Privacy-Preserving Belief Propagation and Sampling

Michael Kearns, Jinsong Tan, and Jennifer Wortman
Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract

We provide provably privacy-preserving versions of befebpagation, Gibbs
sampling, and other local algorithms — distributed multip@rotocols in which
each party or vertex learns only its final local value, andAlisly nothing else.

1 Introduction

In this paper we provide provablyrivacy-preservingsersions of belief propagation, Gibbs sam-
pling, and other local message-passing algorithms on thisgiegbuted networks. Consider a network
of human social contacts, and imagine that each party wikddd compute or estimate their prob-
ability of having contracted a contagious disease, whigiedds on the exposures to the disease of
theirimmediate neighbors in the network. If network paptémts (or their proxy algorithms) engage
in standard belief propagation, each party would learrr fhr@ibability of exposure conditioned on
any evidence — and a great deal more, including informatlmuathe exposure probabilities of
their neighbors. Obviously such leakage of non-local imfation is highly undesirable in settings
where we regard each party in the network as a self-intetesgtent, and privacy is paramount. Other
examples include inference problems in distributed nmfisensor networks (where we would like
the “capture” of one sensor to reveal as little non-locdksitaformation as possible), settings where
networks of financial organizations would like to share tediinformation, and so on.

By a privacy-preserving version of inference (for example informally mean a protocol in which
each party learns their conditional probability of expesto the diseasand absolutely nothing
else More precisely, anything a party can efficiently computerdfiaving participated in the proto-
col, they could have efficiently computatbnegiven only the value of their conditional probability
— thus, the protocol leaked no additional information beyits desired outputs. Classical and
powerful tools from cryptography [6, 7] provide solutiores this problem, but with the signifi-
cant drawback of entirelgentralizingthe privacy-preserving computation. Put another way, the
straightforward solution from cryptography requires gvearty in the network to have the ability
to broadcast to all others, and the resulting algorithm megyr liittle resemblance to standard be-
lief propagation. Clearly this is infeasible in settingses the network is very large and entirely
distributed, where individuals may not even know the sizehef overall network, much less its
structure and the identity of its constituents. While thiesis been work on minimizing the number
of messages exchangeddantralizedprivacy-preserving protocols [10], ours are the first resul
that preserve the local communication structurdisfributedalgorithms like belief propagation.

Our protocols are faithful to the network topology, reqguirionly the passing of messages between
parties separated by one or two hops in the network. Furthexnour protocols largely preserve
the algebraic structure of the original algorithms (fotémee, the sum-product structure of belief
propagation) and enjoy all the correctness guaranteesabriyinals (such as exact inference in
trees for belief prop or convergence of Gibbs sampling tojo@ distribution). Our technical
methods show how to blend tools from cryptography (securkipanty computation and blindable
encryption) with local message-passing algorithms in atvatpreserves the original computations,
but in which all messages appear to be randomly distributed the viewpoint of any individual.

All results in this paper apply to what is called the “honasgt curious” model in the cryptography

literature, in which participants obediently execute thaqcol but may attempt to infer non-private
information from it. We expect that via the use of zero-knedge proof techniques, our protocols
may be strengthened to models in which participants whoadefiom the protocol are detected.

2 Background and Tools from Cryptography

2.1 Secure Multiparty Function Computation

Let f(x1,...,xr) be any function ork inputs. Imagine a scenario in which there arelistinct
parties, each in possession of exactly one of these infhasi§, party: initially knows z;) and the

k parties would like to jointly compute the value ftx1, ..., zx). Perhaps the simplest protocol
would have all parties share their private inputs and thdividually compute the value of. How-
ever, in many natural settings, we would like the partiesst@ble to perform this joint computation
in a privacy-preservingashion, with each party revealing as little as possibleualteir private
input. Simple examples include voting — we would all like éain the results of the election with-
out having to broadcast our private votes — and the so-cdlfidtionaire’s Problem” in which two
individuals would like to learn who is wealthier, without/ealing their precise wealth to each other.
If a trusted “third party” is available, one solution would o provide the private inputs to them,
and have them perform the computation in secrecy, only ameing the final result. The purpose
of the theory of secure multiparty function computationig7{o show that under extremely general
circumstances, a third party is surprisingly unnecessary.

