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In this paper we consider several variants of Valiant’s learnability model that
have appeared in the literature. We give conditions under which these models are
equivalent in terms of the polynomially learnable concept classes they define. These
equivalences allow comparisons of most of the existing theorems in Valiant-style
learnability and show that several simplifying assumptions on polynomial learning
algorithms can be made without loss of generality. We also give a useful reduction
of learning problems to the problem of finding consistent hypotheses, and give com-
parisons and equivalences between Valiant’s model and the prediction learning
models of Haussler, Littlestone, and Warmuth (in “29th Annual IEEE Symposium
on Foundations of Computer Science,” 1988).  © 1991 Academic Press, Inc.

1. INTRODUCTION

The model introduced by Valiant (1984) provides the framework for a
growing body of research in machine learning (Blumer et al., 1987, 1989;
Kearns et al, 1987; Pitt and Valiant, 1988; Rivest, 1987; Valiant, 1984,
1985). This research focuses on understanding the computational com-
plexity of various learning tasks. A central notion is that of polynomial
learnability. Rougly speaking, a concept class is said to be polynomially
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130 HAUSSLER ET AL.

learnable if there exists an algorithm that can find a hypothesis
approximating any concept in the class,' when given a polynomial number
of examples of the concept and polynomially bounded computational
resources. The polynomial growth is with respect to parameters measuring
the complexity of the concept, the size of the input to the algorithm, and
the accuracy of the resulting approximation.

The specific assumptions and criteria used to define polynomial
learnability have varied among the different researchers in the field. To
allow confident and accurate comparisons of the results obtained in the
different models, it is important to verify the equivalence of the models, or
to discover any differences. We perform that task here. The result is a
unification of previous work, a precise definition of polynomial learnability,
and an understanding of variations in the model that do not affect what is
polynomially learnable. A significant part of this paper consists of formal
proofs of “folk theorems” that have been known to many researchers in
computational learning theory for some time, but have never been
documented systematically.

In the first part of this paper (Sections 2 and 3), we consider a number
of existing variations of the learning model and show that they lead to
equivalent models of polynomial learnability. Some of the equivalence
proofs formalize arguments made informally in private communications to
the authors; others are new. We show that if all other parameters of the
model are equal, then the model where algorithms have access to a single
oracle returning labeled examples is equivalent to the model where there
are two oracles returning positive and negative examples, respectively; that
a model where a learning algorithm must output a good hypothesis with
only a fixed probability is equivalent to one where it must do so with
arbitrarily high probability; and that without loss of generality, all learning
algorithms can be deterministic.

In the process of formalizing the equivalences, we have uncovered inter-
actions between the initial information given to an algorithm and its ability
to halt deterministically in all cases. Our results demonstrate that the
models used in Blumer ez al. (1987, 1989), Kearns et al. (1987), Pitt and
Valiant (1988), Rivest (1987), and Valiant (1984, 1985) are equivalent if
probabilistic halting criteria are substituted for deterministic halting in
some of the models. The equivalence if deterministic halting is required
remains an open question. The results also show the equivalence of other
natural variations of these models in nearly all possible combinations of the
various modifications that we consider. In only one equivalence proof (the
one that shows that the one- and two-oracle models are equivalent) do we

! This model has been termed the PAC-model by Angluin (1987) standing for probably
approximately correct.
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actually change the distribution on the examples. Thus most of the proven
equivalences hold also for learning with respect to any fixed distribution on
the examples.

After demonstrating these equivalences in Section 3, we turn to different
types of equivalence in Sections4 and S. In Blumer eral. (1989), a
necessary condition for polynomial learnability is given in terms of a com-
binatorial parameter of the concept class called the Vapnik—Chervonenkis
dimension (Vapnik and Chervonenkis, 1971). This condition does not
address issues of computational complexity but does address the minimum
amount of information needed to perform inductive inference. Using tools
from Pitt and Valient (1988), we show that the problem of polynomially
learning C by H is equivalent (modulo polynomial-time transformations)
to the problem of polynomially finding (with fixed probability) a
hypothesis in H consistent with a given sequence of examples of a target
concept in C, provided that the VC dimension of H grows only polyno-
mially with the concept complexity measure used for C. This allows one in
many cases to view a learning problem in the more traditional light of
complexity-theoretic search problems.

