with optimal or near-optimal error.

THEOREM 3.2 Let H be a class of VC dimension d, and let the target function f be contained in H
(realizable case). Let A be a symmetric algorithm that always finds an h 2 H consistent with the
input sample. Then for every � > 0, with probability at least 1 � �,

j�̂CV(Sm)� �(A(Sm))j = O

0
@
s
(d=m) log(m=d)

�

1
A : (4)

PROOF: By uniform convergence, with probability at least 1� �0,

�(A(Sm)) = dist(f;A(Sm)) = O

d log(m=d) + log(1=�0)

m

!
(5)

4Holden [8] has recently obtained sanity-check bounds, again for the realizable setting, for other cross-validation
estimates.

5

and

�(A(Sm�1)) = dist(f;A(Sm�1)) = O

d log(m=d) + log(1=�0)

m� 1

!
: (6)

(Here we are using the stronger Õ(d=m) uniform convergence bounds that are special to the realiz-
able case.) Thus by the triangle inequality, with probability at least 1��0, dist(A(Sm); A(Sm�1)) =

O
�
d log(m=d)+log(1=�0)

m

�
. The theorem follows from Theorem 3.1, where �0 is set tod=m.

(Theorem 3.2)

We should note immediately that the bound of Theorem 3.2 has a dependence on
q

1=�, as
opposed to the log(1=�) dependence for the training error given by Theorem 2.1. Unfortunately,
it is well-known [1] (and demonstrated in Section 5) that, at least in the unrealizable setting, a
1=� dependence is in general unavoidable for the leave-one-out estimate. Thus, it appears that
in order to gain whatever benefits leave-one-out offers, we must accept a worst-case dependence
on � inferior to that of the training error. Also, we note in passing that Theorem 3.2 can also be
generalized (perhaps with a worse power of d=m) to the case where the target function lies inH but
is corrupted by random classification noise: again, minimizing training error forces the hypothesis
to be close to the target.

It is possible to give examples in the realizable case for which the leave-one-out estimate has
error O(1=

p
m) while the training error has error Ω(

q
d=m); such examples merely reinforce the

intuition discussed in the introduction that leave-one-out may often be superior to the training
error. Furthermore, there are unrealizable examples for which the error of leave-one-out is again
independent of d, but for which no nontrivial leave-one-out bound can be obtained by appealing to
hypothesis stability. It seems that a more general notion of stability is called for.

4 Sanity-Check Bounds via Error Stability

In this section, we introduce the notion of error stability and use it to prove our main results. We give
bounds on the error of the leave-one-out estimate that are analogous to those given in Theorem 3.1,
in that the quality of the bounds is directly related to the error stability of the algorithm. However,
unlike Theorem 3.1, in all of our bounds there will be a residual Õ(

q
d=m) term that appears

regardless of the stability; this is the price we pay for using a weaker — but more widely applicable
— type of stability. In Section 5, we will show that the dependence on the error stability is always
necessary, and also that a dependence on d=m cannot be removed in the case of algorithms which
minimize the training error without further assumptions on the algorithm.

For expository purposes, we limit our attention to deterministic algorithms for now. The
generalization to randomized algorithms will be discussed shortly. Our key definition mirrors the
form of Definition 3.1.

DEFINITION 4.1 We say that a deterministic algorithm A has error stability (�1; �2) if

PrSm�1;hx;yi[j�(A(Sm))� �(A(Sm�1))j � �2] � �1 (7)

where Sm = Sm�1 [fhx; yig, and both �1 and �2 may be functions of m.

6

Our goal is thus to prove bounds on the error of the leave-one-out estimate that depend on �1

and �2. This will require an additional (and hopefully mild) assumption on the algorithm that is
quantified by the following definition. We will shortly prove that some natural classes of algorithms
do indeed meet this assumption, thus allowing us to prove sanity-check bounds for these classes.

DEFINITION 4.2 For any deterministic algorithmA, we say that the leave-one-out estimate (
1;
2)-
overestimates the training error for A if

PrSm�1;hx;yi[�̂
A
CV
(Sm) � �̂(A(Sm))�
2] �
1 (8)

where Sm = Sm�1 [fhx; yig, and both
1 and
2 may be functions of m.

While we cannot claim that training error overstimation is in general necessary for obtaining
bounds on the error of the leave-one-out estimate, we note that it is clearly necessary whenever the
training error underestimates the true error, as is the case for algorithms that minimize the training
error. In any case, in Section 5 we show that some additional assumptions (beyond error stability)
are required to obtain nontrivial bounds for the error of leave-one-out.

Before stating the main theorem of this section, we give the following simple but important
lemma that is well-known [1].

LEMMA 4.1 For any symmetric learning algorithm A,

ESm [�̂
A
CV
(Sm)] = ESm�1 [�(A(Sm�1))]: (9)

PROOF: For any fixed sample Sm, let hi = A(Si
m), and let ei 2 f0; 1g be 1 if and only if hi(xi) 6= yi.

