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1. Introduction

In this paper, we prove representation-independent hardness results for the

distribution-free learning of several representation classes whose efficient

learnability has thus far been unresolved. 1 Informally, a representation-inde-

pendent hardness result states that learning is difficult regardless of the ~omn

in which a learning algorithm represents its hypothesis, provided this hypothe-

sis meets the quite reasonable constraint of being evaluatable in polynomial

time (i.e., having an equivalent polynomial-size Boolean circuit). In contrast, a

representation-based hardness result states only that learning is difficult when

the hypothesis is constrained to meet some (usually strong) structural or

syntactic restrictions.

We prove representation-independent hardness results for the distribution-

free learning of several simple representation classes, including polynomial-size

Boolean formulae, acyclic deterministic finite automata, and constant-depth

threshold circuits (which may be regarded as a form of simplified neural

networks). These hardness results are based on assumptions regarding the

intractability of specific number-theoretic problems of interest in cryptography,

namely factoring Blum integers, inverting the RSA function, and recognizing

quadratic residues. Thus, a polynomial-time learning algorithm in the distribu-

tion-free model for any of the named representation classes using any polyno-

mial-time evaluatable hypothesis representation would immediately yield a

polynomial-time algorithm for all of these cryptographic problems, which have

defied efficient solution for decades, and are widely believed to be intractable.

For practical purposes, the efficient learnability of a representation class

must be considered unresolved until a polynomial-time learning algorithm is

discovered or until a representation-independent hardness result is proved.

This is because a representation-based result stating that the class C is not

efficiently learnable by the class H (modulo some complexity-theoretic as-

sumption such as RP # ~P) still leaves open the possibility that C’ is efficiently

learnable by a different hypothesis class 17’. Indeed, this possibility has been

realized for several natural target classes: for instance, it is known that for any

fixed constant natural number k >2, the problem of learning 2-term disjunc-

tive normal form (DNF) formulae in the distribution-free model is NP-hard if

the learning algorithm is restricted to represent its hypothesis in 2-term DNF

form, but there is a polynomial-time learning algorithm if we relax this

restriction [Pitt and Valiant, 1988]. A similar result holds for Boolean threshold

functions [Pitt and Valiant, 1988].

The only previous representation-independent hardness results for distribu-

tion-free learning follow from the elegant work of Goldreich et al. [1986] on

constructing random functions. Their functions have many properties stronger

than those mentioned here, but for our purposes we may state their result

formally as follows: Let CKT~(”) denote the class of Boolean circuits over n

inputs with at most p(n) gates, and let CKTP(n) = U ~ ~ ,CKT,~(n). Then it is

shown by Goldreich et al. [1986] that if there exists a one-way function, then

for some polynomial p(n), CKTP(”) is not learnable in polynomial time (by any

polynomial-time evaluatable representation class). Pitt and Warmuth [1988]

then used this result to construct other hard-to-learn representation classes.

1The distribution-free model of learning that we use and will define shortly is often also referred
to as the probably approximately correct or PAC model of learning.
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For definitions and a discussion of one-way functions, we refer the reader to

Yao [1982], Blum and Micali [1984], Levin [1985], and Goldreich et al. [1986].

Note that in any reasonable model of learning, we intuitively do not expect

to find polynomial-time learning algorithms for classes of representations that

are not polynomial-time evaluatable, since a learning algorithm may not even

have enough time to write down a good hypothesis. More formally, Schapire

[1989] has shown that any representation class that is not evaluatable in

polynomial time cannot be learned in polynomial time in the distribution-free

model.

Thus, we may informally interpret the result of Goldreich et al. as stating

that not everything with a small (polynomial-size) circuit representation is

efficiently learnable (assuming there is a one-way function). However, there is

a large gap in computational power between the class of polynomial-size

circuits and the classes that have been the subject of intense scrutiny within the

computational learning theory community of late (e.g., DNF, decision trees,

Boolean formulae, classes based on finite automata, restricted classes of

circuits). In this paper, we prove hardness results similar to those of Goldreich

et al., but for much less powerful representation classes, thus, clarifying the

limits of efficient learnability.

The intuition behind the approach taken to obtain these results is contained

in the following analogy. Consider a computer system with two users, Alice and

Bob. Alice and Bob wish to communicate via an insecure channel, and it is

assumed that Eve the eavesdropper is listening to this channel. We make no

assumptions about Eve’s behavior other than a polynomial bound on her

computing resources. In this cryptographic setting, Alice and Bob wish to

communicate privately in spite of Eve’s nosy presence.

A classic solution to Alice and Bob’s problem is the one-time pad. Here Alice

and Bob would physically meet in a secure room (away from Eve) and compile

a large common table of random bits. Then, after separating, Bob, to send a bit

b to Alice, chooses the next random bit c from the common list and sends the

bit b @ c to Alice. It is easily verified that if the bit c is uniformly distributed

then the encoded bit b @ c is also uniformly distributed, regardless of the

value of the cleartext message bit b. Thus, Eve, regardless of computation time,

is probably unable to gain any information about the cleartext messages from

listening to the channel between Alice and Bob. Alice, however, also knows the

random bit c, and so may decode by computiug (b @ c) @ c = b.

There are some obvious practical problems with the one-time pad. Foremost

among these is the need for Alice and Bob to meet in person and compile the

table of random bits; in a network of thousands of computers, having every pair

of users meet clearly defeats the point of using computers in the first place. In

response to complaints such as these and also more subtle security concerns,

the field of public-key cryptography was created by Diffie and Hellman [1976].

Public-key cryptography solves the problem of Alice and Bob via the use of

trapdoorfinctions. Informally, a trapdoor function is one that can be computed

in polynomial time (i.e., it is easy to compute jlx) on input x) but cannot be

inverted in polynomial time (i.e., it is hard to compute x on input ~( x)) —un-

less one is the “creator” of the function, in which case one possesses a piece of

“trapdoor” information that makes inversion possible in polynomial time. Now

rather than meeting with Bob in person, Alice “creates” a trapdoor function ~

and publishes a program for computing ~ (which reveals no information about
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f-l ) in a directory that is available to everyone-Bob and Eve included. To

send the message x to Alice, Bob simply computes f(x) and sends it to Alice.

Eve, seeing only f(x) on the channel and not possessing the trapdoor, is unable

to recover the message x in polynomial time. Alice, being the creator of f and

thus having the trapdoor, can efficiently invert Bob’s ciphertext and recover x.

Our approach is based on viewing Eve as a learning algorithm. Note that

since a program for f is available to Eve, she may create as many pairs of the

form (f(x), x) that she likes simply by choosing x and then computing f(x). If

we set y = f(x), we see that such pairs have the form (y, f-*(y)), and can thus

be regarded as “examples” of the inverse function f-1. Thus. from the learning

perspective, public-key cryptography assumes the existence of functions that
are not learnable from examples, since if Eve could learn f-l efficiently from

examples of its input-output behavior, she could then decode messages sent

from Bob to Alice! Furthermore, note that the inverse function f- I is “simple”

in the sense that it does have a small circuit (determined by the trapdoor,

which Alice has access to and uses for decoding); thus, from an information-

theoretic standpoint the learning problem is “fair,” as opposed to the cme-tkne

pad, where there is no small circuit underlying the communication between

Alice and Bob, just a large random bit table.

Thus, we see that recent developments in the theory of cryptography provide

us with simple functions that are difficult to learn. Our approach in this paper

is based on refining the functions provided by cryptography in an attempt to

find the simplest functions that are difficult to learn.

The outline of the paper is as follows: In Section 2, we provide definitions for

the distribution-free model of learning, adapted from Valiant [1984]. Then in

Section 3, we discuss previous hardness results for learning, both of the

representation-based and representation-independent type. Section 4 gives the

needed definitions and background from cryptography.

In Section 5, we dwelop simple representation classes based on crypto-

graphic functions and prove that learning these classes is as difficult as

breaking the associat~ d cryptosystems. In Section 6, these results are applied to

prove the difficulty of learning Boolean formulae, finite automata, and thresh-

old circuits. In Section 7, we give a generalized method for proving hardness

results for learning based on any trapdoor function. Section 8 applies our

learning results to give strong hardness results for approximating the optimal

solution for various combinatorial optimization problems, including a general-

ization of graph coloring.

2. Definitions for Distribution-Free Learning

2.1. REPRESENTING SUBSETS OF A DOMAIN

2.1.1. Concept Classes and Their Representation. Let X be a set called a

domain (also sometimes referred to as the instance space). We think of X as

containing encodings of all objects of interest to us in our learning problem.

For example, each instance in X may represent a different object in a

particular room, with discrete attributes representing properties such as color,

and continuous values representing properties such as height. The goal of a

learning algorithm is to infer some unknown subset of X, called a concept,

chosen from a known concept class.
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For computational purposes, we always need a way of naming or representing

concepts. Thus, we formally define a representation class over X to be a pair

( m, C), where c c {O, 1}* and u is a mapping m: c -+ 2X (here 2X denotes the
power set of X). In the case that the domain X has real-valued components,

we sometimes assume c g ({O, 1} u l?)*, where R is the set of real numbers.

For c E C, CT(C) is called a concept over X; the image space o-(C) is the

concept class that is represented by (u, C). For c = C, we define pos(c) = o(c)

(the positize examples of c) and neg(c) = X – o(c) (the negatile examples of
c). The domain X and the mapping a will usually be clear from &he context,

and we simply refer to the representation class C. We sometimes use the

notation c(x) to denote the value of the characteristic function of m(c) on the

domain point x; thus, x = pos(c) (x e rzeg(c), respectively) and c(x) = 1

(c(x) = O, respectively) are used interchangeably. We assume that domain
points x ● X and representations c ● C are efficiently encoded using any of

the standard schemes (see Garey and Johnson [1979], and denote by I x I and

I c I the length of these encodings measured in bits (or in the case of
real-valued domains, some other reasonable measure of length that may

depend on the model of arithmetic computation used; see Aho et al. [1974]).

