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Abstract: We introduce a graph-theoretic generalization of classical Arrow-Debreu economics,
in which an undirected graph specifies which consumers or economies are permitted to engage
in direct trade, and the graph topology may give rise to local variations in the prices of com-
modities. Our main technical contributions are: (1) a general existence theorem forgraphical
equilibria, which requirelocal markets to clear; (2) an improved algorithm for computing ap-
proximate equilibria in standard (non-graphical) economies, which generalizes the algorithm of
Deng et al. [2002] to non-linear utility functions; (3) an algorithm for computing equilibria in the
graphical setting, which runs in time polynomial in the number of consumers in the special but
important case in which the graph is a tree (again permitting non-linear utility functions). We also
highlight many interesting learning problems that arise in our model, and relate them to learning
in standard game theory and economics, graphical games, and graphical models for probabilistic
inference.

1 Introduction

Models for the exchange of goods and their prices in a large economy have a long
and storied history within mathematical economics, dating back more than a century
to the work of Walras [1874] and Fisher [1891], and continuing through the model
of Wald [1936] (see also Brainard and Scarf [2000]). A pinnacle of this line of work
came in 1954, when Arrow and Debreu provided extremely general conditions for the
existence of an equilibrium in such models (in which markets clear,i.e.supply balances
demand, and all individual consumers and firms optimize their utility subject to budget
constraints). Like Nash’s roughly contemporary proof of the existence of equilibria for
normal-form games (Nash [1951]), Arrow and Debreu’s result placed a rich class of
economic models on solid mathematical ground.

These important results established theexistenceof various notions of equilibria.
Thecomputationof game-theoretic and economic equilibria has been a more slippery
affair. Indeed, despite decades of effort, the computational complexity of computing a
Nash equilibrium for a general-sum normal-form game remains unknown, with the best
known algorithms requiring exponential time in the worst case. Even less is known re-
garding the computation of Arrow-Debreu equilibria. Only quite recently, a polynomial-
time algorithm was discovered for the special but challenging case of linear utility func-
tions (Devanur et al. [2002], Jain et al. [2003], Devanur and Vazirani [2003]). Still less
is known about thelearningof economic equilibria in a distributed, natural fashion.

One promising direction for making computational progress is to introduce alterna-
tive ways ofrepresentingthese problems, with the hope that wide classes of “natural”
problems may permit special-purpose solutions. By developing new representations that
permit the expression of common types of structure in games and economies, it may be
possible to design algorithms that exploit this structure to yield computational as well
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as modeling benefits. Researchers in machine learning and artificial intelligence have
proven especially adept at devising models that balance representational power with
computational tractability and learnability, so it has been natural to turn to these litera-
tures for inspiration in strategic and economic models.

Among the most natural and common kinds of structure that arise in game-theoretic
and economic settings are constraints and asymmetries in theinteractionsbetween the
parties. By this we mean, for example, that in a large-population game, not all players
may directly influence the payoffs of all others. The recently introduced formalism of
graphical gamescaptures this notion, representing a game by an undirected graph and a
corresponding set of local game matrices (Kearns et al. [2001]). In Section 2 we briefly
review the history of graphical games and similar models, and their connections with
other topics in machine learning and probabilistic inference.

In the same spirit, in this paper we introduce a new model calledgraphical eco-
nomicsand show that it provides representational and algorithmic benefits for Arrow-
Debreu economics. Each vertexi in an undirected graph represents an individual party
in a large economic system. The presence of an edge betweeni andj means that free
trade is allowed between the two parties, while the absence of this edge means there is
an embargo or other restriction on direct trade. The graph could thus represent a net-
work of individual business people, with the edges indicating who knows whom; or the
global economy, with the edges representing nation pairs with trade agreements; and
many other settings. Since not all parties may directly engage in trade, the graphical
economics model permits (and realizes) the emergence oflocal prices — that is,the
price of the same good may varyacross the economy. Indeed, one of our motivations
in introducing the model is to capture the fact that price differences for identical goods
can arise due to the network structure of economic interaction.

We emphasize that the mere introduction of a network or graph structure into eco-
nomic models is in itself not a new idea; while a detailed history of such models is
beyond our scope, Jackson [2003] provides an excellent survey. However, to our knowl-
edge, the great majority of these models are designed to model specific economic set-
tings. Our model has deliberately incorporated a network model into the general Arrow-
Debreu framework. Our motivation is to capture and understand network interactions
in what is the most well-studied of mathematical economic models.

