
Privacy-Preserving Belief Propagation and Sampling

Michael Kearns, Jinsong Tan, and Jennifer Wortman
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Abstract

We provide provably privacy-preserving versions of beliefpropagation, Gibbs
sampling, and other local algorithms — distributed multiparty protocols in which
each party or vertex learns only its final local value, and absolutely nothing else.

1 Introduction

In this paper we provide provablyprivacy-preservingversions of belief propagation, Gibbs sam-
pling, and other local message-passing algorithms on largedistributed networks. Consider a network
of human social contacts, and imagine that each party would like to compute or estimate their prob-
ability of having contracted a contagious disease, which depends on the exposures to the disease of
their immediate neighbors in the network. If network participants (or their proxy algorithms) engage
in standard belief propagation, each party would learn their probability of exposure conditioned on
any evidence — and a great deal more, including information about the exposure probabilities of
their neighbors. Obviously such leakage of non-local information is highly undesirable in settings
where we regard each party in the network as a self-interested agent, and privacy is paramount. Other
examples include inference problems in distributed military sensor networks (where we would like
the “capture” of one sensor to reveal as little non-local state information as possible), settings where
networks of financial organizations would like to share limited information, and so on.

By a privacy-preserving version of inference (for example), we informally mean a protocol in which
each party learns their conditional probability of exposure to the diseaseand absolutely nothing
else. More precisely, anything a party can efficiently compute after having participated in the proto-
col, they could have efficiently computedalonegiven only the value of their conditional probability
— thus, the protocol leaked no additional information beyond its desired outputs. Classical and
powerful tools from cryptography [6, 7] provide solutions to this problem, but with the signifi-
cant drawback of entirelycentralizingthe privacy-preserving computation. Put another way, the
straightforward solution from cryptography requires every party in the network to have the ability
to broadcast to all others, and the resulting algorithm may bear little resemblance to standard be-
lief propagation. Clearly this is infeasible in settings where the network is very large and entirely
distributed, where individuals may not even know the size ofthe overall network, much less its
structure and the identity of its constituents. While therehas been work on minimizing the number
of messages exchanged incentralizedprivacy-preserving protocols [10], ours are the first results
that preserve the local communication structure ofdistributedalgorithms like belief propagation.

Our protocols are faithful to the network topology, requiring only the passing of messages between
parties separated by one or two hops in the network. Furthermore, our protocols largely preserve
the algebraic structure of the original algorithms (for instance, the sum-product structure of belief
propagation) and enjoy all the correctness guarantees of the originals (such as exact inference in
trees for belief prop or convergence of Gibbs sampling to thejoint distribution). Our technical
methods show how to blend tools from cryptography (secure multiparty computation and blindable
encryption) with local message-passing algorithms in a waythat preserves the original computations,
but in which all messages appear to be randomly distributed from the viewpoint of any individual.

1

All results in this paper apply to what is called the “honest but curious” model in the cryptography
literature, in which participants obediently execute the protocol but may attempt to infer non-private
information from it. We expect that via the use of zero-knowledge proof techniques, our protocols
may be strengthened to models in which participants who deviate from the protocol are detected.

2 Background and Tools from Cryptography

2.1 Secure Multiparty Function Computation

Let f(x1, . . . , xk) be any function onk inputs. Imagine a scenario in which there arek distinct
parties, each in possession of exactly one of these inputs (that is, partyi initially knowsxi) and the
k parties would like to jointly compute the value off(x1, . . . , xk). Perhaps the simplest protocol
would have all parties share their private inputs and then individually compute the value off . How-
ever, in many natural settings, we would like the parties to be able to perform this joint computation
in a privacy-preservingfashion, with each party revealing as little as possible about their private
input. Simple examples include voting — we would all like to learn the results of the election with-
out having to broadcast our private votes — and the so-called“Millionaire’s Problem” in which two
individuals would like to learn who is wealthier, without revealing their precise wealth to each other.
If a trusted “third party” is available, one solution would be to provide the private inputs to them,
and have them perform the computation in secrecy, only announcing the final result. The purpose
of the theory of secure multiparty function computation [7]is to show that under extremely general
circumstances, a third party is surprisingly unnecessary.

