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ABSTRACT
We study the problem of implementing equilibria of com-
plete information games in settings of incomplete informa-
tion, and address this problem using “recommender mech-
anisms.” A recommender mechanism is one that does not
have the power to enforce outcomes or to force participa-
tion, rather it only has the power to suggestion outcomes on
the basis of voluntary participation. We show that despite
these restrictions, recommender mechanisms can implement
equilibria of complete information games in settings of in-
complete information under the condition that the game is
large—i.e. that there are a large number of players, and any
player’s action affects any other’s payoff by at most a small
amount.

Our result follows from a novel application of differential
privacy. We show that any algorithm that computes a cor-
related equilibrium of a complete information game while
satisfying a variant of differential privacy—which we call
joint differential privacy—can be used as a recommender
mechanism while satisfying our desired incentive properties.
Our main technical result is an algorithm for computing a

∗We gratefully acknowledge the support of NSF Grant CCF-
1101389. We thank Nabil Al-Najjar, Eduardo Azevdeo, Eric
Budish, Tymofiy Mylovanov, Andy Postlewaite, Al Roth
and Tim Roughgarden for helpful comments and discussions.
†A full version of this working paper appears on the arXiv
preprint site [KPRU13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’14, January 12–14, 2014, Princeton, New Jersey, USA.
ACM 978-1-4503-2698-8/14/01..

correlated equilibrium of a large game while satisfying joint
differential privacy.

Although our recommender mechanisms are designed to
satisfy game-theoretic properties, our solution ends up satis-
fying a strong privacy property as well. No group of players
can learn “much” about the type of any player outside the
group from the recommendations of the mechanism, even
if these players collude in an arbitrary way. As such, our
algorithm is able to implement equilibria of complete in-
formation games, without revealing information about the
realized types.

Categories and Subject Descriptors
Theory of Computation [Algorithmic Game Theory and
Mechanism Design]: Algorithmic Mechanism Design

Keywords
Game Theory, Mechanism Design, Large Games, Differen-
tial Privacy

1. INTRODUCTION
A useful simplification common in game theory is the

model of games of complete (or full) information. Infor-
mally, in a game of complete information, each player knows
with certainty the utility function of every other player. In
games of complete information, there are a number of solu-
tion concepts at our disposal, such as Nash equilibrium and
correlated equilibrium. Common to these is the idea that
each player is playing a best response against his opponents—
because of randomness, players might be uncertain about
what actions their opponents are taking, but they under-
stand their opponents’ incentives exactly.

In many situations, it is unreasonable to assume that play-
ers have exact knowledge of each other’s utilities. For exam-
ple, players may have few means of communication outside
of the game, or may regard their type as valuable private
information. These are games of incomplete (or partial) in-



formation, which are commonly modeled as Bayesian games
in which the players’ utilities functions, or types, are drawn
from a commonly known prior distribution. The most com-
mon solution concept in such games is Bayes-Nash Equilib-
rium. This stipulates that every player i, as a function of his
type, plays an action that maximizes his expected payoff, in
expectation both over the random draw of the types of his
opponents from the prior distribution and over the possible
randomization of the other players.

Unsurprisingly, equilibrium welfare can suffer in games
of incomplete information, because coordination becomes
more difficult amongst players who do not know each other’s
types. One way to measure the quality of equilibria is via the
“price of anarchy”—how much worse the social welfare can
be in an equilibrium outcome, as opposed to the welfare-
maximizing outcome. The price of anarchy can depend
significantly on the notion of equilibrium. For example,
Roughgarden [Rou12] notes that even smooth games1 that
have a constant price of anarchy under full information so-
lution concepts (e.g. Nash or correlated equilibrium) can
have an unboundedly large price of anarchy under partial in-
formation solution concepts (e.g. Bayes-Nash Equilibrium).
Therefore, given a game of partial information, where all
that we can predict is that players will choose some Bayes-
Nash Equilibrium (if even that), it may be preferable to im-
plement an equilibrium of the complete information game
defined by the actual realized types of the players. Doing
so would guarantee welfare bounded by the price of anarchy
of the full information game, rather than suffering from the
large price of anarchy of the partial information setting. In
a smooth game, we would be just as happy implementing a
correlated equilibrium as a Nash equilibrium, since the price
of anarchy is no worse over correlated equilibria.