The graphical economics model suggests alocal notion of clearance, directly de-
rived from that of the Arrow-Debreu model. Rather than asking that the entire (global)
market clear in each good, we can ask for the stronger “provincial” conditions that the
local market for each good must clear. For instance, the United States is less concerned
that the worldwide production of beef balances worldwide demand than it is that the
production ofAmericanbeef balancesworldwidedemand for American beef. If this
latter condition holds, the American beef industry is doing a good job at matching the
global demand for their product, even if other countries suffer excess supply or demand.

The primary contributions of this paper are:

– The introduction of the graphical economics model (which lies within the Arrow-
Debreu framework) for capturing structured interaction between individuals, orga-
nizations or nations.

– A proof that under very general conditions (essentially analogous to Arrow and
Debreu’s original conditions), graphical equilibria always exist. This proof requires
a non-trivial modification to that of Arrow and Debreu.
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– An algorithm for computing approximate standard market equilibria in the non-
graphical setting that runs in time polynomial in the number of players (fixing the
number of goods) for a rather general class of non-linear utility functions. This
result generalizes the algorithm of Deng et al. [2002] for linear utility functions.

– An algorithm, calledADProp (for Arrow-Debreu Propagation) for computing ap-
proximate graphical equilibria. This algorithm is a message-passing algorithm work-
ing directly on the graph, in which neighboring consumers or economies exchange
information about trade imbalances between them under potential equilibria prices.
In the case that the graph is a tree, the running time of the algorithm is exponential
in the graph degree and number of goodsk, but only polynomial in the number of
verticesn (consumers or economies). It thus represents dramatic savings over treat-
ing the graphical case with a non-graphical algorithm, which results in a running
time exponential inn (as well as ink).

– A discussion of the many challenging learning problems that arise in both the tra-
ditional and graphical economic models. This discussion is provided in Section 6.

2 A Brief History of Graphical Games

In this section, we review the short but active history of work in the model known as
graphical games, and highlight connections to more longstanding topics in machine
learning and graphical models.

Graphical games were introduced in Kearns et al. [2001], where a representation
consisting of an undirected graph and a set of local payoff matrices was proposed for
multi-player games. The interpretation is that the payoff to playeri is a function of
the actions of only those players in the neighborhood of vertexi in the graph. Exactly
as with the graphical models for probabilistic inference that inspired them (such as
Bayesian and Markov networks), graphical games provide an exponentially more suc-
cinct representation in cases where the number of players is large, but the degree of the
interaction graph is relatively small.

A series of papers by several authors established the computational benefits of this
model. Kearns et al. [2001] gave a provably efficient (polynomial in the model size)
algorithm for computing all approximate Nash equilibria in graphical games with a
tree topology; this algorithm can be formally viewed as the analogue of the junction
tree algorithm for inference in tree-structured Markov networks. A related algorithm
described in Littman et al. [2002] computes a single but exact Nash equilibrium.

In the same way that the junction tree and polytree algorithms for probabilistic in-
ference were generalized to obtain the more heuristic belief propagation algorithm, Or-
tiz and Kearns [2003] proposed the NashProp algorithm for arbitrary graphical games,
proved its convergence, and experimentally demonstrated promising performance on
a wide class of graphs. Vickrey and Koller [2002] proposed and experimentally com-
pared a wide range of natural algorithms for computing equilibria in graphical games,
and quite recently Blum et al. [2003] developed an interesting new algorithm based on
continuation methods.

An intriguing connection between graphical games and Markov networks was es-
tablished in Kakade et al. [2003], in the context of the generalization of Nash equilibria
known ascorrelated equilibria. There it was shown that ifG is the underlying graph
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of a graphical game, then all the correlated equilibria of the game (up to payoff equiva-
lence) can be represented as a Markov network whose underlying graph is almost iden-
tical toG — in particular, only a small number of highly localized connections need
to be added. This result establishes a natural and very direct relationship between the
strategicstructure of interaction in a multi-player game, and theprobabilistic depen-
dency structure of any (correlated) equilibrium. In addition to allowing one to establish
non-trivial independencies that must hold at equilibrium, this result is also thought-
provoking from a learning perspective, since a series of recent papers has established
that correlated equilibrium appears to be the natural convergence notion for a wide class
of “rational” learning dynamics. We shall return to this topic when we discuss learning
in Section 6.

3 Graphical Economies

The classical Arrow-Debreu (AD in the sequel) economy (without firms) consists ofn
consumers who tradek commodities of goods amongst themselves in an unrestricted
manner. In an AD economy, each unit of commodityh 2 f1; : : : ; kg can be bought
by any consumer at pricesph. We denote the vector of prices to bep 2 Rk

+ (where
R+ = fx � 0g).