The definitions of learnability discussed here depend fundamentally on
the hypothesis space from which the learning algorithm must choose its
hypothesis. In many cases it is of interest to study the learnability of a
concept class when no restriction is placed on the hypothesis space to be used.
For this purpose, a new model of learning was introduced in Haussler et al.
(1988) that discards the constraints placed on hypotheses of the learning
algorithms. In that model the polynomial learning algorithm must predict
accurately the label (positive or negative) of an unlabeled random example
after receiving polynomially many random examples that are labeled con-
sistently with the target concept. In the main theorem of Section 5 we show
that a concept class is polynomially learnable in the prediction model of
Haussler et al. (1988) iff there exists a polynomially evaluatable (defined in
the next section) hypothesis space such that the concept class is polyno-
mially learnable by this hypothesis space.

2. MODELS OF POLYNOMIAL LEARNABILITY

2.1. Representing Examples and Concepts

DEerFINITION 2.1. Representation of domains. For each n> 1, X, denotes
a set called a learning domain on n attributes. The X, for different values
of n are assumed to be disjoint. We let X={X,},.,. We say a poznt (or
instance) x is in X if xe J {X, },5,-
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For example, X, might be the set of all points in Euclidean n-dimen-
sional space R” or the Boolean domain {0, 1}".2

For the purposes of computation, we assume that points are encoded as
tuples using any of the standard schemes (see Garey and Johnson, 1979)
in such a way that the representation of each point in X, has length
between n and /= I(n), where /(n) is a polynomial. The equivalence results
given below will not depend on how real numbers are handled (ie.,
whether the uniform or logarithmic cost model is used to define the length
of representations and inputs to algorithms (Aho ez al,, 1974). We assume
that from the representation of any tuple of X one can efficiently determine
the unique set X, to which it belongs. ’

We think of concepts as subsets of a learning domain X,. For some
purposes, we must also have a language in which concepts are represented
as strings, and a notion of the size or complexity of a concept, which is
usually related to the length of its shortest representation.

DErFINITION 2.2. Representations of concepts and concept classes.
Given a learning domain X, a set C<=2¥ is called a set of concepts on X.
A representation for C consists of a set of strings L and a mapping ¢ from
L onto C that associates each string in L with a concept in C. A concept
complexity measure for C is a mapping size from C to {1, 2, ...}.

For each n>1, let C,, = 2* be a set of concepts, L, and g, be a represen-
tation for C,, and size, be a concept complexity measures for C,. Then
C={\X,C,L,, 0,,size,)},-, denotes a concept class over X. Normally
the representation and concept complexity measure will be understood
from the context, in which case we will abbreviate C as {(X,,, C,,)},>1. We
say that a concept ¢ is in C if ce{JC,. When the concept complexity
measure is understood from the context, it is also convenient to let C,
denote {ce C,:size(c)<s}.

To illustrate these definitions, consider the concept class k-CNF from
Valiant’s original paper (1984) for some fixed k > 1. Here X,,= {0, 1}", the
representation language L, consists of all CNF expressions on n variables
(say x,, .., x,) that have at most k literals per clause, C, consists of all
c<= {0, 1}" such that ¢ is the set of satisfying assignments of one of these
expressions, o, maps a-CNF expression to its set of satisfying assignments,
and size, (c) is the number of literals in the smallest k.-CNF representation
of ¢. The concept classes k-DNF, k-term DNF, and k-clause CNF are
defined similarly by restricting to DNF expressions with at most & literals
per term, DNF expressions with at most k terms, and CNF expressions
with at most k clauses, respectively. The concept classes DNF and CNF

2 We assume that any learning domain X, that we consider can be embedded in R” by a
measurable embedding.
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can also be defined in this manner. Here C, =2{*!"", but C,  includes only
those concepts that can be represented by a DNF (resp. CNF) expression
with at most s literals.

For real-valued domains, examples of concept classes include the class of
closed halfspaces and the class of closed convex polytopes. In the case of
halfspaces in n dimensions, one possibility is to assume that concepts are
represented by the n+ 1 coefficients of the separating hyperplane, and that
size,(c)=n+ 1 for all ce C, (uniform cost model). In the case of convex
polytopes, concepts might be represented either as the intersection of a set
of halfspaces, or by specifying the vertices of the convex polytope.