In this paper we ask whether it is possible to help coordi-
nate on an equilibrium of the realized full information game
using a certain type of proxy that we call a “recommender
mechanism.” That is, we augment the game with an addi-
tional option for each player to use a proxy. If players opt in
to using the proxy, and reveal their type to the proxy, then
it will suggest some action for them to take. However, play-
ers may also simply opt out of using the proxy and play the
original game using any strategy they choose. We make the
assumption that if players use the proxy, then they must re-
port their type truthfully (or, alternatively, that the proxy
has the ability to verify a player’s type and punish those
who report dishonestly). However, the proxy has very lim-
ited power in other respects, because it does not have the
ability to modify payoffs of the game (i.e. make payments)
or to enforce that its recommendations be followed.

Our main result is that it is indeed possible to implement
approximate correlated equilibria of the realized full infor-
mation game using recommender mechanisms, assuming the
original game is “large”. Informally, a game is large if there
are many players and that each player has individually only
a small affect on the utility of any other player. We show

1Of particular interest to us are smooth games, defined by
Roughgarden [Rou09]. Almost all known price of anarchy
bounds (including those for the well studied model of traf-
fic routing games) are bounds on smooth games, and many
are quite good. Although price of anarchy bounds are typi-
cally proven for exact Nash equilibria of the full information
games, in smooth games, the price of anarchy bounds extend
without loss to (and even beyond) approximate correlated
equilibria, again of the full information game.

that in such games there exists a recommender mechanism
such that for any prior on agent types, it is an approximate
Bayes-Nash equilibrium for every agent in the game to opt
in to the proxy, and then follow its recommended action.
Moreover, when players do so, the resulting play forms an
approximate correlated equilibrium of the full information
game. The approximation error we require tends to 0 as the
number of players grows.

1.1 Overview of Techniques and Results
A tempting approach is to use the following form of proxy:

The proxy accepts a report of each agent’s type, which de-
fines an instance of a full information game. It then com-
putes a correlated equilibrium of the full information game,
and suggests an action to each player which is a draw from
this correlated equilibrium. By definition of a correlated
equilibrium, if all players opt into the proxy, then they can
do no better than subsequently following the recommended
action. However, this proxy does not solve the problem, as
it may not be in a player’s best interest to opt in, even if the
other n− 1 players do opt in! Intuitively, by opting out, the
player can cause the proxy to compute a correlated equilib-
rium of the wrong game, or to compute a different correlated
equilibrium of the same game!2 The problem is an instance
of the well known equilibrium-selection problem—even in a
game of full information, different players may disagree on
their preferred equilibrium, and may have trouble coordi-
nating. The problem is only more difficult in settings of
incomplete information. In our case, by opting out of the
mechanism, a player can have a substantial affect on the
computed equilibrium, even if each player has only small
affect on the utilities of other players.

Our solution is to devise a means of computing corre-
lated equilibria such that any single player’s reported type
to the algorithm only has a small effect on the distribution
of suggested actions to all other players. The precise no-
tion of “small effect” that we use is a variant of the well
studied notion of differential privacy. It is not hard to see
that computing an equilibrium of even a large game is not

2As a simple example, consider a large number n of people
who must each choose whether to go to the beach (B) or
mountains (M). People privately know their types— each
person’s utility depends on his own type, his action, and the
fraction of other people p who go to the beach. A Beach
type gets a payoff of 10p if he visits the beach, and 5(1− p)
if he visits the mountain. A mountain type gets a payoff
5p from visiting the beach, and 10(1 − p) from visiting the
mountain. Note that the game is ‘insensitive’ (an agent’s
visit decision has a small impact on others’ payoffs). Fur-
ther, note that “everyone visits beach” and “everyone visits
mountain” are both equilibria of the game, regardless of the
realization of types. Consider the mechanism that attempts
to implement the following social choice rule—“if the num-
ber of beach types is less than half the population, send
everyone to the beach, and vice versa.” It should be clear
that if mountain types are just in the majority, then each
mountain type has an incentive to opt out of the mechanism,
and vice versa. As a result, even though the game is “large”
and agents’ actions do not affect others’ payoffs significantly,
simply computing equilibria from reported type profiles does
not in general lead to even approximately truthful mecha-
nisms. This is a general phenomenon that is not specific to
our example. Finding an exact correlated equilibrium sub-
ject to any objective is a linear programming problem, and
in general small changes in the objective (or constraints) of
an LP can lead to wild changes in its solution.