Each consumeri purchases aconsumption planx i 2 Rk
+, wherexih is the amount

of commodityh that is purchased byi. We assume that each consumeri has an initial
endowmente i 2 Rk

+ of thek commodities, wheree i
h is the amount of commodityh

initially held by i. These commodities can be sold to other consumers and thus provide
consumeri with wealthor cash, which can in turn be used to purchase other goods.
Hence, if the initial endowment of consumeri is completely sold, then the wealth of
consumeri is p � e i. A consumption planx i is budget constrainedif p � x i � p � e i,
which implicitly assumes the endowment is completely sold (which in fact holds at
equilibrium).

Every consumeri has autility functionui : Rk
+ ! R+, whereui(x i) describes

how much utility consumeri receives from consuming the planx i. The utility function
thus expresses the preferences a consumer has for varying bundles of thek goods.

A graphical economywith n players andk goods can be formalized as a standard
AD economy withnk “traditional” goods, which are indexed by the pairs(i; h). The
good(i; h) is interpreted as “goodh sold by consumeri”. The key restriction is that free
trade is not permitted between consumers, so all players may not be able to purchase
(i; h). It turns out that with these trade restrictions, we were not able to invoke the
original existence proof used in the standard Arrow-Debreu model, and we had to use
some interesting techniques to prove existence.

It is most natural to specify the trade restrictions through an undirected graph,G,
over then consumers1. The graphG specifies how the consumers are allowed to trade
with each other — each consumer may have a limited choice of where to purchase
commodities. The interpretation ofG is that if (i; j) is an edge inG, then free trade

1 Throughout the paper we describe the model and results in the setting where the graph con-
strains exchange between individual consumers, but everything generalizes to the case in
which the vertices are themselves complete AD economies, and the graph is viewed as repre-
senting trade agreements.
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exists between consumersi andj, meaning thati is allowed to buy commodities from
j and vice-versa; while the lack of an edge betweeni andj means that no direct trade
is permitted. More precisely, if we useN(i) to denote the neighbor set ofi (which by
convention includesi itself), then consumeri is free to buy any commodityonly from
any of the consumers inN(i). It will naturally turn out that rational consumers only
purchase goods from a neighbor with the best available price.

Associated with each consumeri is a local price vectorp i 2 Rk
+, wherepih is

the price at which commodityh is being sold byi. We denote the set of all local price
vectors byP = fp i : i = 1; : : : ; ng. Each consumeri purchases an amount of com-
moditiesx ij 2 Rk

+, wherexijh is the amount of commodityh that is purchased from
consumerj by consumeri. The trade restrictions imply thatx ij = 0 for j 62 N(i).
Here, the consumption plan is the setX i = fx ij : j 2 N(i)g and anX i is budget con-
strainedif

P
j2N(i) p

j �x ij � p i �e i which again implicitly assumes the endowment
is completely sold (which holds at equilibrium).

In the graphical setting, we assume the utility function only depends on theto-
tal amountof each commodity consumed, independent of whom it was purchased
from. This expresses the fact that the goods are identical across the economy, and
consumers seek the best prices available to them. Slightly abusing notation, we define
x i =

P
j2N(i) x

ij , which is the total vector amount of goods consumed byi under the

planX i. The utility of consumeri is given by the functionui(x i), which is a function
fromRk

+ ! R+.

4 Graphical Equilibria

In equilibrium, there are two properties which we desire to hold — consumer ratio-
nality and market clearance. We now define these and state conditions under which an
equilibrium is guaranteed.

The economic motivation for a consumer in the choice of consumption plans is
to maximize utility subject to a budget constraint. We say that a consumeri uses an
optimal planat pricesP if the plan maximizes utility over the set of all plans which
are budget constrained underP . For instance, in the graphical setting, a planX i for i
is optimal at pricesP if the planX i maximizes the functionui over allX 0i subject toP

j2N(i) p
j � x 0ij � p i � e i.

We say themarket clearsif the supply equals the demand. In the standard setting,
define the total demand vector asd =

P
i x

i and the total supply vector ase =
P

i e
i

and say the market clears ifd = e. In the graphical setting, the concept of clearance
is applied to each “commodityh sold by i”, so we have alocal notion of clearance,
in which all the goods sold by each consumer clear in the neighborhood. Define the
local demand vectord i 2 Rk

+ on consumeri asd i =
P

j2N(i) x
ji. The clearance

condition is for eachi, d i = e i.
A market or graphical equilibriumis a set of prices and plans in which all plans are

optimal at the current prices and in which the market clears. We note that the notions of
traditional AD and graphical equilibria coincide when the graph is fully connected.