Note that it is typically inevitable thatsomeinformation is revealed just by the result of the compu-
tation off itself. For example, in the Millionaire’s Problem, there isno avoiding the poorer party
learning a lower bound on the richer’s wealth (namely, the poorer party’s wealth). The goal is thus
to reveal nothing beyond what it implied by the value off .

To formalize this notion in a complexity-theoretic framework, let us assume without loss of gener-
ality that each inputxi is n bits in length. We make the natural and common assumptions that the
functionf can be computed in time polynomial inkn, and that each party’s computational resources
are bounded by a polynomial inn. We (informally) define aprotocolΠ for thek parties to compute
f to be a specific mechanism by which the parties exchange messages and perform computations,
ending with every party learning the valuey = f(x1, . . . , xk). One (uninteresting) protocol is the
one in which each party sends their private inputs to all others, and every party computesy alone.

Definition 1 1 Let Π be any protocol for thek parties to jointly compute the valuey =
f(x1, . . . , xk) from their n-bit private inputs. We say thatΠ is privacy-preservingif for every
1 ≤ i ≤ k, anything that partyi can compute in time polynomial inn following the execution
of Π, they could also compute in polynomial time given only theirprivate inputxi and the valuey.

In other words, whatever information partyi is able to obtain from their view of the execution of
protocolΠ, it does not let them efficiently compute anything they couldn’t efficiently compute just
from being told the final outputy of Π (and their private inputxi). This captures the notion that
while y itself may “leak” some information about the other private inputsxj , the protocolΠ yields
nothing further. It is essentially the strongest definitionof privacy one could ask for given the desire
for all to learny. Further, for the following theorem we can consider more general vector outputs
and randomized functionalities, which we need for our technical results.

Theorem 1 (See e.g. [7]) Letf(x1, . . . , xk) = (y1, . . . , yk) be any (possibly randomized)k-input,
k-output functionality that can be computed in polynomial time. Then under standard cryptographic
assumptions,2 there exists a polynomial time privacy-preserving protocol Π for f (that is, a protocol
in which partyi learns nothing not already implied by their private inputxi and private outputyi).

1We state this definition informally, as the complete technical definition is somewhat lengthy and adds little
intuition. It involves both formalizing the notion of a multiparty computation protocol, as well as defining the
“view” of an individual party of a specific execution of the protocol. The definition involves computational
indistinguishability of probability distributions sincethe protocols may often use randomization.

2An example would be the existence of trapdoor permutations [7].

2

This remarkable and important theorem essentially says that whatever a population can jointly com-
pute, it can jointly compute with arbitrary restrictions onwho learns what. A powerful use of vector
outputs is to enforce knowledge asymmetries on the parties.For instance, in the Millionaire’s Prob-
lem, by defining one player’s output to always be nil, we can ensure that this player learnsabsolutely
nothingfrom the protocol, while the other learns which player is wealthier. As discussed in the In-
troduction, Theorem 1 can be immediately applied to (say) belief propagation to yieldcentralized
privacy-preserving protocols for inference; our contribution is preserving the highly distributed, lo-
cal message-passing structure of belief propagation and similar algorithms.

2.2 Public-Key Encryption with Blinding

The second cryptographic primitive that we shall require isstandard public-key encryption with an
additional property known asblinding. A standard public-key cryptosystem allows any party to
generate a pair ofkeys(P, S), which we can think of ask-bit strings;k is often called thesecurity
parameter. Associated with thepublic keyP there is a (possibly probabilistic)encryption function
EP and associated with thesecret or private keyS there is a (deterministic)decryption functionDS .
Informally, the system should have the following security properties:

• For anyn-bit x, the value of the functionEP (x) can be computed in polynomial time from
inputsx andP . Similarly,DS(y) can be computed efficiently giveny andS.