possible under the standard constraint of differential pri-
vacy, because although agent’s actions have only a small
affect on the utilities of other players in large games, they
can have large affect on their own utility functions. Thus,
it is not possible to privately announce a best response for
player i while protecting the privacy of i’s type. Instead,
we introduce a variant which we call joint differential pri-
vacy, which requires that simultaneously for every player i,
the joint distribution on the suggested actions to all play-
ers j 6= i be differentially private in the type of agent i.
We show that a proxy mechanism which calculates an α-
approximate correlated equilibrium of the game induced by
players reported types, under the constraint of ε-joint differ-
ential privacy makes it an (ε+ α)-approximate Bayes-Nash
equilibrium for players to opt into the proxy, and then follow
their suggested action, as desired.

Our main technical result is an instantiation of this plan:
a pair of algorithms for computing α-approximate correlated
equilibria in large games, such that we can take the approxi-
mation parameter ε+α tending to zero. The first algorithm
is efficient, but has a suboptimal dependence on the number
of actions k in the game. The other algorithm is inefficient,
but has a nearly optimal dependence on k. Both have an
optimal dependence on the number of players n in the game,
which we show by exhibiting a matching lower bound.

We introduce joint differential privacy, large games, and
our game theoretic solution concepts in Section 2. In Section
3, we formally introduce our notion of a proxy, and state
our main results. Formal proofs are deferred to the full
working paper version available at on the arXiv preprint
site [KPRU13].

1.2 Related Work and Discussion
Market and Mechanism Design Our work is related to
the large body of literature on mechanism/ market design
in “large games,” which uses the large number of agents to
provide mechanisms which have good incentive properties,
even when the small market versions do not. It stretches
back to [RP76] who showed that market (Walrasian) equi-
libria are approximately strategy proof in large economies.
More recently [IM05], [KP09], [KPR10] have shown that
various two-sided matching mechanisms are approximately
strategy proof in large markets. There are similar results
in the literature for one-sided matching markets, market
economies, and double auctions. The most general result is
that of [AB11] who design incentive compatible mechanisms
for large economies that satisfy a smoothness assumption.
While we only allow agents to opt in/ opt out rather than
mis-report, we do not assume any such smoothness condi-
tion. Further, the literature on mechanism design normally
gives the mechanism the power to “enforce” actions, while
here our mechanism can only “recommend” actions.

Our work is also related to mediators in games [MT03,
MT09]. This line of work aims to modify the equilibrium
structure of full information games by introducing a me-
diator, which can coordinate agent actions if they choose
to opt in using the mediator. Mediators can be used to
convert Nash equilibria into dominant strategy equilibria
[MT03], or implement equilibrium that are robust to col-
lusion [MT09]. Our notion of a recommender mechanism is
related, but is even weaker than that of a mediator. For
example, our mechanisms do not need the power to make
payments [MT03], or the power to enforce suggested actions

[MT09]. Our mediators are thus closer to the communi-
cation devices in the “communication equilibria” of Forges
[For86]—that work investigates the set of achievable payoffs
via such mediators rather than how to design one, which we
do here. It also does not allow players to opt out of using
the mediator.

Large Games Our results hold under a “largeness condi-
tion”, i.e. a player’s action affects the payoff of all others by
a small amount. These are closely related to the literature
on large games, see e.g. [ANS00] or [Kal04]. There has been
recent work studying large games using tools from theoret-
ical computer science (but in this case, studying robustness
of equilibrium concepts)—see [GR08, GR10].

Differential Privacy Differential privacy was first defined
by [DMNS06], and is now the standard privacy “solution
concept” in the theoretical computer science literature. It
quantifies the worst-case harm that can befall an individual
from allowing his data to be used in a computation, as com-
pared to if he did not provide his data. There is by now a
very large literature on differential privacy, readers can con-
sult [Dwo08] for a more thorough introduction to the field.