As with the original notion of AD equilibria, it is important to establish the general
existence of graphical equilibria. Also as with the original notion, in order to prove the
existence of equilibria, two natural technical assumptions are required, one on the utility
functions and the other on the endowments. We begin with the assumption on utilities.
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Assumption I: For all consumersi, the utility functionui satisfies the following three
properties:

– (Continuity)ui is a continuous function.
– (Monotonicity)ui is strictly monotonically increasing with each commodity.
– (Quasi-Concavity)If ui(x 0) > ui(x) thenui(�x 0 + (1 � �)x) > ui(x) for all
0 < � < 1.

The monotonicity assumption is somewhat stronger than the original “non-satiability”
assumption made by AD, but is made primarily for expository purposes. Our results
can be generalized to the original assumption as well.

The following facts follow from Assumption I and the consumers’ rationality:

1. At equilibrium, the budget constraint inequality for consumeri is saturated,e.g., in
a standard AD economy, a consumer using an equilibrium planx i spends all the
money obtained from the sale of the endowmente i.

2. In any graphical equilibrium, a consumer only purchases a commodity at the cheap-
est price among the neighboring consumers. Note that the neighboring consumer
with the cheapest price may not be unique.

Assumption II: (Non-Zero Endowments) For each consumeri and goodh, eih > 0.
The seminal theorem of Arrow and Debreu [1954] states that these assumptions

are sufficient to ensure existence of a market equilibrium. However, this theorem does
not immediately imply existence of an equilibrium in a graphical economy, due to the
restricted nature of trade. Essentially, Assumption II in the AD setting implies that
each consumer owns a positive amount of every good in the economy. In the graphical
setting, there are effectivelynk goods, but each consumer only has an endowment ink
of them. To put it another way, consumeri may only obtain income from selling goods
at thek local pricesp i, and isnot able to sell any of its endowment at pricesp j for
j 6= i.

Nevertheless, Assumptions I and II still turn out to be sufficient to allow us to prove
the following graph-theoretic equilibrium existence theorem.

Theorem 1. (Graphical Equilibria Existence) For any graphical economy in which As-
sumptions I and II hold, there exists a graphical equilibrium.

Before proving existence, let us examine these equilibria with some examples.

4.1 Local Price Variation at Graphical Equilibrium

To illustrate the concept of graphical equilibrium and its difference with the traditional
AD notion, we now provide an example in which local price differences occur at equi-
librium. The economy consists of three consumers,c1; c2 andc3, and two goods,g1 and
g2. The graph of the economy is the linec1 � c2 � c3.

The utility functions for all three consumers are linear. Consumerc1 has linear util-
ity for g1 with coefficient 1, and zero utility forg2. Consumerc2 has linear utility for
bothg1 andg2, with both coefficients 1. Consumerc3, has zero utility forg1, and linear
utility for g2 with coefficient 1. The endowments(e1; e2) for g1 andg2 for the con-
sumers are as follows:(1; 2) for c1, (1; 1) for c2, and(2; 1) for c3.
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Fig. 1. Price variation and the exchange subgraph at graphical equilibrium in a preferential at-
tachment network. See text for description.

We claim that the following local prices(p1; p2) for g1 andg2 constitute a graphical
equilibrium: prices(2; 1) to purchase fromc1, (2; 2) to purchase fromc2, and(1; 2)
to purchase fromc3. It can also be shown that there isno graphical equilibrium in
which the prices for both goods is the same from all consumers, so price variations are
essential for equilibrium. We leave the verification of these claims as an exercise for the
interested reader.

Essentially, in this example,c1 andc3 would like to exchange goods, but the graph-
ical structure prohibits direct trade. Consumerc2, however, is indifferent to the two
goods, and thus acts as a kind of arbitrage agent, selling each ofc1 andc2 their desired
good at a high price, while buying their undesired good at a low price.

A more elaborate and interesting equilibrium computation which also contains price
variation is shown in Figure 4.1. In this graph, there are 20 buyers and 20 sellers (labeled
by ‘B’ or ‘S’ respectively, followed by an index). The bipartite connectivity structure
(in which edges are only between buyers and sellers) was generated according to a sta-
tistical model known aspreferential attachment(Barabasi and Albert [1999]), which
accounts for the heavy-tailed distribution of degrees often found in real social and eco-
nomic networks. All buyers have a single unit of currency and utility only for an abstract
good, while all sellers have a single unit of this good and utility only for currency. Each
seller vertex is labeled with the price they charge at graphical equilibrium. Note that in
this example, there is non-trivial price variation, with the most fortunate sellers charging
1.50 for the unit of the good, and the least fortunate 0.67.
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The black edges in the figure show theexchange subgraph— those pairs of buyers
and sellers who actually exchange currency and goods at equilibrium. Note the sparse-
ness of this graph compared to the overall graph. The yellow edges (the most faint in a
black and white version) are edges of the original graph that are unused at equilibrium
because they represent inferior prices for the buyers, while the dashed edges are edges
of the original graph that have competitive prices, but are unused at equilibrium due to
the local market clearance conditions.