Then

ESm [�̂
A
CV
(Sm)] = ESm

"
1
m

X
i

ei

#
=

1
m

X
i

ESm [ei] = ESm [e1] = ESm�1 [�(A(Sm�1))]:

(10)
The first equality follows from the definition of leave-one-out, the second from the additiv-

ity of expectation, the third from the symmetry of A, and the fourth from the definition of e1.
(Lemma 4.1)

The first of our main results follows.

THEOREM 4.1 LetA be any deterministic algorithm using a hypothesis spaceH of VC dimension d
such that A has error stability (�1; �2), and leave-one-out (
1;
2)-overestimates the training error
for A. Then for any � > 0, with probability at least 1 � � over Sm,

j�̂A
CV
(Sm)� �(A(Sm))j �

0
@3

s
(d + 1)

�
ln(9m=d) + 1

�
m

+ 3�1 + �2 +
1 +
2

1
A =�: (11)

7

Let us briefly discuss the form of the bound given in Theorem 4.1. First of all, as we mentioned
earlier, there is a residual Õ(

q
d=m) term that remains no matter how error-stable the algorithm

this. This means that we cannot hope to get something better than a sanity-check bound from this
result. Our main applications of Theorem 4.1 will be to show specific, natural cases in which
1

and
2 can be eliminated from the bound, leaving us with a bound that depends only on the error
stability and the residual Õ(

q
d=m) term. We now turn to the proof of the theorem.

PROOF: From Theorem 2.1 and the fact that leave-one-out (
1;
2)-overestimates the training error,
we have that with probability at least 1 � �0 �
1, (where �0 will be determined by the analysis)

�̂A
CV
(Sm) � �̂(A(Sm))�
2 � �(A(Sm))� VC (d;m; �0)�
2: (12)

Thus, the fact that leave-one-out does not underestimate the training error by more than
2 (with
probability at least 1 �
1) immediately lets us bound the amount by which leave-one-out could
underestimate the true error �(A(Sm)) (where here we set �0 to be �=2 and note that whenever

1 � �=2, the bound holds trivially). It remains to bound the amount by which leave-one-out could
overestimate the true error.

Let us define the random variable �(Sm) by �̂A
CV
(Sm) = �(A(Sm)) + �(Sm), and let us define

�
def
= VC (d;m; �0) +
2, and �

def
= �0 +
1. Then Equation (12) says that with probability at most

�, �(Sm) < �� . Furthermore, it follows from the error stability of A that with probability at least
1 � �1,

�(Sm) � �̂A
CV
(Sm)� �(A(Sm�1)) + �2 (13)

(whereSm�1[fhx; yig = Sm). By Lemma 4.1 we know that ESm�1;hx;yi[�̂
A
CV
(Sm)��(A(Sm�1))] = 0,

and hence on those samples for which Equation (13) holds (whose total probability weight is at least
1 � �1), the expected value of �̂A

CV
(Sm)� �(A(Sm�1)) is at most �1=(1 � �1). Assuming �1 � 1=2

(since otherwise the bound holds trivially), and using the fact that j�(Sm)j � 1, we have that

ESm [�(Sm)] � 3�1 + �2: (14)

Let � be such that with probability exactly �, �(Sm) > �. Then

3�1 + �2 � ESm [�(Sm)] � ��+ �(�1) + (1 � � � �)(��) � ��� �� � (15)

where we have again used the fact that j�(Sm)j � 1 always. Thus

� � 3�1 + �2 + �+ �

�
: (16)

From the above we have that with probability at least 1 � �,

�̂A
CV
(Sm) � �(A(Sm)) + (3�1 + �2 + �+ �)=� (17)

= �(A(Sm)) + (VC (d;m; �0) + 3�1 + �2 +
1 +
2 + �0)=�: (18)

If we set �0 = d=m, we get that with probability at least 1 � �,

�̂A
CV
(Sm) � �(A(Sm)) +

0
@3

s
(d+ 1)

�
ln(9m=d) + 1

�
m

+ 3�1 + �2 +
1 +
2

1
A =� (19)

which together with Equation (12) proves the theorem. (Theorem 4.1)

8

4.1 Application to Training Error Minimization

In this section, we give one of our main applications of Theorem 4.1, by showing that for training
error minimization algorithms, a Õ(

q
d=m) bound on the error of leave-one-out can be obtained

from error stability arguments. We proceed by giving two lemmas, the first bounding the error
stability of such algorithms, and the second proving that leave-one-out overestimates their training
error.

LEMMA 4.2 LetA be any algorithm performing training error minimization over a hypothesis class
H of VC dimension d. Then for any �1 > 0, A has error stability (�1; 2VC(d;m� 1; �1=2))).

PROOF: From uniform convergence (Theorem 2.1), we know that with probability at least 1� �1,
both �(A(Sm�1)) � �opt + 2VC (d;m � 1; �1=2) and �(A(Sm)) � �opt + 2VC (d;m; �1=2) hold,
while it is always true that both �(A(Sm)) � �opt , and �(A(Sm�1)) � �opt . Thus with probability
at least 1 � �1, j�(A(Sm�1))� �(A(Sm))j � 2VC (d;m� 1; �1=2)). (Lemma 4.2)

LEMMA 4.3 LetA be any algorithm performing training error minimization over a hypothesis class
H . Then leave-one-out (0; 0)-overestimates the training error for A.