Note that it is typically inevitable thaomeinformation is revealed just by the result of the compu-
tation of f itself. For example, in the Millionaire’s Problem, therenis avoiding the poorer party
learning a lower bound on the richer’s wealth (namely, therpoparty’s wealth). The goal is thus
to reveal nothing beyond what it implied by the valuef of

To formalize this notion in a complexity-theoretic framewgdet us assume without loss of gener-
ality that each input; is n bits in length. We make the natural and common assumptiaigtik
function f can be computed in time polynomialim, and that each party’s computational resources
are bounded by a polynomial in We (informally) define grotocolll for the k parties to compute

f to be a specific mechanism by which the parties exchange gesssad perform computations,
ending with every party learning the valye= f(z1,...,z;). One (uninteresting) protocol is the
one in which each party sends their private inputs to allistrend every party computgsalone.

Definition 1 * Let II be any protocol for thek parties to jointly compute the valug =
f(z1,...,x) from their n-bit private inputs. We say thal is privacy-preservingf for every
1 < i < k, anything that party; can compute in time polynomial im following the execution
of I1, they could also compute in polynomial time given only tpéirate inputz; and the valuey.

In other words, whatever information partys able to obtain from their view of the execution of
protocolll, it does not let them efficiently compute anything they catildfficiently compute just
from being told the final outpug of IT (and their private input;). This captures the notion that
while y itself may “leak” some information about the other privaiputsz ;, the protocoll yields
nothing further. It is essentially the strongest definitidiprivacy one could ask for given the desire
for all to learny. Further, for the following theorem we can consider moreegahvector outputs
and randomized functionalities, which we need for our tézdimesults.

Theorem 1 (See e.g. [7]) Leff (x1, ..., zk) = (y1,- .., yr) be any (possibly randomizedinput,
k-output functionality that can be computed in polynomialdi Then under standard cryptographic
assumptiong, there exists a polynomial time privacy-preserving protdédor f (that s, a protocol

in which party: learns nothing not already implied by their private inpytand private outpuy;).

IWe state this definition informally, as the complete techhitefinition is somewhat lengthy and adds little
intuition. It involves both formalizing the notion of a migarty computation protocol, as well as defining the
“view” of an individual party of a specific execution of thegpocol. The definition involves computational
indistinguishability of probability distributions sind¢ke protocols may often use randomization.

2An example would be the existence of trapdoor permutatidhs [

This remarkable and important theorem essentially saysuwhatever a population can jointly com-
pute, it can jointly compute with arbitrary restrictionswho learns what. A powerful use of vector
outputs is to enforce knowledge asymmetries on the paf@sinstance, in the Millionaire’s Prob-
lem, by defining one player’s output to always be nil, we casueathat this player learadsolutely
nothingfrom the protocol, while the other learns which player is ltfgar. As discussed in the In-
troduction, Theorem 1 can be immediately applied to (saligbpropagation to yielctentralized
privacy-preserving protocols for inference; our conttiba is preserving the highly distributed, lo-
cal message-passing structure of belief propagation amthsialgorithms.

2.2 Public-Key Encryption with Blinding

The second cryptographic primitive that we shall requirstésdard public-key encryption with an
additional property known allinding. A standard public-key cryptosystem allows any party to
generate a pair dieys(P, .S), which we can think of a&-bit strings;% is often called thesecurity
parameter Associated with th@ublic keyP there is a (possibly probabilistiencryption function
Ep and associated with trscret or private ke there is a (deterministi@ecryption functiorDg.
Informally, the system should have the following securitggerties:

e For anyn-bit z, the value of the functio®'» (z-) can be computed in polynomial time from
inputsz and P. Similarly, Ds(y) can be computed efficiently givenandsS.

e For anyn-bitinputz, Ds(Ep(x)) = z. Thus, decryption is the inverse of encryption.

e For anyn-bit z, it is hard for a party knowing only the public kedy and the encryption
Ep(z) to computer. 3

Thus, in such a scheme, anyone knowing the public key of Alae efficiently compute and send
encrypted messages to Alice, but only Alice, who is the salegypknowing her private key, can
decrypt those messages. Such cryptosystems are widegvbelto exist and numerous concrete
proposals have been examined for decades. As one specifippkx¢hat allows probabilistic en-
cryption of individual bits, let the public key consist of artegerN = p - ¢ that is the product of
two & /2-bit randomly generated prime numberandg, as well as a numberthat has the property
that z is not equal tar? mod N for anyz. It is easy to generate su¢hv, ») pairs. In order to
encrypt a 0, one simply choosesat random and lets the encryption pe= 2> mod N, known
as aquadratic residue In order to encrypt a 1, one instead segds: z2 - z mod N, which is
guaranteed to not be a quadratic residue. It is not difficukhiow that given the factogsandq
(which constitute the secret key), one can efficiently cotapehether, is a quadratic residue and
thus learn the decrypted bit. Furthermore, it is widely dnadid that decryption is actually equivalent
to factoringN, and thus intractable without the secret key.