[MT07] were the first to observe that a differentially pri-
vate algorithm is also approximately truthful. This line of
work was extended by [NST12] to give mechanisms in sev-
eral special cases which are exactly truthful by combining
private mechanisms with non-private mechanisms which ex-
plicitly punish non-truthful reporting. [HK12] showed that
the mechanism of [MT07] (the “exponential mechanism”) is
in fact maximal in distributional range, and so can be made
exactly truthful with the addition of payments. This imme-
diate connection between privacy and truthfulness does not
carry over to the notion of joint-differential privacy that we
study here, but as we show, it is regained if the object that
we compute privately is an equilibrium of the underlying
game.

Another interesting line of work considers the problem
of designing truthful mechanisms for agents who explicitly
experience a cost for privacy loss as part of their utility
function [CCK+13, NOS12, Xia13]. The main challenge in
this line of work is to formulate a reasonable model for how
agents experience cost as a function of privacy. We remark
that the approaches taken in the former two can also be
adapted to work in our setting, for agents who explicitly
value privacy. [Gra12] studies the problem of implementa-
tion for various assumptions about players’ preference for
privacy and permissible game forms. A related line of work
which also takes into account agent values for privacy con-
siders the problem of designing markets by which analysts
can procure private data from agents who explicitly experi-
ence costs for privacy loss [FL12, GR11, LR12, RS12]. See
[PR13] for a survey.

Finally, our results rely on several technical solutions in
the differential privacy literature. The most well studied
problem is that of accurately answering numeric-valued queries
on a data set. A basic result of [DMNS06] is that any low
sensitivity query (i.e. the addition or removal of a single
entry can change the value of the query by at most 1) can
be answered efficiently and (ε-differential) privately while
introducing only O(1/ε) error. Another fundamental re-
sult of [DKM+06, DRV10] is that differential privacy com-
poses gracefully. Any algorithm composed of T subroutines,
each of which are O(ε)-differentially private, is itself

√
Tε-



differentially private. Combined, these give an efficient algo-
rithm for privately answering any T low sensitivity queries
with O(

√
T ) effort, a result which we make use of.

Using computationally inefficient algorithms, it is possible
to privately answer queries much more accurately [BLR08,
DRV10, RR10, HR10, GHRU11, GRU12]. Combining the
results of the latter two yields an algorithm which can pri-
vately answer arbitrary low sensitivity queries as they arrive,
with error that scales only logarithmically in the number of
queries. We use this when we consider games with large
action spaces.

Our lower bounds for privately computing equilibria use
recent information theoretic lower bounds on the accuracy
queries can be answered while preserving differential privacy
[DN03, DMT07, DY08, De12]. Namely, we construct games
whose equilibria encode answers to large numbers of queries
on a database.

Variants of differential privacy related to joint differential
privacy have been considered in the setting of query release,
specifically for analyst privacy [DNV12]. Specifically, the
definition of one-analyst-to-many-analyst privacy used by
[HRU13] can be seen as an instantiation of joint differential
privacy.

2. MODEL & PRELIMINARIES
We consider games G of up to n players {1, 2, . . . , n}, in-

dexed by i. Player i can take actions in a set A, |A| = k. To
allow our games to be defined also for fewer than n players,
we will imagine that the null action ⊥ ∈ A, which corre-
sponds to “opting out” of the game. We index actions by
j. A tuple of actions, one for each player, will be denoted
a = (a1, a2, . . . an) ∈ An.3

Let U be the set of player types.4 There is a utility
function u : U × An → < that determines the payoff for
a player given his type ti and a joint action profile a for
all players. When it is clear from context, we will refer
to the utility function of player i, writing ui : An → <
to denote u(ti, ·). We write a generic profile of utilities
u = (u1, u2, . . . un) ∈ Un. We will be interested in im-
plementing equilibria of the complete information game in
settings of incomplete information. In the complete infor-
mation setting, the types ti of each player is fixed and com-
monly known to all players. In such settings, we can ig-
nore the abstraction of ‘types’ and consider each player i
simply to have a fixed utility function ui. In models of
incomplete information, players know their own type, but
do not know the types of others. In the Bayesian model
of incomplete information, there is a commonly known prior
distribution τ from which each agent’s type is jointly drawn:
(t1, . . . , tn) ∼ τ . We now define the solution concepts we will
use, both in the full information setting and in the Bayesian
setting.

Denote a distribution over An by π, the marginal distri-
bution over the actions of player i by πi, and the marginal
distribution over the (joint tuple of) actions of every player
but player i by π−i. We now present two standard solu-
tion concepts— approximate correlated and coarse corre-
lated equilibrium.