2.1.2. Parametrized Representation Classes. In this paper, we study parame-

trized classes of representations. Here we have a stratified domain X =

U,,. lx. and representation class C = L1 ~, ~C,,. The parameter n can be

regarded as an appropriate measure of the complexity of concepts in u(C)

(such as the number of domain attributes), and we assume that for a represen-
tation c ● C. we have pos(c) c X. and rzeg(c) = X,l – pos(c). For example,

X. may be the set {O, 1}”, and C,l the class of all Boolean formulae over n

variables whose length is at most nz. Then, for c = C., m(c) would contain all

satisfying assignments of the formula c.

2.1.3. Eficient Evaluation of Representations. In general, we are primarily

concerned with learning algorithms that are computationally efficient. In order

to prevent this demand from being vacuous, we need to ensure that the

hypotheses output by a learning algorithm can be efficiently evaluated as well.

Thus, if C is a representation class over X, we say that C is polynomially

el’aluatable if there is a polynomial-time el~aluation algorithm A that on input a

representation c = C and a domain point x = X outputs c(x). Note that if a

class C is polynomially evaluatable, then each representation c = C has an

equivalent polynomial-size circuit, obtained by hard-wiring the representation

input of A to be c, and converting the resulting polynomial-time algorithm

(now accepting the single input x =X) to a polynomial-size circuit using
standard techniques. All representation classes considered here are polynomi-

ally evaluatable. It is worth mentioning at this point that Schapire [1989] has

shown that if a representation class is not polynomially evaluatable, then it is

not efficiently learnable in our model. Thus, perhaps not surprisingly we see

that classes that are not polynomially evaluatable are not only “unfair” as

learning problems but also intractable.

Samples. A labeled example from a domain X is a pair (x, b), where x = X

and b = {O, 1}. A labeled sample S = (xl, bl), . . ..(x~. b~) from X is a finite

sequence of labeled examples from X. If C is a representation class, a labeled

example of c = C is a labeled example (x, c(x)), where x ~ X. A labeled
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sample of c is a labeled sample S where each example of S is a labeled

example of c. In the case, where all labels b, or c(x, ) are 1 (O, respectively), we

may omit the labels and simply write S as a list of points xl, ..., Xn, and we

call the sample a positive ( negatil)e, respectively) sample.

We say that a representation h and an example (x, b) agree if h(x) = b;

otherwise, they disagree. We say that a representation h and a sample S are

consistent if h agrees with each example in S; otherwise, they are inconsistent.

2.2. DISTRIBUTION-FREE LEARNING

2.2.1. Distributions on examples. On any given execution, a learning algo-

rithm for a representation class C will be receiving examples of a single

distinguished representation c G C. We call this distinguished c the target

representation. Examples of the target representation are generated probabilis-

tically as follows: Let D,+ be a fixed but arbitrary probability distribution over

pos(c), and let DC- be a fixed but arbitrary probability distribution over ne,g(c).

We call these distributions the taget distributions. When learning c, learning

algorithms will be given access to two oracles, POS and NEG, that behave as

follows: Oracle POS ( NEG, respectively) returns in unit time a positive

(negative, respectively) example of the target representation, drawn randomly

according to the target distribution DC+ ( DC–, respectively). The distribution-free

model is sometimes defined in the literature with a single target distribution

over the entire domain; the learning algorithm is then given labeled examples

of the target concept drawn from this distribution. These models, however, are

equivalent with respect to polynomial-time computation, in the sense that any

class learnable in polynomial time in one model is learnable in polynomial time

in the other model, as shown by Haussler et al. [1988].

Given a fixed target representation c c C, and given fixed target distribu-

tions DC+ and DC-, there is a natural measure of the error (with respect to c,

DC+ and DC- ) of a representation h from a representation class H. We define

eC+(h) = DC+( rzeg(h)) (i.e., the weight of the set rzeg(h) under the probability

distribution D:) and eC-(h) = DC-( pos(h)) (the weight of the set pos( h) under

the probability distribution DC- ). Note that eC+(h) (respectively, eC-(h)) is

simply the probability that a random positive (respectively, negative) example

of c is identified as negative (respectively, positive) by h. If both eC+(h) < ~

and eC-(h) < e, then we say that h is an E-good hypothesis (with respect to c,

D;, and D,- ); otherwise, h is e-bad. We define the accuracy of h to be the

value min(l – eC+(h), 1 – eC-(h)).

It is worth noting that our definitions so far assume that the hypothesis h is

deterministic. However, this need not be the case; for example, we can instead
define eC+(h) to be the probability that h classifies a random positive example

of c as negative, where the probability is now over both the random example

and the coin flips of h. All of the results presented here hold under these

generalized definitions.

When the target representation c is clear from the context, we drop the

subscript c and simply write D‘, D‘, e‘, and e‘.

In the definitions that follow, we demand that a learning algorithm produce

with high probability an ~-good hypothesis regardless of the target representa-

tion and target distributions. Although at first this may seem like a strong

criterion, note that the error of the hypothesis output is always measured with
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respect to the same target distributions on which the algorithm was trained.

Thus, while it is true that certain examples of the target representation maybe

extremely unlikely to be generated in the training process, these same exam-

ples intuitively may be “ignored” by the hypothesis of the learning algorithm,

since they contribute a negligible amount of error.

2.2.2. Learnability. Let C and H be representation classes over X. Then C

is learnable from examples by H if there is a (probabilistic) algorithm A with

access to POS and NEG, taking inputs ●, 8, with the property that for any

target representation c = C, for any target distributions D+ over pos(c) and

D- over neg(c), and for any inputs O < ●, 6<1, algorithm A halts the

outputs a representation h~ = H that with probability greater than 1 – 8

satisfies e+(h~) < ~ and e-(h~) < ●.

We call C the taiget class and H the hypothesis class; the output h~ = H is

called the hypothesis of A. A will be called a learning algorithm for C. If C and

H are polynomially evaluatable, and A runs in time polynomial in l/E, 1/8

then we say that C is polynomially learnable ji-om examples by H; if C is

parameterized, we also allow the running time of A to have polynomial

dependence on the parameter n.

We drop the phrase “from examples” and simply say that C is learnable by

H, and C is polynomial(y learnable by H. We say C is polynomially learnable to

mean that C is polynomially learnable by H for some polynomially evaluatable

H. We sometimes call c the accuracy parameter and 8 the confidence parame-

ter.

Thus, we ask that for any target representation and any target distributions,

a learning algorithm finds an egood hypothesis with probability at least 1 – 8.

A primary goal of research in this model is to discover which representation

classes C are polynomially learnable.

Note that in the above definitions, we allow the learning algorithm to output

hypotheses from some class H that is possibly different from C, as opposed to

the natural choice C = H. Although, in general, we assume that H is at least

as powerful as C (i.e., C c H), we see that in some cases for computational

reasons we may not wish to restrict H beyond it being polynomially evaluat-

able. If the algorithm produces an accurate and easily evaluated hypothesis,

then our learning problem is essentially solved, and the actual form of the

hypothesis is of secondary concern.

We refer to this model as the distribution-flee model, to emphasize that we

seek algorithms that work for any target distributions. It is also known in the

literature as the probabZy approximately correct model. We also occasionally

refer to the model as that of strong leamabili~ (to mean learnability by some

polynomially evaluatable representation class H), in contrast with the notion

of weak learnability defined below.

2.2.3. Weak Learnability. We also consider a distribution-free model in

which the hypothesis of the learning algorithm is required to perform only

slightly better than random guessing.
Let C and H be representation classes over X. Then C is weakly learnable

from examples by H if there is a polynomial p and a (probabilistic) algorithm A

with access to POS and NEG, taking input 6, with the property that for any

target representation c = C, for any target distributions D+ over pos(c) and

D- over neg(c), and for any input value O <8<1, algorithm A halts and
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outputs a representation hq ● H that with probability greater than 1 – 8

satisfies e+(h,q) < l\2 – l\p(rz) and e-(h~) < 1/2 – l/p(n).

Thus, the accuracy of h~ must be at least 1/2 + l/p(n). A will be called a

weak learning algorithm for C. If c and ~ are polynomially evaluatable, and ~

runs in time polynomial in 1/8 and I n I we say that C7 is polynomially weakly

learnable by H and C is polynomially weakly learnable if it is weakly learnable

by H for some polynomially evaluatable H.

We may intuitively think of weak learning as the ability to detect some slight

bias separating positive and negative examples, where the advantage gained

over random guessing diminishes as the complexity of the problem grows. Our

main use of the weak learning model is in proving the strongest possible

hardness results.

2.3. SOME REPRESENTATION CLASSES. We now define the representation

classes whose learnability we study. In this paper, the domain X. is always

{0, 1}” and the mapping u simply maps each circuit to its set of satisfying
assignments. The classes defined below are all parameterized; for each class,

define the subclasses C., and then C is defined by C = u ,,, ,C~.

Boolean Formulae. The representation class BF,, consists of all Boolean
formulae over the Boolean variables xl,. . . . x..

Boolean Circuits. The representation class CKT,l consists of all Boolean

circuits over input variables xl, ..., x..