This simple public-key cryptosystem also has the additiblinding property that we will require.
Given only the public key N, z) and an encrypted bit as above, it is the case that for any value
w?y mod N is a quadratic residue if and onlysjfis a quadratic residue, and that furthermofe
mod N is uniformly distributed among all (hon-)quadratic regdiify is a (non-)quadratic residue.
Thus, a party knowing only Alice’s public key can nevertlssléake any bit encrypted for Alice and
generate random re-encryptions of thatwithout needing to actually know the decryption. We
refer to this operation aslindingan encrypted bit.

3 Privacy-Preserving Belief Propagation

In this section we briefly review the standard algorithm fetiéf propagation on trees [11] and
outline how to run this algorithm in a privacy-preservingmnmar such that each variable learns
only its final marginals and no additional new informatioattis not implied by these marginals.
The privacy-preserving protocol can be extended easilyatudle loopy belief propagation, belief
propagation on junction trees, and other message passgiogthms on graphs.

In standard belief propagation, we are given an undirecteghgcal model with vertex set for
which the underlying network is a tree. We denoteltfyX;) the set of possible values &f; € X,

3This is often formalized by asserting that the distributafrthe encryption is computationally indistin-
guishable from true randomness in time polynomiabiandf.

and by (X;) the set ofX;’s neighbors. For eacl(; € X, we are given a non-negative potential
function); over possible values;, € V(X;). Similarly, for each pair of adjacent verticés and
X, we are given a non-negative potential functiarn; over joint assignments t&,; and.X;.

The main inductive phase of the belief propagation algoriththe message-passing phase. At each
step, a nodeX; computes a message ., to send to som&; € NV (X;). This message is indexed
by all possible assignments € V(X), and is defined inductively by

pimi(e) = Y wia)ig(enr) [e, @

z V(X)) X eN(Xi)\X;

Belief propagation follows the so-called message-pagsiotpcol, in which any vertex of degrele
that has received the incoming messages fromianyof its neighbors can perform the computation
above in order to send an outgoing message to its remainighlma. Eventually, the vertex will
receive a message back from this last neighbor, at which fiainll be able to calculate messages
to send to its remaining — 1 neighbors. The protocol begins at the leaves of the tree,itand
follows from standard arguments that until all nodes haeeived incoming messages from all of
their neighbors, there must be some vertex that is readyrtgpute and send a new message. The
message-passing phase ends when all vertices have renegsdges from all of their neighbors.

Once vertexX; has received all of its incoming messages, the marginailision P is proportional
to their product. That s, if; is any setting taX;, then

PLX; = x;] o< i (:) H tj—i(3). 2

X;eEN(Xy)

When there igvidenceén the network, represented as a partial assign@msome subsef of the
variables, we can simply hard-wire this evidence into theptial functions); for eachX; € E. In
this case it is well-known that the algorithm computes thedittonal marginal® [X; = z;|E = ¢€].
For a more in-depth review of belief propagation, see Yedédial. [14] or Chapter 8 of Bishop [1].

3.1 Mask Propagation and the Privacy-Preserving Protocol

We assume that at the beginning of the privacy-preserviatppol, each nod&’; knows its own
individual potential function);, as well as the joint potential functions ; for all X; € N (X;).
Recall that our fundamental privacy goal is to allow eacheseX; to compute its own marginal
distributionP[X,; = x;] (or P[X; = z;|E = €] if there is evidence), buabsolutely nothing else
In particular,X; should not be able to compute the values of any of the incomiegsages from its
neighbors. Knowledge qf,_;(z;), for example, along withu;_.; andi); ;, may giveX; informa-
tion about the marginals ovef;, a clear privacy violation. We thus must somehow preverom
being able to “read” any of its incoming messages — nor ev@nwn outgoing messages — yet
still allow each variable to learn its own set of marginalth@end. To accomplish this we combine
tools from secure multiparty function computation with athoel we call “mask propagation”, in
which messages remain “masked” (that is, provably unrdajiéd the vertices at all times. The
keys required to unmask the messages are generated log#lg aomputation propagates through
the tree, thus preserving the original communication patéthe standard (non-private) algorithm.