PROOF: Let h = A(Sm) and hi = A(Si
m). Let err(Sm) be the subset of unlabeled examples

in Sm on which h errs. We claim that for every hxi; yii 2 err(Sm), hi errs on hxi; yii as well,
implying that �̂A

CV
(Sm) � �̂(A(Sm)). Assume, contrary to the claim, that for some i, h(xi) 6= yi

while hi(xi) = yi. For any function g and sample S, let eg(S) denote the number of errors made
by g on S (thus eg(S) = �̂(g) � jSj). Since A performs training error minimization, for any function
h0 2 H we have eh0(Sm) � eh(Sm). Similarly, for any h0 2 H , we have eh0(S

i
m) � ehi(S

i
m).

In particular this must be true for h, and thus eh(Si
m) � ehi(S

i
m). Since h errs on hxi; yii,

eh(Si
m) = eh(Sm) � 1, and hence ehi(Si

m) � eh(Sm) � 1. But since hi does not err on hxi; yii,
ehi(Sm) = ehi(S

i
m) � eh(Sm) � 1 < eh(Sm), contradicting the assumption that h minimizes the

training error on Sm. (Lemma 4.3)

THEOREM 4.2 Let A be any algorithm performing training error minimization over a hypothesis
class H of VC dimension d. Then for every � > 0, with probability at least 1 � �,

j�̂A
CV
(Sm)� �(A(Sm))j �

0
@8

s
(d+ 1)

�
ln(9m=d) + 2

�
m

1
A =�: (20)

PROOF: Follows immediately from Lemma 4.2 (where �1 is set to 2d=m), Lemma 4.3, and
Theorem 4.1. (Theorem 4.2)

Thus, for training error minimization algorithms, the worst-case behavior of the leave-one-out
estimate is not worse than that of the training error (modulo the inferior dependence on 1=� and
constant factors). We would like to infer that a similar statement is true if the algorithm almost
minimizes the training error. Unfortunately, Lemma 4.3 is extremely sensitive, forcing us to simply
assume that leave-one-out overestimates the training error in the following theorem. We will later
discuss how reasonable such an assumption might be for natural algorithms; in any case, we will
show in Section 5 that some assumptions beyond just error stability are required to obtain interesting
bounds for leave-one-out.

9

THEOREM 4.3 Let A be a deterministic algorithm that comes within ∆ of minimizing the training
error over H (that is, on any sample Sm, �̂(A(Sm)) � minh2Hf�̂(h)g + ∆), and suppose that
leave-one-out (0; 0)-overestimates the training error for A. Then with probability at least 1 � �,

j�̂CV(Sm)� �(A(Sm))j �
0
@8

s
(d+ 1)

�
ln(2m=d) + 2

�
m

+ ∆

1
A =�: (21)

PROOF: The theorem follows from the fact any algorithm that comes within ∆ of minimizing the
training error has error stability (�1;∆ + 2VC (d;m � 1; �1=2)) (the proof is similar to that of
Lemma 4.2), and from Theorem 4.1. (Theorem 4.3)

4.2 Application to Bayesian Algorithms

We have just seen that training error minimization in fact implies error stability sufficient to obtain
a sanity-check bound on the error of leave-one-out. More generally, we might hope to obtain
bounds that depend on whatever error stability an algorithm does possess (but not better bounds;
see Section 5). In this section, we show that this hope can be realized for a natural class of
randomized algorithms that behave in a Bayesian manner.

To begin with, we generalize Definitions 4.1 and 4.2 to include randomization simply by letting
the probability in both definitions be taken over both the sample Sm and any randomization required
by the algorithm. We use the notationA(S; ~r) to denote the hypothesis output byA on input sample
S and random string ~r , and �̂A

CV
(Sm; ~r1; : : : ; ~rm) to denote the leave-one-out estimate when the

random string ~ri is used on the call to A on Si
m.

DEFINITION 4.3 We say that a randomized algorithm A has error stability (�1; �2) if

PrSm�1 ;hx;yi;~r ;~r 0 [j�(A(Sm; ~r))� �(A(Sm�1; ~r
0))j � �2] � �1 (22)

where Sm = Sm�1 [fhx; yig.

DEFINITION 4.4 For any randomized algorithmA, we say that leave-one-out (
1;
2)-overestimates
the training error for A if

PrSm�1 ;hx;yi;~r ;~r1;:::;~rm [�̂A
CV
(Sm; ~r1; : : : ; ~rm) � �̂(A(Sm; ~r))�
2] �
1 (23)

where Sm = Sm�1 [fhx; yig.

The proof of the following theorem is essentially the same as the proof of Theorem 4.1 where
the only difference is that all probabilities are taken over the sample Sm and the randomization of
the algorithm.

THEOREM 4.4 Let A be any randomized algorithm using a hypothesis space H of VC dimension
d such that leave-one-out (
1;
2)-overestimates the training error for A, and A has error stability
(�1; �2). Then for any � > 0, with probability at least 1 � �,

j�̂A
CV
(Sm; ~r1; : : : ; ~rm) � �(A(Sm; ~r))j =

3

r
(d+1)(ln 2m

d
+1)

m
+ 3�1 + �2 +
1 +
2

�
: (24)

10

Here the probability is taken over the choice of Sm, and over the coin flips ~r1; : : : ; ~rm and ~r of A
on the Si

m and Sm.