3In general, subscripts will refer indices i.e. players and pe-
riods, while superscripts will refer to components of vectors.
4It is trivial to extend our results when agents have different
typesets, Ui. U will then be

⋃n
i=1 Ui.

Definition 1 (Approximate CE). Let (u1, u2, . . . un)
be a tuple of utility functions, one for each player. Let π be
a distribution over tuples of actions An. We say that π is an
α-approximate correlated equilibrium of the (complete infor-
mation) game defined by (u1, u2, . . . un) if for every player
i ∈ [N ], and any function f : A→ A,

E
π

[ui(a)] ≥ E
π

[ui(f(ai), a−i)]− α

We now define a solution concept in the Bayesian model.
Let τ be a commonly known joint distribution over Un, and
let τ|ti be the posterior distribution on types conditioned on
the type of player i being ti. A (pure) strategy for player i
is a function si : U → A, and we write s = (s1, . . . , sn) to
denote a vector of strategy profiles.

Definition 2 (Approximate BNE). Let τ be a dis-
tribution over Un, and let s = (s1, . . . , sn) be a vector of
strategies. We say that s is an α-approximate (pure strat-
egy) Bayes Nash Equilibrium under τ if for every player i,
for every ti ∈ U , and for every alternative strategy s′i:

E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))] ≥

E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− ε

We restrict attention to ‘insensitive’ games. Roughly speak-
ing a game is γ-sensitive if a player’s choice of action affects
any other player’s payoff by at most γ. Note that we do not
constrain the effect of a player’s own actions on his payoff—
a player’s action can have a large impact on his own payoff.
Formally:

Definition 3 (γ-Sensitive). A game is said to be γ-
sensitive if for any two distinct players i 6= i′, any two ac-
tions ai, a

′
i and type ti for player i and any tuple of actions

a−i for everyone else:

|ui′(ai, a−i)− ui′(a′i, a−i)| ≤ γ. (1)

A key tool in our paper is the design of differentially
private “proxy” algorithms for suggesting actions to play.
Agents can able to opt out of participating in the proxy: so
each agent can submit to the proxy either their type ti, or
else a null symbol ⊥ which represents opting out. A proxy
algorithm is then a function from a profile of utility func-
tions (and ⊥ symbols) to a probability distribution over Rn,
i.e. M : (U ∪ {⊥})n → ∆Rn. Here R is an appropriately
defined range space.

First we recall the definition of differential privacy, both
to provide a basis for our modified definition, and since it
will be a technical building block in our algorithms. Roughly
speaking, a mechanism is differentially private if for every u
and every i, knowledge of the output M(u) as well as u−i
does not reveal ‘much’ about ui.

Definition 4 ((Standard) Differential Privacy).
A mechanismM satisfies (ε, δ)-differential privacy if for any
player i, any two types for player i, ti and t′i ∈ U ∪{⊥}, and
any tuple of types for every else t−i ∈ (U ∪{⊥})n−1 and any
S ⊆ Rn,

P
M

[(M(ti; t−i)) ∈ S] ≤ eε P
M

[(
M(t′i; t−i)

)
∈ S

]
+ δ.



We would like something slightly different for our setting.
We propose a relaxation of the above definition, motivated
by the fact that when computing a correlated equilibrium,
the action recommended to a player is only observed by her.
Roughly speaking, a mechanism is jointly differentially pri-
vate if, for each player i, knowledge of the other n − 1 rec-
ommendations (and submitted types) does not reveal ‘much’
about player i’s report. Note that this relaxation is neces-
sary in our setting if we are going to privately compute corre-
lated equilibria, since knowledge of player i’s recommended
action can reveal a lot of information about his type. It is
still very strong- the privacy guarantee remains even if ev-
eryone else colludes against a given player i, so long as i does
not himself make the component reported to him public.

Definition 5 (Joint Differential Privacy). A mech-
anism M satisfies (ε, δ)-joint differential privacy if for any
player i, any two possible types for player i, ti and t′i ∈
U ∪ {⊥}, any tuple of utilities for everyone else t−i and
S ⊆ Rn−1,

P
M

[
(M(ti; t−i))−i ∈ S

]
≤ eε P

M

[(
M(t′i; t−i)

)
−i ∈ S

]
+ δ.