Before diving into the secure protocol, we first must fix cami@ns regarding the encoding of
numerical values. We will assume throughout that all paatfinction values, all message values
and all the required products computed by the algorithm earepresented asbit natural numbers
and thus fallinZy = {0,...,N — 1} whereN = 2". As expressed by Equation (2), marginal
probabilities are obtained by taking products of suebit numbers and then normalizing to obtain
finite-precision real-valued numbers in the rafi@éd]. It will be convenient to think of values iff

as elements of the cyclic group of ord&rwith addition and subtraction modul§. In particular,
we will make frequent use of the following simple fact: fowydixedx € Zy, if r € Zy is chosen
randomly among ath-bit numbers, them+r mod N is also distributed randomly among aHbit
numbers. We can think of the random valuas “masking” or hiding the value of to a party that
does not know-, while leaving it readable to a party that does.

Let us now return to the message-passing phase of the algodiescribed by Equation (1), and let
us focus on the computation gf_.; for a fixed settingz; of X;. For the secure version of the
algorithm, we make the following inductive message and Kadge assumptions:

e ForeachX, € NV (X;)\X;, and for each setting; of X;, X; has already obtained a masked
version ofuy_;(z;):
po—i(zi) + Bje(x;) mod N 3)
whereg; ,(x;) is uniformly distributed inZ y.

e X; knows only the sum in Equation (3) (which again is uniformigtdbuted inZx and
thus meaningless by itself), and does not know the maskilugsa; ((x;).

o Vertex X; knows only the masking values ((x;), and not the sum in Equation (3).

For all leaf nodes, these assumptions hold trivially at tlaet ©f the protocol, providing the base
case for the induction. Now under these informational aggioms, vertexX; knows the set

I; = {[Lg*,i(xi) + ﬂj,f(xi) mod N : Xy € N(Xl)\Xj, x; € V(XZ)}
while vertexX; knows the sef; = {3, ¢(z;) mod N : X, € N(X;)\X;, z; € V(X;)}.

Let us first consider the case in whicfy is not a leaf node and thus has neighbors other tkian
itself. In order to complete the inductive step, it will becessary for eaclX;, € NV (X,)\X; to
provide a set of masking valugs ;(z;) so thatX; can obtain a set of masked messages of the form
Wi—j(x;) + Br,i(z;). Here we focus on a single neighbtiy, of X ;.

Vertex X, privately generates a masking valu#, ;(z;) that is uniformly distributed in
Z,. It is clear that, ignoring privacy concernsX; and X; together could compute
Vi(x)i (2, 5) ereN(Xi)\Xj we—i(x;) for each fixed pairc; andx;. Thus from their joint
inputsI;, I;, andg ;(x;), ignoring privacy.X;, X;, andX; could compute:

Z Vi) i (@i, 25) H pre—i(xi) | + Bri(x;) mod N

zi V(X)) XN (Xi)\X;
= fimj(2;) + Bri(x;) mod N)

Since this expression can be computed jointlyby X; and.X;, without privacy considerations,
Theorem 1 establishes that there is a protocol for them topooenit securely, allowingX; to
learnonly the value of the expressiam Equation (4), while allowingX; and X, to learn no new
information at all (i.e. nil output). Note that this expriess due to the presence of the unknown
masking valuesy, ; (), is a uniform randomly distributed numberf, from X;’s point of view.

After this masking process has been completed foXalle A (X,)\X;, we will have begun to
satisfy the inductive informational assumptions a stefhirin the propagation: for each neighbor
X, of X; excludingX;, X; will know a masked version qgf;_.;(x;) in which the masking value
Br,i(z;) is known only toX,. X; will obtain masked messages in a similar manner from all het o
of its other neighbors in turn, and for all of its other valuestil the inductive assumptions are fully
satisfied atX;. Every value received by;, X;, and X, during the above protocol is distributed
uniformly at random inZ,, from the perspective of its recipient, and thus conveys farimation.