Threshold Circuits. A threshold gate over input variables xl, . . . . x. is de-

fined by a value 1 < t < n such that the gate outputs 1 if and only if at least t

of the input bits are set to 1. We let TC,, denote the class of all circuits of

threshold gates over x,, ..., x,,. For constant d, dTC~ denotes the class of all

threshold circuits in TC,, with depth at most d.

Acyclic Finite Automata. The representation class ADFA,, consists of all

deterministic finite automata that accept only strings of length n, that is, all

deterministic finite automata M such that the language L(M) accepted by M

satisfies L(M) g {O, 1}’.

We also frequently discuss computations performed by the circuit class

NC1 = u,, ~, NC~,, where NC’: is the class of circuits consisting of AND, OR,

and NOT gates of fan-in two having size polynomial in n and depth logarithmic

in n.

2.4. OTHER DEFINITIONS AND NOTATION

2.4.1. Chemoff Bounds. We shall make extensive use of the following
bounds on the area under the tails of the binomial distribution. For O < p < 1

and m a positive integer, let LE( p, m, r) denote the probability of at most r

successes in m independent trials of a Bernoulli variable with probability of

success p, and let GE( p, n2, r) denote the probability of at least r successes.

Then for O < a s 1,

Fact CB1. LE(p, m, (1 – a)mp) < exp( – azmp/2).

Fact CB2. GE(p, m, ( 1 + a)mp) < exp( – a ‘nZp/3).

These bounds in the form they are stated are from the paper of Angluin and

Valiant [1979] and follow from Chernoff [1952]. Although we make frequent



Boolean Formulae and Finite Automata 75

use of Fact CB1 and Fact CB2, we do so in varying levels of detail, depending

on the complexity of the calculation involved. However, we are primarily

interested in Chernoff bounds for the following consequence of Fact CB1 and

Fact CB2: Given an event E of probability p, we can obtain an estimate ~ of p

by drawing nz points from the distribution and letting @ be the frequency with

which E occurs in this sample. Then, for m polynomial in l/p and I/a, ~

satisfies p/2 < p < 2p with probability at least 1 – a. If we also allow m to

depend polynomially on l/~, we can obtain an estimate ~ such that p – P <

~ < p + ~ with probability at least 1 – a.

2.4.2. Notational Coru)entions. Let E(x) be an event and *(x) a random

variable that depend on a parameter x that takes on values in a set X. Then,

for X’ G X, we denote by PrX. ~,[ E(x)] the probability that E occurs when x

is drawn uniformly at random from X’. Similarly, E, ~ xl Y(x)] is the expected

value of ~ when x is drawn uniformly at random from X‘. We also need to

work with distributions other than the uniform distribution; thus, if P is a

distribution over X, we use Pr .. ,[E(x)I and E ~ ~ p[ 4(x)] to denote the
probability of E and the expected value of *, respectively, when x is drawn

according to the distribution P. When E or ~ depend on several parameters

that are drawn from different distributions, we use multiple subscripts. For

example, Pi-l, ~ ~,, ,, ~ ~,,,j~ ~,[E(xl, Xz, X3)] denotes the probability of event E

when xl is drawn from distribution PI, Xz from Pz, and XJ from P~ (all draws

being independent).

3. Previous Hardness Results for Learning

The initial paper defining the distribution-free model [Valiant, 1984] gave the

first polynomial-time learning algorithms in this model. It showed that the class

of monomials is polynomially learnable, as are the classes kCNF and kDNF

(with time complexity 0(~1~ )). For each of these algorithms, the hypothesis
class is the same as the target class; that is, in each case, C is polynomially

learnable by C.

Pitt and Valiant [1988] subsequently observed that the classes k-TERM-DNF

and k-cLAusE-CNF, when viewed as functions, are properly contained within

the classes kCNF and kllNF, respectively. Combined with the results above

[Valiant, 1984], this shows that for fixed k, the class k-TERM-DNF is polynomi-

ally learnable by kCNF, and the class k-cLAusE-CNF is polynomially learnable

by kDNF. More surprisingly, Pitt and Valiant prove that for any fixed k 22,

learning k-’TERM-DNF by k-’rERM-DNF and learning k-CLAUSE-CNF by k-

cLAus~-CNF are NP-hard problems.

These results are important in that they demonstrate the tremendous com-

putational advantage that may be gained by a judicious change of hypothesis

representation. This can be viewed as a limited but provable confirmation of

the rule of thumb in artificial intelligence that representation is important. By

moving to a more powerful hypothesis class 11 instead of insisting on the more

“natural” choice ~ = c, we move from an NP-hard problem to a polynomial-
time solution. This may be explained intuitively by the observation that while

the constraint H = C may be significant enough to render the learning task

intractable, a richer hypothesis representation allows a greater latitude for

expressing the learned formula.
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In discussing hardness results, we distinguish between two types: representa-

tion-based hardness results and representation-independent hardness results.

Briefly, representation-based hardness results state that for some fixed repre-

sentation classes C and H, learning C by H is hard in some computational

sense (such as NP-hardness). Thus, the aforementioned result on the difficulty

of learning k-TERM-DNF by k-TERM-DNF is representation-based. In contrast,

a representation-independent hardness result says that, for fixed C and any

polynomially evaluatable H, learning C by H is hard.

Representation-based hardness results are interesting for a number of rea-

sons. They can be used to give formal verification to the importance of

hypothesis representation, and for practical reasons it is important to study the

least expressive class H that can be used to learn C, since the choice of

hypothesis representation can greatly affect resource complexity (such as the

number of examples required) even for those classes already known to be

polynomially learnable.

However, since a representation-based hardness result dismisses the polyno-

mial learnability of C only with respect to the ji.xed hypothesis class 1+, such

results leave something to be desired in the quest to classify learning problems

as “easy” or “hard.” For example, we may be perfectly willing to settle for an

efficient algorithm learning C by H for some more expressive H if we know

that learning C by C is NP-hard. Thus, for practical purposes we must regard

the polynomial learnability of C as not entirely resolved until we either find an

efficient learning algorithm or we prove that learning C by H is hard for any

reasonable H, that is, until we prove a representation-independent hardness

result for C.

Gold [1978] gave the first representation-based hardness results that apply to

the distribution-free model of learning. He proves that the problem of finding

the smallest deterministic finite automaton consistent with a given sample is

NP-complete; the results of Haussler et al. [1988] can be easily applied to

Gold’s result to prove that learning deterministic finite automata of size n by

deterministic finite automata of size n cannot be accomplished in polynomial

time unless RP = NP. There are some technical issues involved in properly

defining the problem of learning finite automata in the distribution-free model;

see Pitt and Warmuth [1988] for details. Gold’s results were improved by Li

and Vazirani [1988] who show that finding an automaton 9/8 larger than the

smallest consistent automaton is still NP-complete.

As we have already discussed, Pitt and Valiant [1988] prove that for k >2,

learning k-TERM-DNF by k-TERM-DNF is NP-hard by giving a randomized

reduction from a generalization of the graph coloring problem. Even stronger,

for k >6, they prove that even if the hypothesis DNF formulae is allowed to
have 2k – 3 terms, k-TERM-DNF cannot be learned in polynomial time unless

RP = NP. These results hold even when the target formulae are restricted to

be monotone and the hypothesis formulae is allowed to be nonmonotone. Dual

results hold for the problem of learning k-cLAusE-CNF. Pitt and Valiant also

prove that ~-formulae (Boolean formulae in which each variable occurs at

most once, sometimes called read-once) cannot be learned by p-formulae in

polynomial time, and that Boolean threshold functions cannot be learned by

Boolean threshold functions in polynomial time, unless RP = NP.

Pitt and Warmuth [1989] dramatically improved the results of Gold by

proving that deterministic finite automata of size n cannot be learned in
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polynomial time by deterministic finite automata of size n a for any fixed value

a z 1 unless RP = NP. Their results leave open the possibility of an efficient

learning algorithm using deterministic finite automata whose size depends on ●

and 8, or an algorithm using some entirely different representation of the sets

accepted by automata. This possibility is addressed and dismissed (modulo

cryptographic assumptions) by the results in this paper.

Hancock [1989] has shown that learning decision trees of size n by decision

trees of size n cannot be done in polynomial time unless RP = NP. Represen-

tation-based hardness results for learning various classes of neural networks

can also be derived from the results of Judd [1988] and Blum and Rivest [1988].

The first representation-independent hardness results for the distribution-

free model follow from the work of Goldreich et al. [1986], whose true

motivation was to find easy-to-compute functions whose output on random

inputs appears random to all polynomial-time algorithms. A simplified and

weakened statement of their result is that the class of polynomial-size Boolean

circuits is not polynomially learnable by any polynomially evaluatable H,

provided that there exists a one-way function (see Yao [1982]). Pitt and

Warmuth [1988] defined a general notion of reducibility for learning and gave

a number of other representation classes that are not polynomially learnable

under the same assumption by giving reductions from the learning problem for

polynomial-size circuits. One of the main contributions of the research pre-

sented here is representation-independent hardness results for much simpler

classes than those addressed by Goldreich et al. [1986] or Pitt and Warmuth

[1988], among these the classes of Boolean formulae, acyclic deterministic

finite automata, and constant-depth threshold circuits.

4. Background and Definitions from Cryptography

4.1. SOME BASIC NUMBER THEORY. For an introduction to number theory

that is relevant to cryptography, we refer the reader to the work of Angluin

[1982] and Kranakis [1986]. For ~ a natural number, Z~ will denote the ring of

integers modulo N, and Z~ will denote the multiplicative group modulo N.