In a forthcoming paper (Kakade et al. [2004]) we report on a series of large-scale
computational experiments of this kind.

4.2 Proof of Graphical Equilibrium Existence

For reasons primarily related to Assumption II, the proof uses the interesting concept
of a “quasi-equilibrium”, originally defined by Debreu [1962] in work a decade after
his seminal existence result with Arrow. It turns out that much previous work has gone
into weakening this assumption in the AD setting. If this assumption is not present, then
Debreu [1962] shows that although true equilibria may not exist, “quasi-equilibrium”
still exist. In a quasi-equilibrium, consumers with0 wealth are allowed to be irrational.

Our proof proceeds by establishing the existence of a quasi-equilibria in the graph-
ical setting, and then showing that this in fact implies existence of graphical equilibria.
This last step involves a graph-theoretic argument showing that every consumer has
positive wealth.

A “graphical quasi-equilibrium” is defined as follows.

Definition 1. A graphical quasi-equilibriumfor a graphical economy is a set of globally
normalized pricesP (i.e.

P
i;h p

i
h = 1) and a set of consumption plansfX ig, in which

the local markets clear and for each consumeri, with wealthwi = p i �e i, the following
condition holds:

– (Rational) If consumeri has positive wealth (wi > 0), theni is rational (utility-
maximizing).

– (Quasi-Rational) Else if has no wealth (wi = 0), then the planX i is only budget
constrained (and does not necessarily maximize utility).

Lemma 1. (Graphical Quasi-Equilibria Existence) In any graphical economy in which
Assumption I holds, there exists a graphical quasi-equilibrium.

The proof is straightforward and is provided in a longer version of this paper. Note
that if all consumers have positive wealth at a quasi-equilibrium, then all consumers are
rational. Hence, to complete the proof of Theorem 1 it suffices to prove that all con-
sumers have positive wealth at a quasi-equilibrium. For this we provide the following
lemma, which demonstrates how wealth propagates in the graph.

Lemma 2. If the graph of a graphical economy is connected and if Assumptions I and
II hold, then for any quasi-equilibrium set of pricesfp ig, it holds that every consumer
has non-zero wealth.
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Proof. Note that by price normalization, there exists at least one consumer that has one
commodity with non-zero price. We now show that if for any consumeri, p i 6= 0, then
this implies that for allj 2 N(i), p j 6= 0. This is sufficient to prove the result, since
the graph is assumed to be connected ande i > 0.

Let fX ig andfp ig be a quasi-equilibrium. Assume that in somei, p i 6= 0. Since
every consumer has positive endowments in each commodity (Assumption II),p i�e i >
0, and so consumeri is rational. By Fact 1, the budget constraint inequality ofi must be
saturated, so

P
j2N(i) p

j � x ij = p i � e i > 0. Hence, there must exist a commodity

h and aj 2 N(i) such thatxijh > 0 andpjh 6= 0, else the money spent would be0. In
other words, there must exist a commodity that is consumed byi from a neighbor at a
non-zero price.

The rationality ofi implies that consumerj has the cheapest price for the com-
modity h, otherwisei would buyh from a cheaper neighbor (Fact 2). More formally,
j 2 argmin`2N(i) p

`
h, which implies for all` 2 N(i), p`h � pjh > 0. Thus we have

shown that for all̀ 2 N(i), p ` 6= 0, and since by Assumption II,e l > 0, this com-
pletes the proof. ut

Without graph connectivity, it is possible that all the consumers in a disconnected
graph could have zero wealth at a quasi-equilibrium. Hence, to complete the proof of
Theorem 1, we observe that in each connected region we have a separate graphical
equilibria.

It turns out that the “propagation” argument in the previous proof, with more careful
accounting, actually leads to a quantitative lower bound on consumer wealth in a graph-
ical economy, which we now present. This lower bound is particularly useful when we
turn towards computational issues in a moment.

The following definitions are needed:

e+ = max
i;h

eih ; e� = min
i;h

eih

Note that Assumption II implies thate� > 0.

Lemma 3. (Wealth Propagation) In a graphical economy, in which Assumptions I and
II hold, with a connected graph of degreem � 1, the wealth of any consumeri at
equilibrium pricesfp ig is bounded as follows:

p i � e i �

�
e�

e+mk

�diameter(G)
e�
n

> 0

The proof is provided in the long version of this paper.
Interestingly, note that a graph that maximizes free trade (i.e. a fully connected

graph) maximizes this lower bound on the wealth of a consumer.