It remains to consider the case in whigh is a leaf node. In this case, there is no need to satisfy
the inductive assumptions at the next level, as the proageahds at the leaves. Furthermore, it
is acceptable foX; to learn its incoming messages directly, since these messaijj be implied

by its final marginal. From their joint inpuf; and/}, it is clear thatX; and X; together, ignoring
security, could computg;_,;(x;) as given in Equation (1). Thus by Theorem 1, together they can
securely compute this value in such a way tRatlearns onlyy;— ; (z;) andX; learns nothing.

At the end of the message-passing phase, each internaléafjmodeX; will know a set of masked
messages from each of its neighbors. In particular, for gathX;, X, € N (X,), for eachz; €
V(X;), X; will know the values ofu;_.;(x;) + B¢ j(z;). Ignoring privacy concerns, it is the case
that X; and any pair of its neighbors could compute the marginat pfn Equation (2). Invoking
Theorem 1 again, we know there is a secure wayXpand this pair of neighbors to compute the
marginals such thaX; learns only the marginals and the neighbors learn nothing.

Each leaf vertexXX; will be in possession of its unmasked messagges; (x;) for everyz; € V(X;)
from its neighbotX;, and can easily compute its marginals as given in EquatipwitBout having
learned anything not already implied by its initial potahfunctions and the marginals themselves.

We usePrivateBeliefProp(T") to denote the algorithm above when applied to a particuésa¥.
The full proof of the following is omitted, but follows thedic sketched in the preceding sections.

Theorem 2 Under standard cryptographic assumptioRsjvateBeliefProp(7’) allows every vari-
able X; to compute its own marginal distributid®[X;] and nothing else (that is, nothing not al-
ready computable in polynomial time from oy X;] and the initial potential functions). Direct
communication occurs only between variables who are imatedieighbors or two steps away in
T, and secure function computation is never invoked on setodd than three variables.

We briefly note a number of extensions to Theorem 2 and theadsttiescribed above.

Loopy Belief Propagation: Theorem 2 can be extended to privacy-preserving loopy fqaltpa-
gation on graphs that contain cycles. Because of the prigdaithfulness to the original algorithm,
the same convergence and correctness claims hold as irastdodpy belief propagation [8].

Computing Only Partial Information: Allowing a variable to learn its exact numerical marginal
distribution may actually convey a great deal of informatioNe might instead only want each
variable to learn, for instance, whether its probabilitytaing on a given value is greater than
0.1 or not. Theorem 2 can easily be generalized to allow eadhhle to learn only any partial
information about its own marginal.

Privacy-Preserving Junction Tree: The protocol can also be modified to perform privacy-
preserving belief propagation on a junction tree [12]. Helieenecessary to takiatra-cliqueprivacy
into account in order to enforce that variables can learg th@ir own marginals and not, for exam-
ple, the marginals of other nodes within the same clique.

NashProp and Other Message-Passing AlgorithmsThe methods described here can also be
applied to provide privacy-preserving versions of the NRasip algorithm [9], allowing players in

a multiparty game to jointly compute and draw actions fromasiNequilibrium, with each player
learning only his own action and nothing efs&Ve strongly suspect that our methods apply more
generally to a broad class of message-passing algoritrahg/tuld include many others.

4 Privacy-Preserving Gibbs Sampling

We now move on to the problem of secure Gibbs sampling on aimecteld graphical modeél. The
local potential functions accompanyitgcan be preprocessed to obtain conditional distributions fo
each variable given a setting of all its neighbors (Markankkt). Thus we henceforth assume that
each variable has access to its local conditional disiohutvhich it will be convenient to represent
in a particular tabular form. To simplify presentation, w#l assume each variable is binary, taking
on values in{0, 1}, but this assumption is easy to relax.

If a nodeX; is of degreel, the conditional distribution of’; given a particular assignment to its
neighbors will be represented by a tafflewith 2¢ rows andd + 1 columns. The firstl columns
range over alb? possible assignmengto A'(X;), while the final column contains the numerical
valueP[X; = 1IN (X;) = Z]. We will useT;(Z) to denote the valuP[X; = 1|V (X;) = 7] stored

in thed + 1st column in the row corresponding to the assignniént

With this notation, the standard (non-private) Gibbs samgphlgorithm [4, 2] can be easily de-
scribed. After choosing an initial assignment to all of tlagiables inGG (for instance, uniformly at
random), the algorithm repeatedly resamples values faviohehl variables conditioned on the cur-
rent values of their neighbors. More precisely, at each, stepriableX; is chosen for resampling.
Its current value is replaced by randomly drawing value hygitobability 7; (%) and value 0 with
probability1 — T;(%) where is the current set of assignmentsN@ X).