• For anyn-bit inputx,DS(EP (x)) = x. Thus, decryption is the inverse of encryption.

• For anyn-bit x, it is hard for a party knowing only the public keyP and the encryption
EP (x) to computex. 3

Thus, in such a scheme, anyone knowing the public key of Alicecan efficiently compute and send
encrypted messages to Alice, but only Alice, who is the sole party knowing her private key, can
decrypt those messages. Such cryptosystems are widely believed to exist and numerous concrete
proposals have been examined for decades. As one specific example that allows probabilistic en-
cryption of individual bits, let the public key consist of anintegerN = p · q that is the product of
two k/2-bit randomly generated prime numbersp andq, as well as a numberz that has the property
that z is not equal tox2 mod N for anyx. It is easy to generate such(N, z) pairs. In order to
encrypt a 0, one simply choosesx at random and lets the encryption bey = x2 mod N , known
as aquadratic residue. In order to encrypt a 1, one instead sendsy = x2 · z mod N , which is
guaranteed to not be a quadratic residue. It is not difficult to show that given the factorsp andq
(which constitute the secret key), one can efficiently compute whethery is a quadratic residue and
thus learn the decrypted bit. Furthermore, it is widely believed that decryption is actually equivalent
to factoringN , and thus intractable without the secret key.

This simple public-key cryptosystem also has the additional blindingproperty that we will require.
Given only the public key(N, z) and an encrypted bity as above, it is the case that for any valuew,
w2y mod N is a quadratic residue if and only ify is a quadratic residue, and that furthermorew2y
mod N is uniformly distributed among all (non-)quadratic residues ify is a (non-)quadratic residue.
Thus, a party knowing only Alice’s public key can nevertheless take any bit encrypted for Alice and
generate random re-encryptions of that bitwithout needing to actually know the decryption. We
refer to this operation asblindingan encrypted bit.

3 Privacy-Preserving Belief Propagation

In this section we briefly review the standard algorithm for belief propagation on trees [11] and
outline how to run this algorithm in a privacy-preserving manner such that each variable learns
only its final marginals and no additional new information that is not implied by these marginals.
The privacy-preserving protocol can be extended easily to handle loopy belief propagation, belief
propagation on junction trees, and other message passing algorithms on graphs.

In standard belief propagation, we are given an undirected graphical model with vertex setX for
which the underlying network is a tree. We denote byV(Xi) the set of possible values ofXi ∈ X ,

3This is often formalized by asserting that the distributionof the encryption is computationally indistin-
guishable from true randomness in time polynomial inn andk.

3

and byN (Xi) the set ofXi’s neighbors. For eachXi ∈ X , we are given a non-negative potential
functionψi over possible valuesxi ∈ V(Xi). Similarly, for each pair of adjacent verticesXi and
Xj , we are given a non-negative potential functionψi,j over joint assignments toXi andXj .

The main inductive phase of the belief propagation algorithm is the message-passing phase. At each
step, a nodeXi computes a messageµi→j to send to someXj ∈ N (Xi). This message is indexed
by all possible assignmentsxj ∈ V(Xj), and is defined inductively by

µi→j(xj) =
∑

xi∈V(Xi)

ψi(xi)ψi,j(xi, xj)
∏

Xk∈N (Xi)\Xj

µk→i(xi). (1)

Belief propagation follows the so-called message-passingprotocol, in which any vertex of degreed
that has received the incoming messages from anyd−1 of its neighbors can perform the computation
above in order to send an outgoing message to its remaining neighbor. Eventually, the vertex will
receive a message back from this last neighbor, at which point it will be able to calculate messages
to send to its remainingd − 1 neighbors. The protocol begins at the leaves of the tree, andit
follows from standard arguments that until all nodes have received incoming messages from all of
their neighbors, there must be some vertex that is ready to compute and send a new message. The
message-passing phase ends when all vertices have receivedmessages from all of their neighbors.