We now apply Theorem 4.1 to the class of Bayesian algorithms — that is, algorithms that
choose their hypotheses according to a posterior distribution, obtained from a prior that is modified
by the sample data and a temperature parameter. Such algorithms are frequently studied in the
simulated annealing and statistical physics literature on learning [16, 5].

DEFINITION 4.5 We say that a randomized algorithm A using hypothesis space H is a Bayesian
algorithm if there exists a prior P over H and a temperature T � 0 such that for any sample Sm
and any h 2 H ,

Pr~r [A(Sm; ~r) = h] =
1
Z
P(h) exp

� 1
T

X
i

I(h(xi) 6= yi)

!
: (25)

Here Z =
P

h2H P(h) exp
�
� 1

T

P
i I(h(xi) 6= yi)

�
is the appropriate normalization.

Note that we still do not assume anything about the target function (for instance, it is not
necessarily drawn according to P or any other distribution) — it is only the algorithm that behaves
in a Bayesian manner. Also, note that the special case in which T = 0 and the support of P is H
results in training error minimization.

We begin by giving a general lemma that identifies the only property about Bayesian algorithms
that we will need; thus, all of our subsequent results will hold for any algorithm meeting the
conclusion of this lemma.

LEMMA 4.4 Let A be a Bayesian algorithm. For any sample S and any example hx; yi 2 S, let
p be the probability over ~r that A(S; ~r) errs on hx; yi, and let p0 be the probability over ~r 0 that
A(S � fhx; yig; ~r 0) errs on hx; yi. Then p0 � p.

PROOF: LetP be the distribution induced overH whenA is called onS, and letP 0 be the distribution
over H induced when A is called on S � fhx; yig. Then for any h 2 H , P(h) = (1=Z)P 0(h)
if h does not err on hx; yi, and P(h) = (1=Z) exp(� 1

T
)P 0(h) if h does err on hx; yi. Thus the

only change from P 0 to P is to decrease the probability of drawing an h which errs on hx; yi.
(Lemma 4.4)

The key result leading to a sanity-check bound for Bayesian algorithms follows. It bounds the
extent to which leave-one-out overestimates the training error in terms of the error stability of the
algorithm.

THEOREM 4.5 Let A be a Bayesian algorithm (or any other algorithm satisfying the conclusion of
Lemma 4.4) that has error stability (�1; �2). Then for any
 > 0, leave-one-out

(2
 + 3
q
�1; 2

q
�1 + 4�2 + 4VC(d;m;
) +

q
log(1=
)=m)) (26)

-overestimates the training error for A.

11

In order to prove Theorem 4.5, we will first need the following lemma, which says that with
respect to the randomization of a Bayesian algorithm, the leave-one-out estimate is likely to
overestimate the expected training error.

LEMMA 4.5 LetA be a Bayesian algorithm (or any randomized algorithm satisfying the conclusion
of Lemma 4.4). Then for any fixed sample Sm = Sm�1 [fhx; yig, with probability at least 1 � �
over ~r1; : : : ; ~rm and ~r ,

�̂A
CV
(Sm; ~r1; : : : ; ~rm) � E~r [�̂(A(Sm; ~r))]�

q
log(1=�)=m: (27)

PROOF: For each hxi; yii 2 Sm, let pi be the probability over ~r that A(Sm; ~r) errs on hxi; yii
and let p0i be the probability over ~ri that A(Si

m; ~ri) errs on hxi; yii. By Lemma 4.4 we know that
p0i � pi. Then

E~r [�̂(A(Sm; ~r))] =
X
h2H

Pr~r [A(Sm; ~r) = h] � �̂(h) (28)

=
X
h2H

Pr~r [A(Sm; ~r) = h] � 1
m

X
i

I(h(xi) 6= yi) (29)

=
1
m

X
i

X
h2H

Pr~r [A(Sm) = h] � I(h(xi) 6= yi) (30)

=
1
m

X
i

pi: (31)

Denote (1=m)
P

i pi by p̄, and (1=m)
P

i p
0
i by p̄0. Let ei be a Bernoulli random variable determined

by ~ri which is 1 ifA(Si
m; ~ri) errs on hxi; yii and 0 otherwise. By definition, �̂A

CV
(Sm; ~r1; : : : ; ~rm) =

(1=m)
P

i ei, and

E~r1;:::;~rm [�̂A
CV
(Sm; ~r1; : : : ; ~rm)] = E~r1;:::;~rm [(1=m)

X
i

ei] = p̄0 � p̄ = E~r [�̂(A(Sm; ~r))]:

(32)
By Chernoff’s inequality, for any �,

Pr~r1;:::;~rm [(1=m)
X
i

ei � p̄0 � �] < exp(�2�2m) (33)

By setting � = (1=2)
q

log(1=�)=m, we have that with probability at least 1� � over the choice of
~r1; : : : ; ~rm ,

�̂A
CV
(Sm; ~r1; : : : ; ~rm) � E~r [�̂(A(Sm; ~r))]� (1=2)

q
log(1=�)=m: (34)

(Lemma 4.5)

Now we can give the proof of Theorem 4.5.