DEerFINITION 2.3. Examples and hypotheses. Let C be a concept class
over X. Given a concept ¢ in C, we define an example of ¢ to be a pair
{x,a), where x is in X and a€ {0, 1} such that a=1iff xec. If xec then
{x,1) is called a positive example of ¢, and if x ¢ ¢ then {x, 0) is called
a negative example of c. A sample of ¢ is a sequence of examples of c. As
above, for computational purposes we assume samples are represented as
sequences of pairs using any of the standard schemes. The size of a sample
is the number of examples it contains. The length of a sample is the number
of symbols in its encoding. (In case of the uniform cost model, each real
number contributes one to the length.)

Let C and H be two concept classes. An algorithm for learning C by H
is an algorithm that when given examples of some concept ce C will
produce as output (a representation of) some concept ~eH that is an
approximation of ¢ in a sense made precise below. The class C is called the
target class and c is called the target concept. The class H is called the
hypothesis space used by the algorithm and the hypothesis 4 (whose
representation is output by the algorithm) is called the hypothesis of the
algorithm.

We say that a hypothesis # in H is consistent with a sample
X1y A1) ey Xy Ay Of c if x;,€eh<>a,=1for all 1<i<m.

2.2. Models for Polynomial Learnability

We now define the three most popular variants of Valiant’s original
model. In the following models, we assume that X is a learning domain and
that C and H are concept classes over X.

Model 1. The Functional Model. In this model a learning algorithm
implements a function that maps from samples to hypotheses. If ce C,
is a given target concept, he H, is a hypothesis, and D is any fixed
probability distribution on X,, then define the error of h (with respect
to ¢ and D) to be the probability that 4 is inconsistent with a random
example of ¢ (i.e., an example. {(x;, a) of ¢ in which x is drawn randomly

L]



134 HAUSSLER ET AL.

from X, according to D). We will say that C is polynomially learnable
by H (in the functional model) if there exists an algorithm A that takes as
input a sample of a target concept in C, and outputs a representation of a
hypothesis in H such that the following property holds:

Property 1. (a) There is a function m(e, d, n, s), polynomial in 1/g,
1/6, n and s, such that for all 0<e¢, <1, and n, 5> 1, and for all target
concepts ce C, , and all probability distributions D on X, if 4 is given a
random sample of ¢ of at least m(e, d, n, s) examples drawn independently
according to D, then A produces a representation in H of a hypothesis
he H,, and with probability at least 1 — ¢ the hypothesis 4 has error at
most &.

(b) Algorithm 4 runs in time polynomial in the length of its input.

We let S, (e, , n, s) denote the smallest sample size m(e, 6, n, s) such that
Property 1(a) holds for algorithm A. S (e, 6, n, s) is called the sample
complexity of A. Note that in the functional model the algorithm A is not
given any of the parameters ¢, d, n, and s as input. The only input to 4 is
a batch of examples. Throughout the paper ¢ will be called the accuracy
parameter and J the confidence parameter.

Model2. The One-Oracle Model. Instead of specifying that A be
simply a function mapping samples to hypotheses, we can allow 4 to
explicitly use information about the desired accuracy and confidence
parameters ¢ and J, as well as the complexity parameters n and s. This can
be accomplished by giving ¢, 4, n, and s as input to 4 and supplying 4 with
an oracle EX for random examples of the target concept. Each time EX is
called, it selects an instance in X, independently at random according to
the distribution D and returns it along with a label indicating whether or
not it is in the target concept. Throughout this paper whenever an oracle
returns an example to an algorithm, then we charge the algorithm with
time equal to the length of the received example. We say that C is polyno-
mially learnable by H (in the one-oracle model) if there is an algorithm A
taking inputs ¢, 4, n, and s and outputting a representation of a hypothesis
in H such that the following property holds:

Property2. For all 0<e, 0< 1, and n, s> 1, and for all target concepts
ceC,, and all probability distributions D on X,,,

(a) A outputs a representation in H of a hypothesis he H,, and with
probability at least 1 — ¢ the output hypothesis 4 has error at most e.

(b) The total running time is bounded by a polynomial in 1/e, 1/9, n,
and s.

In this model, the sample complexity S, (¢, 4, n, s) of an algorithm A4 is
taken to be the worst-case number of oracle calls on input ¢, §, n, s, over
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all ceC,, and all sequences of examples of c. Similarly, the worst-case
running time is denoted 7', (¢, 0, n, s).