Once vertexXi has received all of its incoming messages, the marginal distributionP is proportional
to their product. That is, ifxi is any setting toXi, then

P[Xi = xi] ∝ ψi(xi)
∏

Xj∈N (Xi)

µj→i(xi). (2)

When there isevidencein the network, represented as a partial assignment~e to some subsetE of the
variables, we can simply hard-wire this evidence into the potential functionsψj for eachXj ∈ E. In
this case it is well-known that the algorithm computes the conditional marginalsP[Xi = xi|E = ~e].
For a more in-depth review of belief propagation, see Yedidia et al. [14] or Chapter 8 of Bishop [1].

3.1 Mask Propagation and the Privacy-Preserving Protocol

We assume that at the beginning of the privacy-preserving protocol, each nodeXi knows its own
individual potential functionψi, as well as the joint potential functionsψi,j for all Xj ∈ N (Xi).
Recall that our fundamental privacy goal is to allow each vertexXi to compute its own marginal
distributionP[Xi = xi] (or P[Xi = xi|E = ~e] if there is evidence), butabsolutely nothing else.
In particular,Xi should not be able to compute the values of any of the incomingmessages from its
neighbors. Knowledge ofµj→i(xi), for example, along withµi→j andψi,j , may giveXi informa-
tion about the marginals overXj , a clear privacy violation. We thus must somehow preventXi from
being able to “read” any of its incoming messages — nor even its own outgoing messages — yet
still allow each variable to learn its own set of marginals atthe end. To accomplish this we combine
tools from secure multiparty function computation with a method we call “mask propagation”, in
which messages remain “masked” (that is, provably unreadable) to the vertices at all times. The
keys required to unmask the messages are generated locally as the computation propagates through
the tree, thus preserving the original communication pattern of the standard (non-private) algorithm.

Before diving into the secure protocol, we first must fix conventions regarding the encoding of
numerical values. We will assume throughout that all potential function values, all message values
and all the required products computed by the algorithm can be represented asn-bit natural numbers
and thus fall inZN = {0, . . . , N − 1} whereN = 2n. As expressed by Equation (2), marginal
probabilities are obtained by taking products of suchn-bit numbers and then normalizing to obtain
finite-precision real-valued numbers in the range[0, 1]. It will be convenient to think of values inZN

as elements of the cyclic group of orderN with addition and subtraction moduloN . In particular,
we will make frequent use of the following simple fact: for any fixedx ∈ ZN , if r ∈ ZN is chosen
randomly among alln-bit numbers, thenx+r mod N is also distributed randomly among alln-bit
numbers. We can think of the random valuer as “masking” or hiding the value ofx to a party that
does not knowr, while leaving it readable to a party that does.

Let us now return to the message-passing phase of the algorithm described by Equation (1), and let
us focus on the computation ofµi→j for a fixed settingxj of Xj . For the secure version of the
algorithm, we make the following inductive message and knowledge assumptions:

4

• For eachXℓ ∈ N (Xi)\Xj , and for each settingxi ofXi,Xi has already obtained a masked
version ofµℓ→i(xi):

µℓ→i(xi) + βj,ℓ(xi) mod N (3)

whereβj,ℓ(xi) is uniformly distributed inZN .

• Xi knows only the sum in Equation (3) (which again is uniformly distributed inZN and
thus meaningless by itself), and does not know the masking valuesβj,ℓ(xi).

• VertexXj knows only the masking valuesβj,ℓ(xi), and not the sum in Equation (3).

For all leaf nodes, these assumptions hold trivially at the start of the protocol, providing the base
case for the induction. Now under these informational assumptions, vertexXi knows the set

Ii = {µℓ→i(xi) + βj,ℓ(xi) mod N : Xℓ ∈ N (Xi)\Xj , xi ∈ V(Xi)}

while vertexXj knows the setIj = {βj,ℓ(xi) mod N : Xℓ ∈ N (Xi)\Xj, xi ∈ V(Xi)}.