PROOF (Theorem 4.5): Because A has error stability (�1; �2), if we draw Sm�1 and hx; yi at
random we have probability at least 1 �p

�1 of obtaining an Sm such that

Pr~r ;~r 0 [j�(A(Sm; ~r))� �(A(Sm�1; ~r
0))j � �2] �

q
�1: (35)

12

Equation (35) relates the error when A is called on Sm and Sm�1. We would like to translate this
to a statement relating the error when A is called on Sm twice. But if Sm satisfies Equation (35), it
follows that

Pr~r ;~r 0 [j�(A(Sm; ~r))� �(A(Sm; ~r
0))j � 2�2] � 2

q
�1: (36)

The reason is that if j�(A(Sm; ~r))� �(A(Sm; ~r 0))j � 2�2, then �(A(Sm�1; ~r
00)) can be within �2

of only one of �(A(Sm; ~r)) and �(A(Sm; ~r 0)), and each is equally likely to result from a call to A
on Sm. From Equation (36) and Theorem 2.1, we have that with probability at least 1 �
 �p

�1,
Sm will satisfy

Pr~r ;~r 0 [j�̂(A(Sm; ~r))� �̂(A(Sm; ~r
0))j � 2�2 + 2VC (d;m;
)] � 2

q
�1: (37)

If Sm satisfies Equation (37), it follows that there must be a fixed value �̂0 2 [0; 1] such that

Pr~r [j�̂(A(Sm; ~r))� �̂0j � 2�2 + 2VC (d;m;
)] � 2
q
�1: (38)

Assuming that Equation (38) holds, how far can E~r [�̂(A(Sm; ~r))] be from �̂0? The extreme cases
are

E~r [�̂(A(Sm; ~r))] = (1 � 2
q
�1)(�̂0 + 2�2 + 2VC (d;m;
)) + 2

q
�1 � 1 (39)

and
E~r [�̂(A(Sm; ~r))] = (1 � 2

q
�1)(�̂0 � 2�2 � 2VC (d;m;
)) + 2

q
�1 � 0: (40)

In either case,
jE~r [�̂(A(Sm; ~r))]� �̂0j � 2

q
�1 + 2�2 + 2VC (d;m;
)) (41)

and thus by Equation (38), with probability at least 1 �
 �p
�1 over the draw of Sm, Sm will be

such that the probability

Pr~r
�
j�̂(A(Sm; ~r))� E~r 0 [�̂(A(Sm; ~r

0))]j � (2�2 + 2VC (d;m;
)) + (2
q
�1 + 2�2 + 2VC (d;m;
))

�
(42)

is at most 2
p
�1. Combined with Lemma 4.5, we obtain that with probability at least 1�2
�3

p
�1

over Sm, ~r1; : : : ; ~rm and ~r ,

�̂A
CV
(Sm; ~r1; : : : ; ~rm) � �̂(Sm; ~r)� 2

q
�1 � 4�2 � 4VC (d;m;
)�

q
log(1=
)=m (43)

as desired. (Theorem 4.5)

Now we can give the main result of this section.

THEOREM 4.6 Let A be a Bayesian algorithm (or any randomized algorithm satisfying the conclu-
sion of Lemma 4.4) that has error stability (�1; �2). Then for any � > 0, with probability at least
1 � �,

j�̂A
CV
(Sm; ~r1; : : : ; ~rm)� �(A(Sm; ~r))j �

0
@10

s
(d+ 1)

�
ln(9m=d) + 1

�
m

+ 8
q
�1 + 5�2

1
A =�:

(44)
Here the probability is taken over the choice of Sm, and over the coin flips ~r1; : : : ; ~rm and ~r of A
on the Si

m and Sm.

13

Thus, Theorem 4.6 relates the error of leave-one-out to the stability of a Bayesian algorithm:
as �1; �2 ! 0, we obtain a Õ(

q
d=m) bound. Again, in Section 5 we show that some dependence

on �1 and �2 is required.

4.3 Application to Linear Functions and Squared Error

In this section, we briefly describe an extension of the ideas developed so far to problems in which
the outputs of both the target function and the hypothesis functions are real-valued, and the error
measure is squared loss. The importance of this extension is due to the fact that for squared error,
there is a particularly nice case (linear hypothesis functions) for which empirical error minimization
can be efficiently implemented, and the leave-one-out estimate can be efficiently computed.

Our samples Sm now consist of examples hxi; yii, where xi 2 <d and yi 2 [�1; 1]. For any
function h : <d ! [�1; 1], we now define the generalization error by �(h) = Ehx;yi[(h(x)� y)2],
and similarly the training error becomes �̂(h) =

P
hxi;yii2S(h(xi)� yi)

2. For any algorithm A, if hi

denotes A(Si
m), the leave-one-out estimate is now �̂A

CV
(Sm) =

P
hxi;yii2Sm(h

i(xi)� yi)2.