Model 3. The Two-Oracle Model. The one-oracle model can be further
modified to allow the algorithm A access to two oracles, one that returns
random positive examples of the target concept (which we will call POS),
and one that returns random negative examples (which we will call NEG).
In this case there are two distributions D* and D~. D* is a distribution
on ¢ and D~ is a distribution on X, —c. Calls to POS return examples
chosen according to D% and calls to NEG return examples chosen
according to D~

In this two-oracle model we also define two types of error: error™ (the
positive error) is the probability that a random example form POS is
classified as negative by the hypothesis, and error~ (the negative error) is
the probability that a random example from NEG is classified as positive
by the hypothesis. The definition of polynomial learnability is now as in the
one-oracle model, except that in Property 2 we now require the hypothesis
of learning algorithm A4 to have both positive error at most ¢ and negative
error at most ¢, that is:

Property 3. For all 0<e, <1 and n, s, >1, and for all target concepts
ce C, , and all probability distributions D on X,,,

(a) A outputs a representation in H of a hypothesis e H,, and with
probability at least 1 — & the output hypothesis / has positive error at most
¢ and negative error at most e&.

(b) The total running time is bounded by a polynomial in 1/e, 1/5, n
and s.

The main contribution of this paper is to prove the equivalence of these
models, along with a number of additional variations. The equivalence
results depend only on weak assumptions about the target class and the
hypothesis space, outlined below. The variations that we consider are:

(1) Randomized: vs. deterministic: We consider both randomized and
deterministic learning algorithms. Randomized algorithms are allowed to
make use of flips of a fair coin. These coin flips are independent of the
random examples of the target concept received by the algorithm. A
randomized algorithm is charged one unit of time for each coin-flip that
it uses. The sample complexity. S (¢, 0,n,s) and the running time
T (s, 6, n, s) are extended to worst case measures over the coin-flips of the
algorithm. We show that without loss of generality, with respect to polyno-
mial learnability all learning algorithms are deterministic (modulo some
weak regularity assumptions on the hypothesis space that we discuss
below). : : :

|
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(2) Polynomial in 1/§ vs. polynomial in log(1/) vs. fixed 6: We con-
sider three ways to treat the confidence parameter J. In one case the sample
and time complexities of a polynomial learning algorithm are required to
be polynomial in 1/5, as described above. In the second case, the sample
and time complexities are required to be polynomial in log 1/6. In the final
case we fix 6 =, for any constant 0 <J, < 1 (so the learning algorithm no
longer requires & as an input), and we require only that a polynomial
learning algorithm achieve this level of confidence, with sample and time
complexity polynomial in the remaining variables of the model. We show
that in all three cases, the same class of polynomially learnable concept
classes is obtained.

For the one-oracle and two-oracle models, we also consider the case in
which the value of s is not given as input to the algorithm. We will show
that such a model is equivalent to the model where s is given, provided that
one also relaxes the halting criterion, changing it to a probabilistic halting
criterion. Similar results are obtained in Linial et al (1988) (see also
Benedek and Itai (1988b). We thus consider the following two further
modifications:

(3) Knowledge of s vs. no knowledge of s.

(4) Deterministic halting vs. probabilistic halting. For the proba-
bilistic halting case, property 2 in the definitions of the one-oracle model
is changed to:

Property 2’. There exists some polynomial p such that for all
O<e 0<1, and n,s>1, and for all target concepts ceC,, and all
probability distributions D on X,,, with probability at least 1 — 9,

(a) 4 outputs a representation in H of a hypothesis in H, that has
error at most &.

(b) The total running time is bounded by p(1/g, 1/0, n, s).

Property 3 in the definition of the two-oracle model is changed
analogously. Sample complexity is not defined in the probabilistic halting
case. Note that Property 2’ allows for the possibility that the expected
running time of the learning algorithm is infinite.

For convenience of notation, we will introduce a parameterized version
of the three basic models along with their various modifications. Thus,
functional( p,, p,) will denote those pairs of concept classes (C, H) such
that C is polynomially learnable by H in the functional model under
modifications p, and p,, where p, is either 1/ (when polynomial
dependence on 1/6 allowed), log(1/d) (for restriction to polynomial depen-
dence on log(1/d)), or fixed 6 (when we fix d to 0 <d,< 1), and p, is either
rand (for randomized learning algorithms) or det (for deterministic algo-
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rithms). Similarly, one-oracle(p,, p,, ps, p.) and two-oracle( p,, p,, ps, p4)
will denote those pairs of concept classes (C, H) such that C is polyno-
mially learnable by H in the one- and two-oracle models respectively,
under modifications p,, p,, p; and p,. Here p, and p, are as above, and
P is either s_known or s_unknown (according to whether s is given to the
learning algorithm or not) and p, is either always_halts or usually_halts
(according to whether learning algorithms are required to halt or not).