Let us first consider the case in whichXj is not a leaf node and thus has neighbors other thanXi

itself. In order to complete the inductive step, it will be necessary for eachXk ∈ N (Xj)\Xi to
provide a set of masking valuesβk,i(xj) so thatXj can obtain a set of masked messages of the form
µi→j(xj) + βk,i(xj). Here we focus on a single neighborXk of Xj.

Vertex Xk privately generates a masking valueβk,i(xj) that is uniformly distributed in
Zn. It is clear that, ignoring privacy concerns,Xi and Xj together could compute
ψi(xi)ψi,j(xi, xj)

∏

Xℓ∈N (Xi)\Xj
µℓ→i(xi) for each fixed pairxi andxj . Thus from their joint

inputsIi, Ij , andβk,i(xj), ignoring privacy,Xi,Xj , andXk could compute:




∑

xi∈V(Xi)

ψi(xi)ψi,j(xi, xj)
∏

Xℓ∈N (Xi)\Xj

µℓ→i(xi)



 + βk,i(xj) mod N

= µi→j(xj) + βk,i(xj) mod N (4)

Since this expression can be computed jointly byXi, Xj andXk without privacy considerations,
Theorem 1 establishes that there is a protocol for them to compute it securely, allowingXj to
learnonly the value of the expressionin Equation (4), while allowingXi andXk to learn no new
information at all (i.e. nil output). Note that this expression, due to the presence of the unknown
masking valueβk,i(xj), is a uniform randomly distributed number inZn fromXj ’s point of view.

After this masking process has been completed for allXk ∈ N (Xj)\Xi, we will have begun to
satisfy the inductive informational assumptions a step further in the propagation: for each neighbor
Xk of Xj excludingXi, Xj will know a masked version ofµi→j(xj) in which the masking value
βk,i(xj) is known only toXk. Xj will obtain masked messages in a similar manner from all but one
of its other neighbors in turn, and for all of its other values, until the inductive assumptions are fully
satisfied atXj . Every value received byXi, Xj , andXk during the above protocol is distributed
uniformly at random inZn from the perspective of its recipient, and thus conveys no information.

It remains to consider the case in whichXj is a leaf node. In this case, there is no need to satisfy
the inductive assumptions at the next level, as the propagation ends at the leaves. Furthermore, it
is acceptable forXj to learn its incoming messages directly, since these messages will be implied
by its final marginal. From their joint inputIi andIj , it is clear thatXi andXj together, ignoring
security, could computeµi→j(xj) as given in Equation (1). Thus by Theorem 1, together they can
securely compute this value in such a way thatXj learns onlyµi→j(xj) andXi learns nothing.

At the end of the message-passing phase, each internal (non-leaf) nodeXi will know a set of masked
messages from each of its neighbors. In particular, for eachpairXj , Xℓ ∈ N (Xi), for eachxi ∈
V(Xi), Xi will know the values ofµj→i(xi) + βℓ,j(xi). Ignoring privacy concerns, it is the case
thatXi and any pair of its neighbors could compute the marginal ofXi in Equation (2). Invoking
Theorem 1 again, we know there is a secure way forXi and this pair of neighbors to compute the
marginals such thatXi learns only the marginals and the neighbors learn nothing.

Each leaf vertexXi will be in possession of its unmasked messagesµj→i(xi) for everyxi ∈ V(Xi)
from its neighborXj , and can easily compute its marginals as given in Equation (2) without having
learned anything not already implied by its initial potential functions and the marginals themselves.

5

We usePrivateBeliefProp(T) to denote the algorithm above when applied to a particular treeT .
The full proof of the following is omitted, but follows the logic sketched in the preceding sections.