5 Algorithms for Computing Economic Equilibria

All of our algorithmic results compute approximate, rather than exact, economic equi-
libria. We first give the requisite definitions. We use the natural definition originally
presented in Deng et al. [2002]. First, two concepts are useful to define — approximate
optimality and approximate clearance. A plan is"-optimalat some priceP if the plans
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are budget constrained underP and if the utility of the plan is at least1�" times the op-
timal utility underP . The market"-clearsif, in the standard setting,(1� ")e � d � e

and, in the graphical setting, for alli, (1 � ")e i � d i � e i. Now we say a set of
plans and prices constitute an"-equilibrium if the market"-clears and if the plans are
"-optimal.2

The algorithms we present search for an approximate ADE on a discretized grid.
Hence, we need some sort of “smoothness” condition on the utility function in order for
the discretized grid to be a good approximation to the true space. More formally,
Assumption III We assume there is exists
 � 0 such that for alli and for allx

ui( (1 + 
)x ) � exp(
d)ui(x)

for some constantd.
Note that for polynomials with positive weights, the constantd can be taken to

be the degree of the polynomial. Essentially, the condition states that if a consumer
increases his consumption plan by some multiplicative factor
, then his utility cannot
increase by the exponentially larger, multiplicative factor ofexp(
d). This condition is
a natural one to consider, since the “growth rate” constantd is dimensionless (unlike
the derivative of the utility function@ui=@x, which has units ofutility=goods).

Naturally, for reasons of computational generality, we make a “black box” repre-
sentational assumption on the utility functions.
Assumption IV We assume that for alli, the utility functionui is given as an oracle,
which given an inputx i, outputsui(x i) in unit time.

For the remainder of the paper, we assume that Assumptions I-IV hold.

5.1 An Improved Algorithm for Computing AD Equilibria

We now present an algorithm for computing AD equilibria for rather general utility
functions in the non-graphical setting. The algorithm is a generalization of the algo-
rithm provided by Deng et al. [2002], which computes equilibria for the case in which
the utilities are linear functions. While our primary interest in this algorithm is as a sub-
routine for the graphical algorithm presented in Section 5.3, it is also of independent
interest.

The idea of the algorithm is as follows. For each consumeri, a binary valued “best-
response” tableMi(p;x) is computed, where the indicesp andx are prices and plans.
The value ofMi(p;x) is set to1 if and only if x is "-optimal for consumeri at prices
p. Once these tables are computed, the “price player’s” task is then to findp andfx ig
such that(1� ")e � d � e and for alli, Mi(p;x

i) = 1.
To keep the tables ofMi of finite size, we only consider prices and plans on a

grid. As in Deng et al. [2002] and Papadimitriou and Yannakakis [2000], we consider a

2 It turns out that any"-approximate equilibrium in our setting with monotonically increasing
utility functions can be transformed into an approximate equilibrium in which the market
exactlyclears while the plans are still"-optimal. To see this note that the cost of the unsold
goods is equal to the surplus money in the consumers’ budgets. The monotonicity assumption
allows us to increase the consumption plans, using the surplus money, to take up the excess
supply without decreasing utilities. This transformation is in general not possible if we weaken
the monotonicity assumption to a non-satiability assumption.
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relative grid of the form:

Gprice= fp0; (1 + ")p0; (1 + ")2p0; : : : ; 1g ;

Gplan= fx0; (1 + ")x0; (1 + ")2x0; : : : ; ne+g

where the maximal grid price is1 and maximal grid plan isne+ (since there is at most
an amountne+ of any good in the market). The intuitive reason for the use of a relative
grid is that demand is more sensitive to price perturbations of cheaper priced goods,
since consumers have more purchasing power for these goods.

In Section 5.2, we sketch the necessary approximation scheme, which shows how
to setp0 andx0 such that an"-equilibrium on this grid exists. The natural method to
setp0 is to use a lower bound on the equilibrium prices. Unfortunately, under rather
general conditions, only the trivial lower bound of0 is possible. However, we can set
p0 andx0 based on a non-trivialwealthbound.

Now let us sketch how we use the tables to compute an"-equilibrium. Essentially,
the task now lies in checking that the demand vectord is close toe for a set of plans and
prices which are true for theMi. As in Deng et al. [2002], a form of dynamic program-
ming suffices. Consider a binary, “partial sum of demand” tableSi(p;x) defined as fol-
lows:Si(p;d) = 1 if and only if there existsx1; : : : ;xi such thatd = x1+x2+: : :+xi

andM1(p;x
1) = 1; : : : ;Mi(p;x

i) = 1. These tables can be computed recursively as
follows: if Si�1(p;d) = 1 and ifMi(p;x) = 1, then we setSi(p;x+d) = 1. Further,
we keep track of a “witness”x1; : : : ;xi which proves that the table entry is1. The
approximation lemmas in Section 5.2 show how to keep this table of finite “small” size
(see also long version of the paper).