To implement a privacy-preserving variant of Gibbs sanmlime must solve the following crypto-
graphic problem: how can a set of vertices communicate \Wiir heighbors in order to repeatedly
resample their values from their conditional distribuigiven their neighbors’ current assignments,
without learning any information except their own final v@diat the end of the process and anything

“Since the application of standard secure function comjputaéquires broadcast among all participants, it
is a feature of the algorithm that it limits such invocatiaashree parties at a time.
®See work by Dodis et al. [3] and Teague [13] for more on privagserving computation in game theory.

thatis implied by these values? Again, we would like to acplish this with limited communication
so that no vertex is required to communicate with a vertexenttwain two hops away.

In order for each variable to learn only fisal sampled value after some number of iterations, and
not its intermediate resampled values (which may be enaugtotvide a good approximation of the
marginal distribution on the variable), we first provide ayved distributing the current value of a
vertex so that it cannot be learned by any vertex in isolat@ne way of accomplishing this is by
assigning each verteX; a “distinguished neighborV* (X;). X; will hold one bitb, while N*(X;)

will hold a second bit; such that the current value &f; is b; @ b;.

Using such an encoding, there is a simple but relativelyficieht construction for privacy-
preserving Gibbs sampling that uses only secure multigartgtion computation, but that invokes
Theorem 1 on entire neighborhoods of the graph. In graphshigth degree, this requires broad-
cast communication between a large number of parties, whiehvould like to avoid. Here we
describe a much more communication-efficient protocolgigitinded encryption. For concrete-
ness the reader may imagine below that we are using the bledeyptosystem based on quadratic
residues described in Section 2.2, though other choicgsomsble.

We begin by describing a sub-protocol for preprocessingahkeT; before resampling begins. Let
S be the2? indices of the rows of the tablg. For ease of notation, we will refer to tideneighbors
of X; asVy,...,Vy. The purpose of the sub-protocol is faF; and its neighbors to compute a
random permutation of S (which can be thought of as a random permutation of the rows)dh
such a way that during the protocol, edche N (X;) learns only the setér(Z) : V; = 0} and
{n(Z) : V; = 1} and X; learns nothing.

The sub-protocol is quite simple. First each neighdpof X; encrypts columry of 7} using its
own public key and passes the encrypted columiX o Next X; encrypts columnl + 1 using its
own public key. X; then concatenates tlie+ 1 encrypted columns together to form an encrypted
version of7; in which columnj is encrypted using the public key &f for 1 < j < d and column

d + 1is encrypted using the public key &f;. X; then takes the resulting table, randomly permutes
the rows, and blinds (randomly re-encrypts) each entryguie appropriate public keys (i.e. the
key of V; for columnj wherel < j < d and its own public key for columd + 1). At this point,

X; sends the resulting table to its distinguished neigh¥¥of.X;).

The purpose of the blinding steps here is to prevent pamiss fracking correspondences between
cleartext and encrypted table entries. For instance, witbbnding above N*(X;) could recon-
struct the permutation chosen By by seeing how its own encrypted values have been rearranged.
Now from the perspective aV*(X;), d columns of the table will look like uniformly distributed
random bits.V*(X;) will still be able to decrypt the column of the table that @sponds to its own
values, but it will become clear that decrypting this coluahome cannot yield useful information.

In the next step in the protocaN*(X;) re-encrypts columid + 1 of the table with its own public
key. It then randomly permutes the rows of the table, bliratheentry using the appropriate public
keys (those of/; for columnsl < j < d and its own for columnl + 1), and sends the updated
table back taX;. At this point, every entry in the table will look random bits X;. Each column

J will be encrypted by the public key df;, with the exception of the final column, which will be
encrypted by bottX; and N*(X;). Call this new tabl€.

Once these encrypted tables have been computed for eachwmbegin the main Gibbs sampling
protocol We inductively assume that at the start of eagh, $t& eachX; € &, the current value
of X is distributed betweeX ; and N*(X ;). At the end of the step, the only information that has
been learned is the new value of a partlcular n&debut distributed betweeX; and N*(X;).