Thus, Z~={x:O <x< IV-l} and Zfi ={x:l<x <N–landgcd(x, N)

= 1}, where gcd(x, N) denotes the greatest common divisor of x and IV. The

Euler quotient jimction p is defined by P(N) = I Z; I . For x = 2$, we say that

x is a quadratic residue modulo N if there is an a = Z; such that x = az modN.

We denote by QR~ the set of all quadratic residues in Z:. For a prime p and
x G Z;, we define the Legendre symbol of x with respect to p by L(x, p) = 1 if

x is a quadratic residue modulo p, and L(x, p) = – 1 otherwise. For N = p . q,

where p and q are prime, we define the Jacobi symbol of x ● Z; with respect

to N by J(x, N) = L(x, p) “ L(x, q). Since x is a quadratic residue modulo N

if and only if it is a quadratic residue modulo p and modulo q, itfollows that

J( x, N) = – 1 implies that x is not a quadratic residue modulo N. However,

J(.x, N) = 1 does not necessarily imply that x is a quadratic residue mod N.

For any integer N, we define the set Z;( + 1) = {x G Z;: J(x, N) = 1}. A

Blum integer is an integer of the form p . q, where p and q are primes both

congruent to 3 modulo 4.

We make use of the following facts from number theory:

Fact NT1. On inputs x and N, gcd(x, N) can be computed in polynomial

time.
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Fact NT2. For p a prime and x ● Z;, L(x, p) = X(P’ l~”z modp.

Fact NT3. On inputs x and ~, Xx, ~) can be computed in polynomial time.

Fact NT4. For N = p “ q where p and q are prime, I Z:( + 1) I = I Z; I/2
and lQR~l=l Zfi l/4.

Fact NT5. For any x = Z;, xq(~) = 1 modN.

4.2. THE RSA ENCRYPTION FUNCTION. Let p and q be primes of length 1,

and let N = p . q. Let e be an encvpting exponent such that gcd(e, P(N)) = 1

and d a decrypting exponent such that d “ e = 1 mod P(N). The existence of

such a d is guaranteed for all elements e for which gcd( e, 9(N)) = 1. The

RSA enc~ptiorz function [Rivest et al., 1978] is then defined for all x ● Z~ by

RSA(X, N, e) =x’ modN.

Note that decryption can be accomplished by exponentiation mod N:

for some natural number i by Fact NT5 because e “ d = 1 mod P(N).

Thus, following the informal intuition of Section 1, we think of Alice as

generating the product N = p “ q; since she also knows p and q, she can

generate both e (which she publishes along with N, thus yielding an encryption

program) and d (the “trapdoor”, which she keeps private).

There is currently no known polynomial-time algorithm for irmerting the

RSA encryption function—that is, the problem of computing x on inputs

RSA( x, N, e), N and e. Furthermore, the following result from Alexi et al.

[1988] indicates that determining the least significant bit of x is as hard as

inverting RSA (which amounts to determining all the bits of x).

THEOREM 1 [ALEXI ET AL. 1988]. Let x, N, and e be as aboLe. Then with

respect to probabilistic polynomial-time reducibility, the following problems are

equivalent:

(1) On input RSA(X, N, e), N and e, output x.

(2) On input RSA(X, N, e), N and e, output LSB(X) with probability exceeding
1/2 + l/p(l), where p is any ftied polynomial, 1 = logN is the length of N,

and LSB( x) denotes the least significant bit of x. T~le probability is taken ol~er

x chosen uniformly from Z~ and any coin tosses of A.

4.3. THE RABIN AND MODIFIED RABIN ENCRYPTION FUNCTIONS. The Rabin

enc~ption fanction [Rabin, 1979] is specified by two primes p and q of length 1.

For N =p “q and x = Z;, we define

R(x, N) =xzmodN.

In this scheme, the trapdoor is the factorization of N, which allows Alice to

compute square roots modulo N, and thus to decrypt. Known results regarding

the security of the Rabin function include the following:

THEOREM 2 [RABIN 1979]. Let x and N be as aboue. Then with respect to

probabilistic polynomial-time reducibility, the following problems are equillalent:

(1) On input N, output a nontrivial factor of N.
(2) On input N and R(x, N), output a y such that R(y, N) = R(x, N).
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Furthermore, this reduction still holds when N is restricted to be a Blum

integer in both problems. The modified Rabin encyption function [Alexi et al.,

1988] is specified by two primes p and q of length 1, both congruent to 3

modulo 4. Let N = p oq (thus, IV is a Blum integer). We define a subset MN of

Z; by

{ }
MN= x: O<x<~andx=Zfi(+l) .

For x = MN, the modified Rabin encryption function is then

MR(x, N) = Xz modN if x= modN = ikl~,

i14R(x, N) = (N – Xz) modN, otherwise.

This defines a 1–1 map from MN onto MN.

THEOREM 3 [ALEXI ET AL. 1988]. Let x and N be as abolle. Then with respect

to probabilistic polynomial-time reducibility, the following problems are equil’alent:

(1) On input MR(x, N) and N, output x.

(2) On input AIR(x, N) and N, output LSB(X) with probability exceeding 1/2 +
I/p(l), where p is any f~ed po~nontial and 1 = logN is the length of N. The

probabilip is taken oler x chosen uniformly from MN and any coin tosses of A.

For Blum integers, R(x, N) is a 1-1 mapping of QR~. Hence, if MR(x, N)

is invertible, then we can invert R( x, N) by attempting to invert iklR for both

the values R(.x, N) and N – R(x, N), and succeeding for just the right one of

these. Hence, Theorems 2 and 3 together imply that Problem (2) in Theorem 3

is equivalent to factoring Blum integers (with respect to probabilistic polyno-

mial-time reducibility), a problem for which no polynomial-time algorithm is

known.

4.4. THE QUADRATIC RESIDUE ASSUMPTION. Let N = p . q, where p and q

are primes of length 1. For each x ● Z;( + 1), define QR(x, N) = 1 if x is a

quadratic residue mod N and QR(x, N) = O otherwise. Then, the Quadratic

Residue Assumption states that if A is any probabilistic polynomial-time algo-

rithm that takes N and x as input, then for infinitely many N we have

1
Pr[A(N, x) = QR(x, N)] < ~ + —

p(l) ‘

where p is any fixed polynomial. The probability is taken over x chosen

uniformly from the set Z;( + 1) and any coin tosses of A. As in the Rabin

scheme, knowledge of the factors of N allows Alice to compute square roots

modulo N and thus to determine if an element is a quadratic residue.

5. Hard Learning Problems Based on Cryptographic Functions

In this section, we construct hard learning problems based on the number-the-

oretic encryption functions described above. For each such function, we first
define a representation class based on the function. For each possible target

representation in this class, we then describe the releL’ant examples for this

representation. These are the only examples with nonzero probability in the

hard target distributions we define. we then proceed to prove the difficulty of
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even weakly learning the representation class under the chosen distributions,

based on some standard cryptographic assumption on the security of the

underlying encryption function. Finally, we show the ease of evaluating the

representation class: More precisely, we show that each representation in the

class can be computed by an NC 1 circuit (a polynomial-size, log-depth circuit of

standard fan-in 2 Boolean gates). In Section 6, we apply these results to prove

that weakly learning Boolean formulae, finite automata, constant-depth thresh-

old circuits, and a number of other representation classes is hard under

cryptographic assumptions.

We adopt the following notation: If al,..., am are natural numbers, then

binaiv(u ~, ;.., an) is the binary representa~ion of ‘the

relevant examples we construct will be of the form

(bina~(a,,..., a,~), b),

where b is a bit indicating whether the example is

sequence al, . . ., a,.. The

Positive or negative. We

denote by powers( z, N) th~ sequence of natur~l numbers

zmodN, Z2 modN, Za modN, . . . . z~(’’””] mod N,

which are the first [log N 1 + 1 successive square powers of z modulo N.

In the following subsections, we define representation classes C. based on

the number-theoretic function families described above. Representations in C.

will be over the domain {O, 1}”; relevant examples with length less than n will

implicitly be assumed to be padded to length n. Since only the relevant

examples will have nonzero probability, we assume that all nonrelevant exam-

ples are negative examples of the target representation.

5.1. A LEARNING PROBLEM BASED ON RSA

5.1.1. The Representation Class Cm. Let 1 be the largest natural number

satisfying 41Z + 81 + 2 s n. Each representation in C. is defined by a triple

(p, q, e) and this representation will be denoted r(P, ~,, . Here p and q are
primes of exactly 1 bits and e G Z~t ~), (where N = p “ q thus, gcd(e, P(N)) =

1).

5.1.2.

C. is of

where x

such an

Relel’ant Examples for rcP,~,,, = C,,. A relevant example

the form

(binaU(powers(RSA( x, N,e), N), N,e), LSB(x)),

● Z~. Note that since the length of N is at most 21 + 1, the length of
example in bits is at most (21 + 1)(21 + 1) + (21 + 1) + (21 + 1) =

412 + 81 + 2 ~ n. The target distribution D+ for r(P ~,,, is uniform ove~’the

relevant positive examples of ~(P,~,,, (i.e., those for which LSB(X) = 1) and the

target distribution D- is umform over the relevant negative examples (i.e.,

those for which LSB(X) = O).