Once we haveSn, we just search for some indexp andd such thatSn(p;d) = 1
andd � e. Thisp and the corresponding witness plans then constitute an equilibrium.
The time complexity of this algorithm is polynomial in the tables sizes, which we shall
see is of polynomial size for a fixedk. This gives rise to the following theorem.

Theorem 2. For fixedk, there exists an algorithm which takes as input an AD economy
and outputs an"-equilibrium in time polynomial inn, 1=", log (e+=e�), andd.

The approximation details and proof are provided in the long version of this paper.

5.2 Approximate Equilibria on a Relative Grid

We now describe a relative discretization scheme for prices and consumption plans
that is used by the algorithm just described for computing equilibria in classical (non-
graphical) AD economies. This scheme can be generalized for the graphical setting, but
is easier to understand in the standard setting.

Without loss of generality, throughout this section we assume the prices in a market
are globally normalized,i.e.

P
h ph = 1.

A price and consumption plan can be mapped onto the relative grid in the obvious
way. Definegrid(p) 2 Rk

+ to be the closest price top such that each component of
grid(p) is on the price grid. Hence,

1

1 + "
p � grid(p) � maxf(1 + ")p; p01g
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where themax is taken component-wise and1 is a k-length vector of all ones. Note
that the value ofp0 is a threshold where all prices belowp0 get set to this threshold
price. Similarly, for any consumption planx i, let grid(x i) be the closest plan tox i

such thatgrid(x i) is componentwise onGplan.
In order for such a discretization scheme to work, we require two properties. First,

the grid should certainlycontainan approximate equilibrium of the desired accuracy.
We shall refer to this property asApproximate Completeness(of the grid). Second,
and more subtly, it should also be the case that maximizing consumer utility, whilecon-
strainedto the grid, results in utilities close to those achieved by theunconstrainedmax-
imization — otherwise, our grid-restricted search for equilibria might result in highly
suboptimal consumer plans. We shall refer to this property asApproximate Soundness
(of the grid). It turns out that Approximate Soundness only holds if prices ensure a min-
imum level of wealth for each consumer, but conveniently we shall always be in such a
situation due to Lemma 3.

The next two lemmas establish Approximate Completeness and Soundness for the
grid. The Approximate Completeness Lemma also states how to setp0 andx0. It is
straightforward to show that if we have a lower bound on the price at equilibrium,
thenp0 can be set to this lower bound. Unfortunately, it turns out that under our rather
general conditions we cannot provide a lower bound. Instead, as the lemmas show, it is
sufficient to use a lower boundw0 on the wealth of any consumer at equilibrium, and
setp0 andx0 based on this wealth. Note that in the traditional AD settinge� is a bound
on the wealth, since the prices are normalized.

Lemma 4. (Approximate Completeness) Let the gridsGprice and Gplan be defined
using

p0 =
"

nke+
w0 ; x0 =

"

(1 + 13")nk
w0

wherew0 is a lower bound on equilibrium wealth of all consumers and letfx �ig and

fp �ig be equilibrium prices and plans. Then the plansfx i = grid
�

1
1+13"x

�i
�
g

are 19d" approximately optimal for the pricep = grid(p �) and the market14"-
approximately clears. Furthermore, a useful property of this approximate equilibrium
is that every consumer has wealth greater thanw0

1+" .

There are a number of important subtleties to be addressed in the proof, which we
formally present in the longer version. For instance, note that the closest point on the
grid to some true equilibria may not even be budget constrained.

Lemma 5. (Approximate Soundness) Let the grid be defined as in Theorem 4 and let
p be on the grid such that every consumer has wealth abovew0

1+" . If the plansfx ig
�-approximately maximize utility over the budget constrained plans which are compo-
nentwise on the grid,i.e. if for all budget constrainedx 0i which lie on the plan grid,

ui(x
i) � (1� �)ui(x

0i) :

then
ui(x

i) � (1� (� + 4"d))u�i

whereu�i is the optimal utility underp.
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5.3 Arrow-Debreu Propagation for Graphical Equilibria

We now turn to the problem of computing equilibria in graphical economies. We present
theADProp algorithm, which is a dynamic programming, message-passing, algorithm
for computing approximate graphical equilibria when the graph has a tree structure.
Recall that in a graphical economy there are effectivelynk goods, so we cannot keep
the number of goods fixed as we scale the number of consumers. Hence, the algorithm
described in the previous section cannot be directly applied if we wish to scale polyno-
mially with the number of consumers.

As we will see from the description ofADProp below, an appealing conceptual
property of the algorithm is how it achieves the computation ofglobaleconomic equi-
libria in a distributed manner through thelocal exchange of economic trade and price
information between just the neighbors in the graph.