It can be verified that in such situations, provided that a uniform convergence result analogous to
Theorem 2.1 can be proved, then the analogue to Theorem 4.2 can be obtained (with essentially the
same proof), where the expression VC (d;m; �) in the bound must be replaced by the appropriate
uniform convergence expression. We will not state the general theorem here, but instead concentrate
on an important special case. It can easily be verified that Lemma 4.3 still holds in the squared
error case: that is, if A performs (squared) training error minimization, then for any sample Sm,
�̂A

CV
(Sm) � �̂(A(Sm)). Furthermore, if the hypothesis space H consists of only linear functions

w � x, then provided the squared loss is bounded for each w, nice uniform convergence bounds are
known.

THEOREM 4.7 Let the target function be an arbitrary mapping <d ! [�B;B], where B > 0 is a
constant, and let P be any input distribution over [�B;B]d. Let A perform squared training error
minimization over the class of all linear functions w � x obeying jjwjj � B. Then for every � > 0,
with probability at least 1 � �,

j�̂A
CV
(Sm)� �(A(Sm))j = O

�q
(d=m)(log(d=m)=�

�
: (45)

Two very fortunate properties of the combination of linear functions and squared error make
the sanity-check bound given in Theorem 4.7 of particular interest:

� There exist polynomial-time algorithms for performing minimization of squared training
error [4] by linear functions. These algorithms do not necessarily obey the constraint
jjwjj � B, but we suspect this is not an obstacle to the validity of Theorem 4.7 in most
practical settings.

� There is an efficient procedure for computing the leave-one-out estimate for training error
minimization of squared error over linear functions [14]. Thus, it is not necessary to run the
error minimization procedure m times; there is a closed-form solution for the leave-one-out
estimate that can be computed directly from the data much more quickly.

14

More generally, many of the results given in this paper can be generalized to other loss functions
via the proper generalizations of uniform convergence [7].

4.4 Other Algorithms

We now comment briefly on the application of Theorem 4.1 to algorithms other than error minimiza-
tion and Bayesian procedures. As we have already noted, the only barrier to applying Theorems 4.1
to obtain bounds on the leave-one-out error that depend only on the error stability and Õ(

q
d=m)

lies in proving that leave-one-out sufficiently overestimates the training error (or more precisely,
that with high probability it does not underestimate the training error by much). We believe that
while it may be difficult to prove this property in full generality for many types of algorithms, it
may nevertheless often hold for natural algorithms running on natural problems.

For instance, note that in the deterministic case, leave-one-out will (0; 0)-overestimate the
training error as long asA has the stronger property that ifA(Sm) erred on an example hx; yi 2 Sm,
thenA(Sm�fhx; yig) errs on hx; yi as well. In other words, the removal of a point from the sample
cannot improve the algorithm’s performance on that point. This stronger property is exactly what
was proven in Lemma 4.3 for training error minimization, and its randomized algorithm analogue
was shown for Bayesian algorithms in Lemma 4.4. To see why this property is plausible for a
natural heuristic, consider (in the squared error case) an algorithm that is performing a gradient
descent on the training error over some continuous parameter space ~w. Then the gradient with
respect to ~w can be written as a sum of gradients, one for each example in Sm. The gradient term
for hx; yi gives a force on ~w in a direction that causes the error on hx; yi to decrease. Thus, the
main effect on the algorithm of removing hx; yi is to remove this term from the gradient, which
intuitively should cause the algorithm’s performance on hx; yi to degrade. (The reason why this
argument cannot be turned into a proof of training error overestimation is that it technically is
valid only for one step of the gradient descent.) It is an interesting open problem to prove that the
required property holds for widely used heuristics.

5 Lower Bounds

In this section, we establish the following:

� That the dependence on 1=� is in general unavoidable for the leave-one-out estimate;

� That in the case of algorithms that perform error minimization, the dependence of the error
of leave-one-out on the VC dimension cannot be removed without additional assumptions on
tbe algorithm.

� That for any algorithm, the error of the leave-one-out estimate is lower bounded by the error
stability;

� That there exist algorithms with perfect error stability for which the leave-one-out estimate
is arbitrarily poor, and furthermore, these algorithms use a hypothesis class with constant
VC dimension.

15

These last two points are especially important: they establish that while error stability is a necessary
condition for nontrivial bounds on the leave-one-out error, it is not by itself sufficient even when the
hypothesis class has very small VC dimension. Therefore, additional assumptions on the algorithm
must be made. The additional assumptions made in Theorem 4.1 were sufficient training error
overestimation and bounded VC dimension. In contrast, hypothesis stability alone is a sufficient
condition for nontrivial bounds, but is far from necessary.

We begin with the lower bound giving an example where there is an Ω(1=
p
m) chance of

constant error for the leave-one-out estimate. Setting d = 1 in Theorem 4.1 shows that the
dependence on � given there is tight (upto logarithmic factors).

THEOREM 5.1 There exists an input distribution P , a target function f , a hypothesis class H of
VC dimension 1, and an algorithm A that minimizes the training error over H such that with
probability Ω(1=

p
m), j�̂A

CV
(Sm)� �(A(Sm))j = Ω(1).