5.1.3. Dificulty of Weak& Learning C = IJ ,,, ~C,,. Suppose that A is a

polynomial-time weak learning algorithm for C. We now describe how we can

use algorithm xl to invert the RSA encryption function. Let N be the product

of two unknown l-bit primes p and q, and let e = Z~L~). Then given only N

and e, we run algorithm xl. Each time A requests a positive example of
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r(P ~ .), we uniformly choose an x 6 Z ~ such that LSB(X) = 1 and give the

example

(binary (powers(RSA(x, N, e), N), N, e), 1)

to ~. Note that we can generate such an example in polynomial time on input

N and e. This simulation generates the target distribution D‘. Each time that

A requests a negative example of r(P, ~,~j, we uniformly choose an x e Z~ such

that LSB(X) = O and give the example

(binary (powers(RSA(x, N, e), N), N, e), O)

to A. Again, we can generate such an example in polynomial time, and this

simulation generates the target distribution D-. Let hA be the hypothesis

output by algorithm A following this simulation. Then given r = RSA(X, N, e)

for some unknown .x chosen uniformly from Z~, hA(binaty(powcr.s(r, N ),

N, e)) = LSB(X) with probability at least 1/2 + I/p(l) for some polynomial p

by the definition of weak learning because n and 1 are polynomially related.

Thus, we have a polynomial advantage for inverting the least significant bit of

RSA. This allows us to invert RSA by the results of Alexi et al. [1988], given

as Theorem 1.

5.1.4. Ease of Evaluating r[f, ~,,, = C,,. For each r(P ~,,, @ C., we show that

r(P, ~,,, has an equivalent NC cn-cuit. More precisely, we give a circuit that has

depth O(log n) and size polynomial in n, and outputs the value of r(P, ~,~, on

inputs of the form

birza~(powers(r, N), N, e),

where IV = p “ q and r = RSA(X, N, e) for some x e Z~. Thus, the representa-

tion class C = U . ~ ~C~ is contained in (nonuniform) NC1.

Since e = Z~(~), there is a d = Z$(~) such that e “ d = 1mod 9(N) (d is just

the decrypting exponent for e). Thus, r~ modN = x’ d mod N = x mod N.

Hence. the circuit for r(P, ~ ,, simply multiplies together the appropriate powers

of r (which are always explicitly provided in the input) to compute r d mod N,

and outputs the least significant bit of the resulting product. This is an NC L

step by the iterated product circuits of Beame et al. [1986].

5.2. A LEARNING PROBLEM BASED ON QUADRATIC RESIDUES

5.2.1. The Representation Class C.. Let 1 be the largest natural number

satisfying 412 + 61 + 2< n. Each representation in C. is defined by a pair of

l-bit primes (p, q) and this representation will be denoted r(P, ~).

5.2.2. Relelant Examples for r(P, ~, = C,,. For a representation r(P, ~, ~ C,,,

let N = p “q. We consider only points x G Z;( + 1). A relevant example of

r(P, ~, is then of the following form:

(binary(powers(x, N), N), QR(x, N)).

Note that the length of such an example in bits is at most 41Z + 61 + 2< n.
The target distribution D+ for r(P ~, is uniform over the relevant positive

examples of r(P, ~, (i.e., those for which QR(x, N) = 1) and the target distribu-

tion D- is uniform over the relevant negative examples (i.e., those for which

QR(x, N) = O).
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5.2.3. Dificul~ of Weakly Learning C = U. ~ ~C.. Suppose that A is a

polynomial-time weak learning algorithm for C. We now describe how we can

use algorithm A to recognize quadratic residues. Let N be the product of two

unknown l-bit primes p and q. Given only N as input, we run algorithm A.

Every time A requests a positive example of r(P, ~), we uniformly choose
y G Z~ and give the example

(bina~(powers(y’ modN, N), N), 1)

to A. Note that such an example can be generated in polynomial time on input

N. This simulation generates the target distribution D‘.

In order to generate the negative examples for our simulation of A, we

uniformly choose u G Z; until .7(u, N) = 1. By Fact NT4, this can be done

with high probability in polynomial time. The probability is 1/2 that such a Z4is

a nonresidue modulo N. Assuming we have obtained a nonresidue u, every

time A requests a negative example of r( ~,~), we uniformly choose -Y = Z; and

give to A the example

(binary (powers(uy2 modN, N), N), O),

which can be generated in polynomial time. Note that, if Z4 actually is a

nonresidue, then this simulation generates the target distribution D‘, and this

run of A will with high probability produce an hypothesis h ~ with accuracy at

least 1/2 + I/p(l) with respect to D+ and D‘, for some polynomial p (call

such a run a good run). On the other hand, if u is actually a residue, then A

has been trained improperly (i.e., A has been given positive examples when it

requested negative examples), and no performance guarantees can be assumed.

The probability of a good run of A is at least 1/2(1 – 8).

We thus simulate A as described above many times, testing each hypothesis

to determine if the run was a good run. To test if a good run has occurred, we

first determine if lz~ has accuracy at least 1/2 + l\2p(l ) with respect to D‘.

This can be determined with high probability by generating D+ as above and

estimating the accuracy of hA using Fact CB1 and Fact CB2. Assuming h ~

passes this test, we now would like to test }Zq against the simulated distribution

D-; however, we do not have direct access to D- since this requires a

nonresidue mod N. Thus, we instead estimate the probability that h~ classifies

an example as positive when this example is drawn from the uniform distribu-

tion over all relevant examples (both positive and negative). This can be done

by simply choosing x = Z; uniformly and computing IIA( binary(powers(x, N),

N)). The probability that hA classifies such examples as positive is near 1,/2
if and only if h~ has nearly equal accuracy on D + and D‘. Thus, by estimat-

ing the accuracy of /2 ~ on D‘, we can estimate the accuracy of h~ on

D- as well, without direct access to a simulation of D‘.

We continue to run A and test until a good run of A is obtained with high

probability. Then given x chosen randomly from Z~,

~t,l(binay(powers(x, N), N)) = QR(x, N)

with probability at least 1/2 + 1/p( 1), contradicting the Quadratic Residue

Assumption.
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5.2.4. Ease of Evaluating r(P, ~, = Cx. For each r(P, ~, = C,l, we give an NC]

circuit for evaluating the concept represented by r( ~, ~, on an input of the form

bina~(powers(x, N), N),

where N=p”qandx~Z ~. This circuit has four phases:

Phase I. Compute the powers

x modp, X2 modp, X4 modp, . . . . Xz” modp

and the powers

xmodq, x2modq, x4modq, . . ..x22’modq.

Note that the length of N is 21. Since for any a = Z; we have that a modp =

(a mod N) mod p, these powers can be computed from the input
bina~(powers(x, N), N) by parallel modp and modq circuits. Each such

circuit involves only a division step followed by a multiplication and a subtrac-

tion. The results of Beame et al. [1986] imply that these steps can be carried

out by an NC’ circuit.

Phase II. Compute X(P -1 ‘fz modp and X(q– l)/z modq. These can be com-

puted by multiplying the appropriate powers modp and mod q computed in

Phase I. Since the iterated product of 1 numbers each of length 1 bits can be

computed in NCl by the results of Beame et al. [1986], this is also an NC1 step.

Phase III. Determine if X( P- l)/z = 1 modp or X( P- 1)/2 = – 1 modp, and if
x(q–lh’~ = 1 modq or X(q - l)jz = – 1 mod q. That these are the only cases

follows from Fact NT2; furthermore, this computation determines whether x is

a residue modp and mod q. Given the outputs of Phase II, this is clearly an

NCI step.

Phase IV. If the results of Phase III were x(P - 1)1~ = 1 modp and xtg - 1)/2

= 1 mod q, then output 1, otherwise output O. This is again an NC1 step.

5.3. A LEARNING PROBLEM BASED ON FACTORING BLUM INTEGERS

5.3.1. The Representation Class C.. Let 1 be the largest natural number

satisfying 412 + 61 + 2 < n. Each representation in C. is defined by a pair of

l-bit primes (p, q), both congruent to 3 modulo 4, and this representation will

be denoted r(p, q). Thus, the product N = p ‘ q is a Blum integer.

5.3.2. Releuant Examples for rcP,q, = C.. We consider points x E MN. A

relevant example of rf ~, ~, = Cm is then of the form

(binaV(powers(MR( x, N), N), N), LSB(x)).

The length of this example in bits is at most 41Z + 61 + 2 s n. The target

distribution D+ for r ~, q,

(

is uniform over the relevant positive examples (i.e.,

those for which LSB x) = 1) and the target distribution D- is uniform over

the relevant negative examples (i.e., those for which LSB(X) = O).

5.3.3. Difficul~ of Weakly Learning C = U ~, ~C.. Suppose that A is a

polynomial-time weak learning algorithm for C. We now describe how to use

A to factor Blum integers. Let N be a Blum integer. Given only N as input, we

run algorithm A. Every time A requests a positive example, we choose
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x ● iWN uniformly such that L~Z3(x) = 1, and give the example

(bina7y(powers( MR(x, N), N), N), 1)

to ~. Such an example can be generated in polynomial time on input N. This

simulation generates the distribution D+. Every time A requests a negative

example, we choose x E M. uniformly such that LSB(X) = O, and give the

example

(binaty(powers( MR(.x, N), N), N), O)

to A. Again, this example can be generated in polynomial time. This simula-

tion generates the distribution D‘. When algorithm A has halted,

lz,q(birla~(powers(r, N), N)) = LSB(X) with probability 1/2 + I/p(l) for r =

MR(X, N) and x chosen uniformly from MN. This implies that we can factor

Blum integers by the results of Rabin [1979] and Alexi et al, [1988] given in

Theorems 2 and 3.