We orient the graph such that “downstream” from a vertex lies the root and “up-
stream” lies the leaves. For any consumerj that is not the root there exists a unique
downstream consumer, say`. Let UP (j) be the set of neighbors ofj which are not
downstream,i.e.UP (j) is the setN(j)� f`g so it includesj itself.

We now define a binary valued tableT`j , which can be viewed as the message
that consumerj 2 UP (`) sends downstream tol. The tableT`j(p `;x `j ;p j ;x j`) is
indexed by the prices for̀andj and the consumption that flows along the edge between
` andj — from ` to j, the consumption isx `j , and fromj to `, the consumption is
x j`. The table entryT`j(p `;x `j ;p j ;x j`) evaluates to1 if and only if there exists a
conditional"-equilibria upstream fromj (inclusive) in which the respective prices and
plans are fixed top `;x `j ;p j ;x j`. For the special case wherej = `, the table entry
Tjj(p

`;x `j ;p j ;x j`) is set to1 if and only if p ` = p j andx `j = x j` (note that
x jj is effectively the amount of the goods thatj desires not to sell).

The tables provide all the information needed to apply dynamic programming in the
obvious way. In itsdownstream pass, ADProp computes the tableT`j recursively, in the
typical dynamic programming fashion. Ifj is an internal node in the tree, whenj has re-
ceived the appropriate tables from alli 2 UP (j), we must setT`j(p `;x `j ;p j ;x j`) =
1, if: 1) a conditional upstream equilibrium exists, which we can computed from the ta-
bles passed toj, 2) the planXj , consistent with the upstream equilibrium, is"-optimal
for the neighborhood prices, and 3) the market"-clear atj. Naturally, a special but
similar operation occurs at the leaves and the root of the tree.

OnceADProp computes the message at the root consumer, it performs anupstream
passto obtain a single graphical equilibrium, again, in the typical dynamic program-
ming fashion. At every node, starting with the root,ADProp selects price and allocation
assignments consistent with the tables at the node and passes those assignments up to
their upstream neighbors, until it reaches the leaves of the tree.

As presented in Section 5.2, we can control the approximation error by using appro-
priate sized grids. This leads to our main theorem for computing graphical equilibrium.

Theorem 3. (ADProp) For fixedk and graph degree,ADProp takes as input a tree
graphical economy in which Assumptions I-IV hold and outputs an"-equilibrium in
time polynomial inn, 1=", log (e+=e�), andd.

Heuristic generalizations ofADProp are possible to handle more complex (loopy)
graph structures (a la NashProp[Ortiz and Kearns, 2003]).
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6 Learning in Graphical Games and Economics

Although the work described here has focused primarily on the graphical economics
representation, and algorithms for equilibrium computation, the general area of graph-
ical models for economic and strategic settings is rich with challenging learning prob-
lems and issues. We conclude by mentioning just a few of these.
Rational Learning in Graphical Games. What happens if each player in a repeated
graphical game plays according to some “rational” dynamics (like fictitious play, best
response, or other variants), but using onlylocal observations (the actions of neigh-
bors)? In cases where convergence occurs, how does the graph structure influence the
equilibrium chosen? Are there particular topological properties that favor certain play-
ers in the network?
No-Regret Learning in Graphical Games.It has recently been established that if all
players in a repeated graphical game play a localno internal regretalgorithm, the pop-
ulation empirical play will converge to the set ofcorrelated equilibria. It was also noted
in the introduction that all such equilibrium can be represented up to payoff equivalence
on a related Markov network; under what conditions will no-regret learning dynamics
actually settle on one of thesesuccinctequilibria? In preliminary experiments using the
algorithms of Foster and Vohra [1999] as well as those of Hart and Mas-Colell [200]
and Hart and Mas-Colell [2001], one does not observe convergence to the set of payoff-
equivalent Markov network correlated equilibria.
Learning in Traditional AD Economies. Even in the non-graphical Arrow-Debreu
setting, little is known about reasonable distributed learning procedures. Aside from a
strong (impossibility) result by Saari and Simon [1978] suggesting that general conver-
gence results may not be possible, there is considerable open territory here. Conceptual
challenges include the manner in which the “price player” should be modeled in the
learning process.
Learning in Graphical Economics.Finally, problems of learning in the graphical eco-
nomics model are entirely open, including the analogues to all of the questions above.
Generally speaking, one would like to formulate reasonable procedures forlocal learn-
ing (adjustment of seller prices and buyer purchasing decisions), and examine how these
procedures are influenced by network structure.
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Abraham Wald.Über einige Gleichungssysteme der mathematischenÖkonomie (On some sys-
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