Consider a neighbdr; of X;. V; can decrypt columpiof T/ in order to learn which rows correspond
to its value being@ and which rows correspond to its values belngVhile V; alone does not know
what its current value is¢; and N*(V;) could compute it together, and thus could together f|gure
out which rows of the permutation correspond/I;Cs current value. By Theorem 1, since there is a
way for them to compute this information ignoring privadyete is a way fol;, N*(V;), andX;

to perform this computation such th&} learns only the rows that correspondifgs value (and in
particular does not learn what this value is), whileand N*(V;) learn nothing.

After this secure computation of partitions has been cotagléor all neighbors ofX;, X; will be
able to compute the intersection of the subsets of rows iréesived from each neighbor. This

intersection will be a single row corresponding to the cotx@lues of all nodes IV (X;). Initially,

X; will not be able to decrypt any of the entries in this row. HoeeX; andN*(X;) could together
decrypt the value in colum#+ 1, use this value in order to samp}g’s new value according to the
appropriate distribution, and distribute the new valueveein themselves. Calling upon Theorem 1
once again, this means th&t and N*(X;) could together complete these computations in such a
way that they only learn the new bitsandbd, respectively.

After the value of each node has been privately resamplditisuftly many times, we can use
one final application of secure multi-party computationi@n each nod&’; and its distinguished
neighborN*(X;) to allow X; to learn its final value.

As with standard Gibbs sampling, we also need to specify adide by which vertices in the
Markov network will have their values updated, as well asrthmber of iterations of this schedule,
which will in turn determine how close the sampled distribatis to the true joint (stationary)
distribution. Since our interests are in privacy consitders only, let us us@®rivateGibbs to
refer to the protocol described above when applied to anyl fiMarkov network, combined with
some fixed updating schedule (such as random or a fixed ogjariid some numberof iterations.

Theorem 3 Under standard cryptographic assumptiénBrivateGibbs computes a sample from
the joint distribution after- iterations, with every variable learning its own value armting else.
Direct communication occurs only between variables whoiammediate neighbors or two steps
away, and secure function computation is never invoked mnodenore than three variables.

The full proof is again omitted, but largely follows the skieabove. We note th&rivateGibbs en-
joys an even stronger privacy property — even if any subsegdies collude by combining their
post-protocol views, they can learn nothing not implied bgit combined sampled values. Fur-
thermore, any convergence guarantees that hold for sthigiabs sampling [4, 5] with the same
updating schedule will also hold for the secure version.

References

[1] C. Bishop.Pattern Recognition and Machine Learnin§pringer, 2006.
[2] G. Casella and E. George. Explaining the Gibbs sampilee American Statisticia®6:167-174, 1992.

[3] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic sotutito a game theoretic problem. GRYPTQ
pages 112-130, 2000.

[4] S. Geman and D. Geman. Stochastic relaxation, Gibbsildisions, and the Bayesian restoration of
images.|[EEE Transactions on Pattern Analysis and Machine Inteltige 6:721-741, 1984.

[5] A. Gibbs. Bounding convergence time of the Gibbs samipléBayesian image restoratioBiometrika
87:749-766, 2000.

[6] O. Goldreich. Secure multi-party computation. WorkiDgaft, 1998.
[7] O. Goldreich.Foundations of Cryptography, Volume @ambridge University Press, 2004.

[8] A. Ihler, J. Fisher IlI, and A. Willsky. Loopy belief prgmation: Convergence and effects of message
errors.Journal of Machine Learning Researdt1905-936, 2005.

[9] M. Kearns, M. Littman, and S. Singh. Graphical models game theory. IfUncertainty in Artificial
Intelligence 2001.

[10] M. Naor and K. Nissim. Communication preserving pratiscfor secure function evaluation. WCM
Symposium on Theory of Computipgges 590-599, 2001.

[11] J. Pearl.Probabilistic Reasoning in Intelligent Systems: NetwakBlausible InferenceMorgan Kauf-
mann, 1988.

[12] P. Shenoy and G. Shafer. Axioms for probability and dfeflinction propagation. ItUncertainty in
Artificial Intelligence pages 169-198, 1990.

[13] V. Teague. Selecting correlated random actiong=ihancial Cryptographypages 181-195, 2004.

[14] J. Yedidia, W. Freeman, and Y. Weiss. Understandingebgropagation and its generalizations. In
Exploring Artificial Intelligence in the New MillenniunMorgan Kaufmann, 2003.

6An example would be intractability of recognizing quadratsidues.