3. JOINT DIFFERENTIAL PRIVACY AND
TRUTHFULNESS

The main result of this paper is a reduction that takes an
arbitrary large game G of incomplete information and mod-
ifies it to have equilibrium implementing equilibrium out-
comes of the corresponding full information game defined by
the realized agent types. Specifically, we modify the game
by introducing the option for players to use a proxy that
can recommend actions to the players. The modified game
is called G′. For any prior on agent types, it will be an
approximate Bayes Nash equilibrium of G′ for every player
to opt in to using the proxy, and to subsequently follow its
recommendation. Moreover, the resulting set of actions will
correspond to an approximate correlated equilibrium of the
complete information game G defined by the realized agent
types. For concreteness, we consider Bayesian games, how-
ever our results are not specific to this model of incomplete
information.

More precisely, the modified game G′ will be identical to G
with an added option. Each player i has the opportunity to
submit their type to a proxy, which will then suggest to them
an action âi ∈ A to play. They can use this advice however
they like: that is, they can choose any function f : A → A
and choose to play the action ai = f(âi). Alternately, they
can opt out of the proxy (and not submit their type), and
choose an action to play ai ∈ A directly. In the end, each
player experiences utility u(ti, (a1, . . . , an)), just as in the
original game G. We assume that types are verifiable—agent
i does not have the ability to opt in to the proxy but report
a false type t′i 6= ti. However, he does have the ability to
opt out (and submit ⊥), and the proxy has no power to do
anything other than suggest which action he should play. In
the end, each player is free to play any action ai, regardless
of what the proxy suggests, even if he opts in.

Formally, given a game G defined by an action set A, a
type space U , and a utility function u, we define a proxy
game G′M , parameterized by an algorithm M : {U∪{⊥}}n →
An. In G′, each agent has two types of actions: they can opt
in to the proxy, which means they submit their type, receive
an action recommendation â, and choose a function f : A→

A which determines how they use that recommendation. We
denote this set of choices A′1 = {(>, f)|f : A → A}. Alter-
nately, they can opt out of the proxy, which means that they
do not submit their type, and directly choose an action to
play. We denote this set of choices A′2 = {(⊥, a)|a ∈ A}.
Together, the action set in G′M is A′ = A′1 ∪ A′2. Given
a set of choices by the players, we define a vector x such
that xi = ti for each player i who chose (>, fi) ∈ A′1 (each
player who opted in), and xi = ⊥ for each player i who
chose (⊥, ai) ∈ A′2 (each player who opted out). The proxy
then computes M(x) = â. Finally, this results in a vector
of actions a from the game G, one for each player. For each
player who opted in, they play the action ai = fi(âi). For
each person who opted out, they play the action ai = ai.
Finally, each player receives utility u(ti,a) as in the original
game G.

We now show that if the algorithm M satisfies certain
properties, then for any prior on agent types, it is always an
approximate Bayes Nash equilibrium for every player to opt
in and follow the recommendation of the proxy.

Theorem 6. Let M be an algorithm that satisfies (ε, δ)-
joint differential privacy, and be such that for every vector
of types t ∈ Un, M(t) induces a distribution over actions
that is an α-approximate correlated equilibrium of the full
information game G induced by the type vector t. Then for
every prior distribution on types τ , it is an η-approximate
Bayes Nash equilibrium of G′M for every player to play (>, f)
for the identity function f(a) = a. (i.e. for every player to
opt into the proxy, and then follow its suggested action),
where η = ε+ δ + α.

Remark 7. Observe that when agents play according to
the approximate Bayes Nash equilibrium of G′M guaranteed
by Theorem 6, then the resulting distribution over actions
played, and the resulting utilities of the players, correspond
to an α-approximate correlated equilibrium of the full infor-
mation game G′M , induced by the realized type vector t.