PROOF: Let the input space X consist of a single point x, and let the target function f be the
probabilistic function that flips a fair coin on each trial to determine the label to be given with x.
Thus, the generalization error of any hypothesis is exactly 1=2. The algorithm A simply takes the
majority label of the sample as its hypothesis. Now with probability Ω(1=

p
m), the sample Sm will

have a balanced number of positive and negative examples, in which case �̂A
CV
(Sm) = 1, proving the

theorem. (Theorem 5.1)

The following theorem shows that in the case of algorithms that perform training error min-
imization, the dependence of the error of the leave-one-out estimate on the VC dimension is
unavoidable without further assumptions on the algorithm.

THEOREM 5.2 For any d, there exists an input distribution P , a target function f , a hypothesis
class H of VC dimension d, and an algorithm A that minimizes the training error over H such that
with probability Ω(1), j�̂A

CV
(Sm)� �(A(Sm))j = Ω(d=m).

PROOF: Let X = [0; 1] [z1; z2, where z1 and z2 are “special” points. Each of z1 and z2 will have
weight 1=4 under P , while the interval [0,1] will have weight 1=2 uniformly distributed. Each
function inH must label exactly one of z1 and z2 positively, and may be any d-switch function over
[0,1]. Let hd be the d-switch function over [0,1] in which the switches are evenly spaced 1=d apart.

The algorithmA behaves as follows: if the sample sizem is even, A first checks if hd minimizes
the training error on those sample points in [0,1]. If so, A chooses the hypothesis that labels z1

negatively, z2 positively, and is hd on [0,1]. Otherwise, A chooses to label z1 negatively, z2

positively, and on [0,1] chooses the “leftmost” hypothesis that minimizes the training error over
[0,1] (that is, the hypothesis that minimizes the training error and always chooses its switches to be
as far to the left as possible between the two sample points where the switch occurs). If the sample
size is odd, A chooses the hypothesis that labels z1 positively, z2 negatively, and is the leftmost
hypothesis minimizing the training error over [0,1]. Thus, on even samples, A has a strong bias
towards choosing hd over [0,1], but on odd samples, has no such bias.

Now suppose that the target function labels both z1 and z2 negatively, and labels [0,1] according
to hd. Then it is clear that with high probability, A comes within O(1=

p
m) of minimizing the

training error (since A must label either z1 or z2 positively, and each of these choices will incur

16

approximately the same number of training errors, and A always minimizes the training error on
[0,1]). Furthermore, if m is even, then the true error of A’s hypothesis will be within O(1=

p
m) of

1=4. But is easy to verify that �̂A
CV
(Sm) will exceed 1=4 + d=m with high probability, as desired.

Finally, the behavior of A on the points z1 and z2 gives the desired Ω(1) lower bound on
P [A(Sm)∆A(Si

m)]. (Theorem 5.2)

We next show that error stability is essential for providing upper bounds on the error of the
leave-one-out estimate.

THEOREM 5.3 Let A be any algorithm which does not have error stability (�1; �2). Then for any
� � 0,

PrSm [j�̂ACV
(Sm)� �(A(Sm))j � �] � �1 � �2

2
� �: (46)

PROOF: Since A does not have error stability (�1; �2), it is either the case that with probability at
least �1=2, �(A(Sm)) � �(A(Sm�1)) � �2, or that with probability at least �1=2, �(A(Sm�1)) �
�(A(Sm)) � �2. Without loss of generality, assume the latter is true. Let �(Sm) be a random
variable which is defined as follows: �(Sm) = �̂A

CV
(Sm)� �(A(Sm)). Thus,

�(Sm) = �̂A
CV
(Sm)� �(A(Sm�1)) + �(A(Sm�1))� �(A(Sm)) (47)

and

ESm [�(Sm)] = ESm�1 ;hx;yi[�̂
A
CV
(Sm)� �(A(Sm�1))] + ESm�1;hx;yi[�(A(Sm�1))� �(A(Sm))] (48)

where Sm = Sm�1 [fhx; yig. By Lemma 4.1 and the fact that with probability at least �1=2,
�(A(Sm�1))� �(A(Sm)) � �2, we get that

ESm [�(Sm)] �
�1

2
� �2 (49)

Let � be the exact probability that j�(Sm)j � � . Then

�1�2

2
� ESm [�(Sm)] (50)

� � � � + (1 � �) � 1 (51)

= �(� � 1) + 1 (52)

Thus, � � (1 � (�1�2=2))(1� �), and equivalently,

1 � � � (�1�2=2) � �

1 � �
� �1�2

2
� � (53)

which means that with probability at least �1�2=2 � � , �̂A
CV
(Sm)� �(A(Sm)) � � . (Theorem 5.3)

As an example, consider the application of the theorem to the case in which the probability that
j�(A(Sm))� �(A(Sm�1))j � �2 is greater than 1=2 for some �2. Then by setting � to be �2=8, we
get that with probability at least �2=8, the error of the leave-one-out estimate is at least �2=8.

Finally, we show that, unlike hypothesis stability, error stability alone is not sufficient to give
nontrivial bounds on the error of leave-one-out even when the hypothesis class has very small VC
dimension, and hence additional assumptions are required.