5.3.4. Ease of Evaluating r(P, ~, = C.. For each rtP, ~j ~ c,,? We @’e an NC1

circuit for evaluating the concept represented by rt ~,~, on an input of the form

bimuy(powers(r, N), N),

where N ==p” q and r = A4R( X, N) for some x E MN. This is accomplished by

giving an NC 1 implementation of the first three steps of the root-finding

algorithm of Adleman et al. [1977], as it is described by Angluin [1982]. Note

that if we let a = X2 modN, then either r = a or r = (N – a) ntodN according

to the definition of the modified Rabin function. The circuit has four phases:

Phase I. Determine if the input r is a quadratic residue modN. This can be

done using the given powers of r and r( ~, ~, using the NC 1 circuit described in

quadratic residue-based scheme of Section 5.2. Note that since p and q are

both congruent to 3 mod 4, (N – a) nZodN is never a quadratic residue nzodN

(see Angluin [19821). If it is decided that r = (N – a) FnodN, generate the
intermediate output a mod N. This can clearly be done in NC’. Aiso, notice

that for any z, Zz’ = (N – .z)2’ nzodN for i z 1. Hence, these powers of r are

identical in the two cases. Finally, recall that the NCl circuit for quadratic

residues produced the powers of r modp and the powers of r mod q as interme-

diate outputs, so we may assume that the powers

a, az modp, ad modp, ..., az” modp

and

a,a2modq, aamodq, . . ..anzodqodq

are also available.

Phase II. Let 1P (respectively, l,,) be the largest positive integer such that

2[~ I (p – 1) (respectively, 21q I (q – 1)). Let QP = (p – 1)/21’ (respectively,

Q, = (q – 1)/2’1). Using the appropriate powers of .X2 modp and modq,

compute u = a(Qfl+ ] “z modp and L) = a(Q? + 1 )/2 mod q with NC 1 iterated prod-

uct circuits. Since p and q are both congruent to 3 mod 4, u and p – u are

square roots of a mod q, and L and q – 1’ are square roots of a mod q by the

results of Adleman et al. [1977] (see also Angluin [1982]).
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Phase III. Using Chinese remaindering, combine u, p – u, L) and q – u to

compute the four square roots of a mod N (see, e.g., Kranakis [1986]). Given p

and q, this requires only a constant number of multiplication and addition

steps, and so is computed in NC 1.

Phase IV. Find the root from Phase III that is in MN, and output its least

significant bit.

6. Learning Small Boolean Formulae, Finite Automata, and Threshold Circuits is

Hard

The results of Section 5 show that for some fixed polynomial q(n), learning

NCl circuits of size at most q(n) is computationally as difficult as the problems

of inverting RSA, recognizing quadratic residues, and factoring Blum integers.

However, there is a polynomial p(n) such that any NCl circuit of size at most

q(n) can be represented by a Boolean formulae of size at most p(n). Thus we

have proved the following:

THEOREM 4. Let BF#”) denote the class of Boolean formulae ol~er n uariables

of size at most p(n), and let BFP(”) = U. ~ ~BF~(n). Then for some polynomial

p(n), the problems of inverting the RSA enc~ption function, recognizing quadratic

residues and factoring Blum integers are probabilistic polynomial-time reducible to

weakly learning BFPC*).

In fact, we can apply the substitution arguments of Kearns et al. [1987] to

show that Theorem 4 holds even for the class of monotone Boolean formulae

in which each variable appears at most once.

Pitt and Warmuth [1988] show that if the class ADFA is polynomially weakly

learnable, then the class BF is polynomially weakly learnable. Combining this

with Theorem 4, we have:

THEOREM 5. Let ADFA;(n) denote the class of detenninisticfinite automata of

size ot most p(n) that only accept strings of length n, and let ADFA””) =

u,, > ~ADFAj(”). Then for some polynomial p(n), the problems of im)erting the

RSA encyption function, recognizing quadratic residues and factoring Blunl inte-

gers are probabilistic polynomial-time reducible to weakly learning ADFAp(n).

Note that combined with the algorithm of Angluin for learning DFAs using

membership and equivalence queries (which can be replaced by random

examples), Theorem 5 demonstrates a provable increase in the learner’s power

when membership queries are added.

Using results of Chandra et al., [1984], Beame et al. [1986], and Reif [1987], it

can be shown that the representations described in Section 5 can each be

computed by a polynomial-size, constant-depth threshold circuit. Thus, we

have:

THEOREM 6. For some f~ed constant natural number d, let dTC~(n) denote

the class of threshold circuits ouer n lariables with depth at most d and size at most

p(n), and let dTCp(”) = U. ~ ,dTCf(”). Th en for some polynomial p(n), the

problems of inl)erting the RSA enc~ption function, recognizing quadratic residues

and factoring Blum integers are probabilistic polynomial-time reducible to weakly

learning dTCpcn).

It is important to reiterate that these hardness results hold regardless of the

hypothesis representation class of the learning algorithm; that is, Boolean
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formulae, DFAs, and constant-depth threshold circuits are not weakly learn-

able by any polynomially evaluatable representation class (under standard

cryptographic assumptions). We note that no NP-hardness results are known

for these classes even if we restrict the hypothesis class to be the same as the

target class and insist on strong learnability rather than weak learnability. It is

also possible to give reductions showing that many other interesting classes

(e.g., CFGS and NFAs) are not weakly learnable, under the same cryptographic
assumptions. In general, any representation class whose computational power

subsumes that of NC } is not weakly learnable; however, more subtle reductions

are also possible. In particular, our results resolve a problem posed by Pitt and

Warmuth [1988] by showing that under cryptographic assumptions, the class of

all languages accepted by Iogspace Turing machines is not weakly learnable.

Pitt and Warmuth [1988] introduce a general notion of reduction between

learning problems, and a number of learning problems are shown to have

equivalent computational difficulty (with respect to probabilistic polynomial-

time reducibility); thus, if the learning problem for a representation class Cl

reduces to the learning problem for a representation class Cz, then a polyno-

mial-time learning algorithm for Cz in the distribution-free model implies a

polynomial-time learning algorithm for Cl. Learning problems are then classi-

fied according to the complexity of their evaluation problem, the problem of

evaluating a representation on an input example. In Pitt and Warmuth [1988],

the evaluation problem is treated as a uniform problem (i.e., one algorithm for

evaluating all representations in the class); by treating the evaluation problem

nonuniformly (e.g., a separate circuit for each representation), we were able to

show that NC 1 contains a number of presumably hard-to-learn classes of

Boolean functions. By giving reductions from NC1 to other classes of represen-

tations, we thus clarify the boundary of what is efficiently learnable.

7. A Generalized Con~tniction Based on Any Trapdoor Function

Let us now give a brief summary of the techniques that were used in Sections 5

and 6 to obtain hardness results for learning based on cryptographic assump-

tions. In each construction (RSA, quadratic residue and factoring Blum inte-

gers), we began with a candidate trapdoor fim.ction family, informally a family

of functions each of whose members ~ is easy to compute (i.e., given x, it is

easy to compute ~(x)), hard to invert (i.e., given only ~(x), it is difficult to

compute x), but easy to invert given a secret “key” to the function

[Yao, 1982] (the trapdoor). We then constructed a learning problem in which

the complexity of inverting the function gil’en the trapdoor key corresponds to

the complexity of the representations being learned, and learning from random
examples corresponds to inverting the function without the trapdoor key. Thus,

the learning algorithm is essentially required to learn the inverse of a trapdoor

function, and the small representation for this inverse is simply the secret

trapdoor information.

To prove hardness results for the simplest possible representation classes, we

then eased the computation of the inverse given the trapdoor key by providing

the powers of the original input in each example. This additional information

provably does not compromise the security of the original function. A key

property of trapdoor functions exploited by our constructions is the ability to

generate random examples of the target representation without the trapdoor
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key; this corresponds to the ability to generate encrypted messages given only

the public key in a public-key cryptosystem.

By assuming that specific functions such as RSA are trapdoor functions, we

were able to find modified trapdoor funcitons whose inverse computation given

the trapdoor could be performed by very simple circuits. This allows us to

prove hardness results for specific representation classes that are of interest in

computational learning theory. Such specific intractability assumptions appear

necessa~ since the weaker and more general assumption that there exists a

trapdoor family that can be computed (in the forward direction) in polynomial

time does not allow us to say anything about the hard-to-learn representation

class other than it having polynomial-size circuits.

However, the summary above suggests a general method for proving hard-

ness results for learning: To show that a representation class C is not

learnable, find a trapdoor function whose inverse can be computed by C given

the trapdoor key. In this section, we formalize these ideas and prove a theorem

demonstrating that this is indeed a viable approach.

We use the following definition for a family of trapdoor functions, which can

be derived from Yao [1982]: Let P = {P~} be a family of probability distribu-

tions, where for n z 1 the distribution P. is over pairs (k, k‘) = {O, 1}” X {O, l}’].

We think of k as the n-bit public key and k‘ as the associated n-bit prilate key.

Let Q = {Q~} be a family of probability distributions parameterized by the
public key k, where if I k I = n, then QL is a distribution over {O, l}”. We think

of Q as a distribution family over the message space. The function f: {O, 1}“ X

{O, l}” ~ {O, 1}” maps an n-bit public key k and an n-bit cleartext nzessage .x to

the ciphetiext f (k, x). We call the triple (P, Q, f ) an a (n)-strong trapdoor

scheme if it has the following properties:

(i) There is probabilistic polynomial-time algorithm G (the key generator) that

on input In outputs a pair (k, k‘ ) according to the distribution P,,. Thus,

pairs of public and private keys are easily generated.