As examples, functional(log(1/5), rand) is the set of all pairs of concept
classes (C, H) such that C is polynomially learnable by H in the functional
model by randomized algorithms with sample complexity polynomially
dependent on log(1/8), and two-oracle(1/d, det, s_unknown, usually_halts)
is the set of all pairs of concept classes (C, H) such that C is polynomially
learnable by H in the two-oracle model by deterministic algorithms with
running time polynomial in 1/ and no explicit knowledge of s that halt
probabilistically.

In the following section we demonstrate that all three of the basic models
are equivalent to each other, and that models resulting from all combina-
tions of the above variations are equivalent to each other, except for the
restriction mentioned above that if an oracle algorithm does not know s
then the halting criterion of the learning algorithm is probabilistic.

In all the models described above the algorithm has to perform well for
all probability distributions. For each model one can define learnability
with respect to a fixed distribution (or two fixed distributions in the two-
oracle case) (Benedek and Itai, 1988a). The question arises which of the
equivalences proven in this paper still hold if learnability is defined with
respect to fixed distributions. Interestingly enough all equivalences hold in
that case as well, with the exception of the equivalence between the one-
and two-oracle models.

We make some general assumptions about the concept classes C and H
that hold throughout the following analysis. First we assume that the
language used for representing hypotheses in H is such that one can
efficiently determine if an instance is a member of a given hypothesis. For-
mally, we assume that there is a polynomial algorithm that, given a string
win L, and a representation of an instance x € X,,, determines whether or
not xea,(w). Such an H is called polynomially evaluatable. Second, when
the domain is real-valued we also assume that all concepts are Borel sets,
and that all sets of concepts are well-behaved in the measure-theoretic
sense defined in Blumer et al. (1989). We let regular, denote the set of all
pairs (C, H) that satisfy the above regularity assumptions.

For certain of the relationships among the models we require stronger
regularity assumptions. We let regular, be the set of all pairs (C, H) in
regular, such that for each H,eH we have JeH,, X, H,, and for all
xeX,, {x}eH,. : '
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3. Equivalence Results of Learnability Models

In this section we prove our main theorem which shows the equivalence
of the learnability models introduced in the previous section. As the only
restriction we require that if s unknown, then the halting criterion must be
usually_halts.

THeEOREM 3.1. If (C, H)eregular, is an element of any of the following
sets, then it is an element of all of them:

functional( p,, p,),

one-oracle(p,, py, P, Pa)s

two-oracle(py, p, ps, p4).
Here

pie{log 1/, 1/9, fixed 5},

p, € {rand, det},

ps € {s_known, s_unknown},

if p3=s_known then p, e {always_halts, usually_halts },
if p3 =s_unknown then p, = usually_halts.

Figure 1 presents a graph whose vertices represent the models that we
show to be equivalent in this theorem. The directed edges represent the
implications that we will directly demonstrate in our proof of the theorem.
Some of these edges are labeled with the numbers of the lemmas in which
the corresponding implications are demonstrated. The other implications
are considered below.

Proof of Theorem 3.1. The implications corresponding to the unlabeled
edges of Fig.1 follow immediately from the following observations. A
deterministic algorithm for learning C by H in some model is also a ran-
domized algorithm for learning € by H in the model that differs only in
replacing the parameter det with rand. Similarly, a deterministically halting
algorithm is also a probabilistically halting algorithm. A learning algorithm
for a model in which s is not available to the algorithm can also be used
when s is available: it just ignores s. The 1/0 models have been omitted
from the diagram, but would fit in the middle of each of the downward
pointing arrows between the log 1/6 and fixed-d models. For any particular
set of values of the other parameters, learnability in the log 1/0 model
implies learnability in the corresponding 1/6 model, and learnability in the
1/6 model-implies learnability in the corresponding fixed-6 model. To see
this note that an algorithm that is polynomial in log 1/ is polynomial in
1/6. An algorithm in either of the oracle models that is polynomial in 1/6