17

THEOREM 5.4 There exists an input distribution P , a target function f , a hypothesis class H with
constant VC dimension, and an algorithmA such that A has error stability (0; 0) with respect to P
and f , but with probability 1, j�̂A

CV
(Sm)� �(A(Sm))j = 1=2.

PROOF: Let X = f0; : : : ; N � 1g where N is even, let f be the constant 0 function, let P be the
uniform distribution on X , and let H be the following class of (boolean) threshold functions:

H
def
= fht : t 2 f0; : : : ; N � 1g; where ht(x) = 1 iff (t+ x) mod N < N=2g (54)

Clearly, the VC dimension of H is 2. Furthermore, for every h 2 H , the error of h with respect to f
and P is exactly 1=2, and hence any algorithm using hypothesis class H has error stability (0; 0). It
thus remains to show that there exists an algorithm A for which the leave-one-out estimate always
has large error.

For a given sample Sm = fhx1; y1i; : : : ; hxm; ymig, let t = (
Pm

i=1 xi) mod N , and let A(Sm) =
ht, where ht is as defined in Equation (54). Thus, the algorithm’s hypothesis is determined by the
sum of the (unlabeled) examples. We next compute the leave-one-estimate of the algorithm on Sm.
Assume first that Sm is such that (

Pm
i=1 xi) mod N < N=2. Then, by definition of A, for each xi,

the hypothesis hi = A(Si
m) will label xi by 1, whereas f(xi) = 0. Similarly, if Sm is such that

(
Pm

i=1 xi) mod N � N=2, then for each xi, hi(xi) = 0, which is the correct label according to f .
In other words, for half of the samples Sm we have �̂A

CV
(Sm) = 1, which means that leave-one-out

overestimates �(A(Sm)) = 1=2 by 1=2, and for half of the sample it underestimates the error by
1=2. (Theorem 5.4)

6 Extensions and Open Problems

It is worth mentioning explicitly that in the many situations when uniform convergence bounds
better than V C(d;m; �) can be obtained [16, 6] our resulting bounds for leave-one-out will be
correspondingly better as well. In the full paper we will also detail the generalizations of our
results for other loss functions, and give results for k-fold cross-validation as well.

There are a number of interesting open problems, both theoretical and experimental. On the
experimental side, it would be interesting to determine the “typical” dependence of the leave-one-
out estimate’s performance on the VC dimension for various commonly used algorithms, and also
to establish the extent to which leave-one-out overestimates the training error. On the theoretical
side, it would be nice to prove sanity-check bounds for leave-one-out for popular heuristics like
C4.5 and backpropagation. Also, it is an open problem whether error stability together with limited
VC dimension of the hypothesis class suffice to prove sanity-check bounds. Finally, there is almost
certainly room for improvement in both our upper and lower bounds: our emphasis has been on the
qualitative behavior of leave-one-out in terms of a number of natural parameters of the problem,
not the quantitative behavior.

Acknowledgements

Thanks to Avrim Blum and Sean Holden for interesting discussions on cross-validation. We are
grateful to Nabil Kahale for improving the construction in the proof of Theorem 5.4.

18

References

[1] L. Devroye, L. Gyröfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer
Verlag, 1996.

[2] L. P. Devroye and T. J. Wagner. Distribution-free inequalities for the deleted and holdout
error estimates. IEEE Transactions on Information Theory, IT–25(2):202–207, 1979.

[3] L. P. Devroye and T. J. Wagner. Distribution-free performance bounds for potential function
rules. IEEE Transactions on Information Theory, IT–25(5):601–604, 1979.

[4] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[6] D. Haussler, M. Kearns, H.S. Seung, and N. Tishby. Rigourous learning curve bounds from
statistical mechanics. Machine Learning, 25:195–236, 1996.

[7] David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and Computation, 100(1):78–150, 1992.

[8] S. B. Holden. Cross-validation and the PAC learning model. Research Note RN/96/64, Dept.
of CS, Univ. College, London, 1996.

[9] S. B. Holden. PAC-like upper bounds for the sample complexity of leave-one-out cross
validation. In Proceedings of the Ninth Annual ACM Workshop on Computational Learning
Theory, pages 41–50, 1996.

[10] M. Kearns. A bound on the error of cross validation, with consequences for the training-test
split. In Advances in Neural Information Processing Systems 8, pages 183–189, 1996. To
Appear in Neural Computation.

[11] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning,
17:115–141, 1994.

[12] M. J. Kearns, Y. Mansour, A. Ng, , and D. Ron. An experimental and theoretical comparison
of model selection methods. In Proceedings of the Eighth Annual ACM Workshop on Com-
putational Learning Theory, pages 21–30, 1995. To Appear in Machine Learning, COLT95
Special Issue.

[13] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In the International Joint Conference on Artifical Intelligence, 1995.

[14] A.J. Miller. Subset Selection in Regression. Chapman and Hall, 1990.

[15] W. H. Rogers and T. J. Wagner. A fine sample distribution-free performance bound for local
discrimination rules. The Annals of Statistics, 6(3):506–514, 1978.

19

[16] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.
Physical Review, A45:6056–6091, 1992.

[17] V.N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New
York, 1982.

20