(ii) There is a probabilistic polynomial-time algorithm M (the message genera-

tor) that on input k outputs x according to the distribution Qk. Thus,

messages are easily generated given the public key k.

(iii) There is a polynomial-time algorithm E that on input k and x outputs

f(k, x). Thus, encryption is easy.
(iv) Let Abe any probabilistic polynomial-time algorithm. Perform the follow-

ing experiment: Draw a pair (k, k‘) according to P,l, and draw x according

to Q~. Give the inputs k and f(k, x) to A. Then, the probability that

A(k, f(k, x)) # x is at least a(n). Thus, decryption from only the public
key and the ciphertext is hard.

(v) There is a polynomial-time algorithm D that on input k, k’ and f(k, x)

outputs x. Thus, decryption given the private key (or trapdoor) is easy.

As an example, consider the RSA cryptosystem [Rivest et al., 1978]. Here the

distribution P. is uniform over all (k, k‘) where k‘ = (p, q) for n-bit primes P

and q and k = (p . q, e) with e = Z~, P ~). The distribution Qk is uniform over

ZP.~, and f(k, x) = f((p” q, e), x) =x’ modp” q.
We now formalize the notion of the inverse of a trapdoor function being

computed in a representation class. Let C = lJ ,, ~, Cn be a parameterized

Boolean representation class. We say that a trapdoor scheme (P, Q, f ) is
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itw’ertible in C giL’en the trapdoor if for any n > 1, for any pair of keys

(lc, k’) E {0, 1}” X {0, 1}”, and for any 1 s i s n, there is a representation
c~~ ~,j 6 C. that on input ~(k, x) (for any x = {O, 1}”) outputs the ith bit of x.

THEOREM 7. Let p be any polynomial, and let a(n) > l/p(n). Let (P, Q, f)

be an a (n )-strong trapdoor scheme, and let C be a parametrized Booleatl

representation class, Then if (P, Q, f ) is in L’ertible in C gil’en the trupdoor, C is not

polynomially learnable.

PROOF. Let A be any polynomial-time learning algorithm for C. We use

algorithm ~ as a subroutine in a polynomial-time algorithm A‘ that with high

probability outputs x on input k and f(k, x ), thus contradicting condition (iv)

in the definition of a trapdoor scheme.

Let (k, k‘) be n-bit public and private keys generated by the distribution P..

Let x be an n-bit message generated according to the distribution Qk. Then on

input k and f(k, .x), algorithm A’ behaves as follows: for 1 < i < n, algorithm

A‘ simulates algorithm A, choosing accuracy parameter e = a(n)/n. For the

ith run of A, each time ~ requests a positive example, A‘ generates random

values x‘ from the distribution Qk (this can be done in polynomial time by

condition (ii) in the definition of trapdoor scheme) and computes f( k, x‘) (this

can be done in polynomial time by condition (iii) in the definition of trapdoor

scheme). If the ith bit of f(k, x‘) is 1, then A’ gives x’ as a positive example to

A; similarly, A‘ generates negative examples for the ith run of A by drawing
x’ such that the ith bit of f(k, x’) is O. If after 0(1/~ in rz/8) draws from QL,

A‘ is unable to obtain a positive (respectively, negative) example for A, then

A‘ assumes that with high probability a random x‘ results in the ith bit of

f(k, .x’) being O (respectively, 11 and terminates this run by setting kj to the
hypothesis that is always O (respectively, 1). The probability that A‘ terminates

the run incorrectly can be shown to be smaller than 8\rz by application of Fact

CB1 and Fact CB2.

Note that all of the examples given to the ith run of A are consistent with a

representation in C., since the ith bit of f(k, . ) is computed by the representa-

tion Cjh, h ~. Thus, with high probability zt outputs an E-good hypothesis hi. To
invert the original input f(k, x), A‘ simply outputs the bit sequence

h~(f(k, X)) ““” h[( f( k, x)). The probability that any bit of this string differs

from the corresponding bit of x is at most n e < a( 12), contradicting the

assumption that (P, Q, f) is an a(n) -strong trapdoor scheme. ❑

8. Application: Hardness Results for Approxi?natiorl Algorithnts

In this section, we digress from learning briefly and apply the results of
Section 6 to prove that under cryptographic assumptions, certain combinatorial

optimization problems, including a natural generalization of graph coloring,

cannot be efficiently approximated even in a very weak sense. These results

show that, for these problems, it is difficult to find a solution that approximates

the optimal solution even within a factor that grows rapidly with the input size.

Such results are infrequent in complexity theory, and seem difficult to obtain

for natural problems using presumably weaker assumptions such as P # NP.

We begin by stating a needed theorem of Blumer et al. [1987] known as

Occam’s Razor. Their result essentially gives an upper bound on the sample
size required for learning C by H, and shows that the general technique of
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finding an hypothesis that is both consistent with the sample drawn and

significantly shorter than this sample is sufficient for distribution-free learning.

Thus, if one can efficiently perform data compression on a random sample,

then one can learn efficiently.

THEOREM 8 [BLUMER ET AL., 1987]. Let C and H be po~nomiully evaluatable

parametrized Boolean representation classes. Fix a >1 and O < fl <1, and let

A be an algorithm that on input a labeled sample S of some c = C., consisting of

m positive examples of c drawn from D h and m negative examples of c drawn

from D‘, outputs an hypothesis h~ E H. that is consistent with S and satisfies

1h~ 1< n“m’, where I h~ I is the length of the representation h~ in bits. Then A
is a learning algorithm for C by H; the sample size required is

[: ‘ Hogs’(’-’)]m = O –log~ i-

Let I S I = mn denote the number of bits in the sample S. Note that if A

instead outputs h~ satisfying I h~ I s n a‘ I SIP for some fixed a’ z 1 and

0< ~ <1 then I h~ I < n“’(mn)~ = n“’+~m P, so A satisfies the condition of

Theorem 8 for a = a‘ + ~. This formulation of Occam’s Razor will be of

particular use to us.

Let C and H be polynomially evaluatable parameterized Boolean represen-

tation classes, and define the Consistency Problem Con(C, H) as follows:

The Consistency Problem Con(C, H),

Input. A labeled sample S of some c = C,,.

output. h = H. such that h is consistent with S and I h I is minimized.

We use optcO.(S) to denote the size of the smallest hypothesis in H that is

consistent with the sample S, and I S I to denote the number of bits in S.

Using the results of Section 6 and Theorem 8, we immediately obtain proofs of

the following theorems:

THEOREM 9. Let BF~ denote the class of Boolean formulae ouer n uariables,

and let BF = U . ~ ~BFfl. Let H be any poljmomialij el~aluatable parametrized

Boolean representation class. Then the problems of iru~erting the RSA encyption

fimction, recognizing quadratic residues and factoring Blum integers are probabilis-

tic polynomial-time reducible to the problem of approximating the optimal solution

of an instance S of Con( BF, H) by an hypothesis h satisfying

I h I < (optcOrL(N)a I S I E

foranya >land O< f3 <l,

THEOREM 10. Let ADFA~ denote the class of deterministic finite automata

accepting only strings of length n, and let ADFA = U. ~ ~ADFA.. Let H be any

polynomially evaluatable parametrized Boolean representation class. Then invert-
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ing the RSA encryption function, recognizing quadratic residues and factoring Blum

integers are probabilistic polynomial-time reducible to approximating the optimal

solution of an instance S of Con( ADFA, H) by an hypothesis h satisfying

fora)ly a>land O<~<l.

THEOREM 11. Let dTC~ denote the class of threshold circuits oLer n l’ariables

with depth at most d, and let dTC = U ., ~dTC,,. Let H be any polynomially

el’aluatable parametrized Boolean representation class. Then for some constant

d > 1, the problerrls of irwerting the RSA encryptio?l function, recognizing quadratic

residues and factoring Blum integers are probabilistic po~~lomial-time reducible to

theproblenl of approximating the optimal solution of an instance S of Con( dTC, H)

by an hypothesis h satisfying

Ih Is (optcO.(S))al S I p

These theorems demonstrate that the results of Section 6 are, in some sense,

not dependent upon the particular models of learnability that we study, since

we are able to restate the hardness of learning in terms of standard combinato-

rial optimization problems. Using a generalization of Theorem 8 [Blumer et al.,

1989], we can in fact prove Theorems 9, 10, and 11 for the Relaxed Consistency

Problenz, where the hypothesis found must agree with only a fraction 1/2 +

l/p( optc,,n(S), n) for any fixed polynomial p. The central idea of the proof is
the same: since the results of Blumer et al. [1989] demonstrate that for

sufficient sample size, solution of the relaxed consistency problem implies weak

learning, and we have shown weak learning to be as hard as the cryptographic

problems for the various representation classes, the relaxed consistency prob-

lem is as hard as the cryptographic problems. Using the results of Goldreich et

al. [1986], it is also possible to show similar hardness results for the Boolean

circuit consistency problem C’on(CKT, CKT) using the weaker assumption that

there exists a one-way function.

It is interesting to contrast Theorem 10 with similar results obtained by Pitt

and Warmuth [1989]. They also prove hardness results for the problem of

finding small deterministic finite automata consistent with a labeled sample,

but based on the weaker assumption P + NP. However (using the notation of

Theorem 10), their results only hold for a more restricted range of a slid ~,

and require the restriction that H be the class of deterministic finite automata.
We refer the reader to their paper for details.