Proof Proof of Theorem 6. Fix any prior distribu-
tion on player types τ , and let s1, . . . , sn be the strategies
corresponding to the action (>, f) for each player, where f
is the identify function. (i.e. the strategy corresponding to
opting into the proxy and following the suggested action).
There are two types of deviations that a player i can con-
sider: (>, f ′i) for some function f ′i : A→ A not the identity
function, and (⊥, ai) for some action ai. First, we consider
deviations of the first kind. Let s′i(ti) be the strategy corre-
sponding to playing (>, f ′ŝ(ti)) for some function ŝ(ti). For
every type ti:

E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))] =
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[ui(a)]

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[
ui(f

′
ŝ(ti)(ai),a−i)

]
− α

= E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− α

where the inequality follows from the fact that M com-
putes an α-approximate correlated equilibrium. Now, con-
sider a deviation of the second kind. Let s′i(ti) be the strat-
egy corresponding to playing (⊥, aŝ(ti)) for some function
ŝ(ti). For every type ti:



E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))]

=
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[ui(a)]

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[
ui(aŝ(ti),a−i)

]
− α

≥
∑
t−i

Pr
τ|ti

[t−i] · exp(−ε) · E
a∼M(⊥,t−i)

[
ui(aŝ(ti),a−i)

]
− δ − α

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(⊥,t−i)

[
ui(aŝ(ti),a−i)

]
− ε− δ − α

= E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− ε− δ − α

where the first inequality follows from the α-approximate
correlated equilibrium condition, the second follows from the
(ε, δ)-joint differential privacy condition, and the third fol-
lows from the fact that for ε ≥ 0, exp(−ε) ≥ 1− ε and that
utilities are bounded in [0, 1].

The main technical contribution of the paper is an algo-
rithm M which satisfies (ε, δ)-joint differential privacy, and
computes an α-approximate correlated equilibrium of games
which are γ-large. We in fact give two such algorithms: one
that runs in time polynomial in n and |A| = k, and one
that runs in time exponential in n and k. The efficient algo-
rithm computes an α1-approximate correlated equilibrium,
and the inefficient algorithm computes an α2-approximate
correlated equilibrium, where:

α1 = Õ

(
γk3/2

√
n log(1/δ)

ε

)

α2 = Õ

(
γ log k log3/2(U)

√
n log(1/δ)

ε

)
.

In combination with Theorem 6, the existence of these
algorithms together with optimal choices of ε and δ give our
main result:

Theorem 8. Let G be any γ-large game. Then there ex-
ists a proxy game G′ such that for any prior distribution on
types τ , it is an η-approximate Bayes-Nash equilibrium to
opt into the proxy and follow its advice. Moreover, the result-
ing distribution on actions forms an η-approximate corre-
lated equilibrium of the full information game induced by the
realized types. If we insist that the proxy be implemented us-
ing a computationally efficient algorithm, then we can take:

η = Õ
(√

γn1/4k3/4
)

If we can take the proxy to be computationally inefficient,
then we can take:

η = Õ
(√

γn1/4
√

log k log3/4 |U|
)

Remark 9. In large games, the parameter γ tends to zero
as n grows large. For γ = 1/n, our approximation error is

η = Õ(k3/4/n1/4) and η = Õ(
√

log k log3/4 |U|/n1/4) respec-
tively. Note that the approximation error η in the equilib-
rium concepts tends to zero in any γ-large game such that
γ = o( 1√

nk3/2
) or γ = o( 1√

n log k log3/2 |U| ) respectively.

4. DISCUSSION
In this work, we have introduced a new variant of differen-

tial privacy (joint differential privacy), and have shown how
it can be used as a tool to construct extremely weak proxy
mechanisms which can implement equilibria of full informa-
tion games, even when the game is being played in a setting
of only partial information. Moreover, our privacy solution
concept maintains the property that no coalition of players
can learn (much) more about any player’s type outside of
the coalition than they could have learned in the original
Bayesian game, and thus players have almost no incentive
not to participate even if they view their type as sensitive in-
formation. Although our proxies are weak in most respects
(they cannot enforce actions, they cannot make payments or
charge fees, they cannot compel participation), we do make
the assumption that player types are verifiable in the event
that they choose to opt into the proxy. This assumption is
reasonable in many settings: for example, in financial mar-
kets, there may be legal penalties for a firm misrepresenting
relevant facts about itself, and in traffic routing games, the
proxy may be embodied as a physical device (e.g. a GPS
device) that can itself verify player types (e.g. physical lo-
cation). Nevertheless, we view relaxing this assumption as
an important direction for future work.

In this extended abstract, we have merely summarized our
results. Our full paper [KPRU13] includes a formal descrip-
tion of our algorithms, formal statements of our theorems,
and proofs of all results.
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