Note that Theorem 11 addresses the optimization problem Con(dTC TC) as

a special case. This problem is essentially that of finding a set of weights in a

neural network that yields the desired input–output behavior, sometimes

referred to as the loading problem. Theorem 11 states that even if we :illow a

much larger net than is actually required, finding these weights is computation-

ally intractable, even for only a constant number of “hidden layers”. This result

should be contrasted with those of Judd [1988] and Blum and Rivest [1988],

which rely on the weaker assumption P # NP but do not prove hardness of

relaxed consistency and do not allow the hypothesis network to be substantially



Boolean Formulae and Finite Automata 91

larger than the smallest consistent network. We also make no assumptions on

the topology of the output circuit.

Theorems 9, 10, and 11 are interesting for at least two reasons. First, they

suggest that it is possible to obtain stronger hardness results for combinatorial

optimization approximation algorithms by using stronger complexity-theoretic

assumptions. Such results seem difficult to obtain using only the assumption

P # NP. Second, these results provide us with natural examples of optimization

problems for which it is hard to approximate the optimal solution even within a

multiplicative factor that grows as a function of the input size. Several well-

studied problems apparently have this property, but little has been proven in

this direction. Perhaps the best example is graph coloring, where the best

polynomial-time algorithms require approximately n’- l/(k -1) colors on k-col-

orable n-vertex graphs (see Wigderson [1982] and Blum [1989]) but coloring

has been proven NP-hard only for (2 – e)k colors for any ~ >0 (see Garey

and Johnson [1979]). Thus, for 3-colorable graphs we only know that 5-coloring

is hard, but the best algorithm requires roughly O(rzO~) colors on n-vertex
graphs! This leads us to look for approximation-preserving reductions from our

provably hard optimization problems to other natural problems.

We now define a class of optimization problems that we call formula coloring
problems. Here we have variables y,,. ... y,,, assuming natural number values>
or colors. We regard an assignment of colors to the y, (called a coloring) as a

partition P of the variable set into equivalence classes; thus two variables have

the same color if and only if they are in the same equivalence class. We

consider Boolean formulae that are formed using the standard basis over

atomic elements of the form (y, = yj ) and (y, # y,); where the predicate

(y, = y~) is satisfied if and only if y, and y] are assigned the same color.
A model for such a formula F( yl, . . . . y,.) is a coloring of the variables

Y1>...2 Y,. SUCh that F iS satisfied. A minimum model for the F iS a model
using the fewest colors. For example, the formula

(y, ‘Y2) v ((y, +-Y,) A (Y3 +-Y,))

has as a model the two-color partition { yl, y~}, { Yz, YJ} and has a minimum

model the one-color partition { yl, yz, y~, yd}.

We are interested in the problem of finding minimum models for certain
restricted classes of formulae. For F(y 1, ..., y., ), a formula as described above,

and P a model of F, we let I P I denote the number of colors in P and

opt~c(F) the number of colors in a minimum model of F.

We first show how graph coloring can be exactly represented as a formula

coloring problem. If G is a graph, then for each edge (u,, ~),) in G, we conjunct

the expression (y, #y, ) to the formula F(G). Then opt~c(F(G)) is exactly the

number of colors required to color G. Similarly, by conjuncting expressions of

the form

we can also exactly represent the 3-hypeigraph colon”ng problem (where each

hyperedge contains 3 vertices) as a formula coloring problem.

To prove our hardness results, we consider a generalization of the graph

coloring problem:
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THE FORMULA COLORING PROBLEM FC:

Input: A formula F( y ~,. . . . yn ) that is a conjunction only of expressions of

the form (y, #y, ) (as in the graph coloring problem) or of the form ((y, #y, )

v (yk = y[)).

output: A minimum model for F.

We show that approximating an optimal solution to this problem is as hard

as approximating the consistency problem (lwt(DFA, DFA), where DFA is the

class of deterministic finite automata. Note that this problem is at least as hard

to approximate as con(ADFA, H), which we have already proven an approxi-

mation hardness result in Theorem 10.

THEOREM 12. There is a polynomial-time algorithm A that on input an

instance S of the problem C’otl( DFA, DFA ) outputs an instance F(S) of the

formula coloring problem such that S has a k-state consistent hypothesis M E DFA

if and only if F(S] has a model of k colors.

PROOF. Let S contain the labeled examples

(wl, bl), (wz, bz),..., (~~, b~)

where each WI = {O, 1}” and b, @ {O, 1}. Let w; denote the jth bit of w,. We

create a variable Z: for each 1 < i < n and O < j < m. Let M be a smallest

DFA consistent with S. Then we interpret z: as representing the state that ikl

is in immediately after reading the bit wj on input w,. The formula F(S) will

be over the Z: and is constructed as follows: For each i,, iz and j], jz such that
J +1 = ~JZ+l we conjunct the predicateO <jl, jz < n and w,: 12

to F(S). Note that this predicate is equivalent to

and thus has the required form. These formulae are designed to encode the

constraint that if A4 is in the same state in two different computations on input

strings from S, and the next input symbol is the same in both strings, then the

next state in each computation must be the same.

For each il, iz (1 s il, iz s m) such that b,, + b,,, we conjunct the predicate

(z,; # z:). These predicates are designed to encode the constraint that the

input st~ings in S that are accepted by M must result in different final states
than those strings in S that are rejected by iW.

We first prove that if &f has k states, then opt~c(F(S)) s k. In particular,

let P be the k-color partition that assigns z;{ and z:: the same color if and

only if M is in the same state after reading wj,’ on inp-ut w,, and after reading
w 12 on input w,,. We show that P is a model of F(S). A conjunct

12

of F(S) cannot be violated by P since this conjunct appears only if w::+ 1 =
W:22 + 1 ; thus, if state z;; is equivalent to state z~:, then state z#,I+ I must be
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equivalent to state z:;+ 1 since M is deterministic. A conjunct

(z; %)

of F(S) cannot be violated by P since this conjunct appears only if b,, # b,,,

and if state z,: is equivalent to state z,: then w,, and w,, are either both

accepted or both rejected by M, which contradicts M being consistent with S.

For the other direction, we show that, if opt~c($l S)) s k, then there is a

k-state DFA M’ that is consistent with S. M’ is constructed as follows: The k

states of M’ are labeled with the k equivalence classes (colors) Xl, ..., Xk of

the variables Z: in a minimum model P‘ for F(S). There is a transition from

state X to state X~ if and only if there are i, j such that z< = XP and
z]+ 1 ~ ~ . this transition is labeled with the symbol W:+ 1. We label XP an

a~ceptingg&-espectively, rejecting) state, if for some variable z: c XP we have

b, = 1 (respectively, b, = O).

We first argue that no state XP of M’ can be labeled both an accepting and

rejecting state. For if b, = 1 and b, = O, then the conjunct (z,” # z,”) appears in

F(S); hence, z: and z,” must have different colors in P‘.

Next we show that M is in fact deterministic. For suppose that some state

XP has transitions to X~ and X,, and that both transitions are labeled with the

same symbol. Then there exist il, iz and jl, jz such that z;; G XP and zj~ + 1 e

~~, and z:: c XP and z:;+] ● X,. Furthermore, we must have wj,’ + 1 = w;,’+ 1

since both transitions have the same label. But then the conjunct

must appear in F’(S), and this conjunct is violated P‘, a contradiction. Thus,

M’ is deterministic.

These arguments prove that M’ is a well-defined DFA. To see that M’ is

consistent with S, consider the computation of M‘ on any w, in S. The

sequence of states visited on this computation is just ECP,( z: ), ..., ECP ( z;),

where ECP,( z:) denotes the equivalence class of the variable Z; in the coloring

P‘. The final state ECP ,(z;) is by definition of M’ either an accept state or a

reject state according to whether b, = 1 or b, = O. ❑

Note that if I S I is the number of bits in the sample S and I F(S) I
denotes the number of bits in the formula F(S), then in Theorem 12 we have

lF(S)l=@(l S12 log lSl)=O(l S12+y)foranyy> Ofor IS I sufficiently

large. This means that if an algorithm colors F(S) using at most opt~c(F(S))”

I F(S) I P for some a z 1 and ~ < ~, then for I S I sufficiently large we can
use the reduction of Theorem 12 to find a DFA consistent with S that has at

most k” I S I 6’ for some ~‘ < 1, contradicting Theorem 10. Thus we have:

THEOREM 13. The problems of inverting the RSA erwyption function, recog-

nizing quadratic residues and factoring Blum integers are polynomial-time reducible

to approximating the optimal solution to an instance F of the formula coloring

problem by a model P of F satisjjing

1P I s opt~c(F)a IF I B

for any a >1 and O < /3 < 1/2.

Figure 1 summarizes hardness results for coloring a formula F using at most

f(opt~c(F))g( I F I) colors for various functions f and g, where an entry
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Difficulty of

coloring F using A=l A=l F1’/:Q A =,F,t]~Q[j A= IF I

A B colors

B = optFc (F) NP-hard NP-hard Factoring P

B = 1.99 opfFc(F) NP-hard Factoring Factoring P

B = (optFc(F))” NP-hard Factoring Factoring P

any fixed a > 0

FIG. 1. Difficulty of approximating the formula coloring problem using at most A B colors on

input formula F. The constant 0.499 ~.. IS intended to mdlcate any value strictly smaller than 1/2:
the constant 1/29 IS determined from the paper of Pitt and Warmuth.

“NP-hard” indicates that such an approximation is NP-hard, “Factoring”

indicates that such an approximation is as hard as factoring Blum integers (or

recognizing quadratic residues or inverting the RSA function), and “P” indi-

cates there is a polynomial-time algorithm achieving this approximation factor.

The NP-hardness results follow from Garey and Johnson [1979] and Pitt and

Warmuth [1989].
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