Theorem 2 Under standard cryptographic assumptions,PrivateBeliefProp(T) allows every vari-
ableXi to compute its own marginal distributionP[Xi] and nothing else (that is, nothing not al-
ready computable in polynomial time from onlyP[Xi] and the initial potential functions). Direct
communication occurs only between variables who are immediate neighbors or two steps away in
T , and secure function computation is never invoked on sets ofmore than three variables.4

We briefly note a number of extensions to Theorem 2 and the methods described above.

Loopy Belief Propagation: Theorem 2 can be extended to privacy-preserving loopy belief propa-
gation on graphs that contain cycles. Because of the protocol’s faithfulness to the original algorithm,
the same convergence and correctness claims hold as in standard loopy belief propagation [8].

Computing Only Partial Information: Allowing a variable to learn its exact numerical marginal
distribution may actually convey a great deal of information. We might instead only want each
variable to learn, for instance, whether its probability oftaking on a given value is greater than
0.1 or not. Theorem 2 can easily be generalized to allow each variable to learn only any partial
information about its own marginal.

Privacy-Preserving Junction Tree: The protocol can also be modified to perform privacy-
preserving belief propagation on a junction tree [12]. Hereit is necessary to takeintra-cliqueprivacy
into account in order to enforce that variables can learn only their own marginals and not, for exam-
ple, the marginals of other nodes within the same clique.

NashProp and Other Message-Passing Algorithms:The methods described here can also be
applied to provide privacy-preserving versions of the NashProp algorithm [9], allowing players in
a multiparty game to jointly compute and draw actions from a Nash equilibrium, with each player
learning only his own action and nothing else.5 We strongly suspect that our methods apply more
generally to a broad class of message-passing algorithms that would include many others.

4 Privacy-Preserving Gibbs Sampling

We now move on to the problem of secure Gibbs sampling on an undirected graphical modelG. The
local potential functions accompanyingG can be preprocessed to obtain conditional distributions for
each variable given a setting of all its neighbors (Markov blanket). Thus we henceforth assume that
each variable has access to its local conditional distribution, which it will be convenient to represent
in a particular tabular form. To simplify presentation, we will assume each variable is binary, taking
on values in{0, 1}, but this assumption is easy to relax.

If a nodeXi is of degreed, the conditional distribution ofXi given a particular assignment to its
neighbors will be represented by a tableTi with 2d rows andd + 1 columns. The firstd columns
range over all2d possible assignments~x to N (Xi), while the final column contains the numerical
valueP[Xi = 1|N (Xi) = ~x]. We will useTi(~x) to denote the valueP[Xi = 1|N (Xi) = ~x] stored
in thed+ 1st column in the row corresponding to the assignment~x.

With this notation, the standard (non-private) Gibbs sampling algorithm [4, 2] can be easily de-
scribed. After choosing an initial assignment to all of the variables inG (for instance, uniformly at
random), the algorithm repeatedly resamples values for individual variables conditioned on the cur-
rent values of their neighbors. More precisely, at each step, a variableXi is chosen for resampling.
Its current value is replaced by randomly drawing value 1 with probabilityTi(~x) and value 0 with
probability1 − Ti(~x) where~x is the current set of assignments toN (Xi).

To implement a privacy-preserving variant of Gibbs sampling, we must solve the following crypto-
graphic problem: how can a set of vertices communicate with their neighbors in order to repeatedly
resample their values from their conditional distributions given their neighbors’ current assignments,
without learning any information except their own final values at the end of the process and anything

4Since the application of standard secure function computation requires broadcast among all participants, it
is a feature of the algorithm that it limits such invocationsto three parties at a time.

5See work by Dodis et al. [3] and Teague [13] for more on privacy-preserving computation in game theory.

6

that is implied by these values? Again, we would like to accomplish this with limited communication
so that no vertex is required to communicate with a vertex more than two hops away.

In order for each variable to learn only itsfinal sampled value after some number of iterations, and
not its intermediate resampled values (which may be enough to provide a good approximation of the
marginal distribution on the variable), we first provide a way of distributing the current value of a
vertex so that it cannot be learned by any vertex in isolation. One way of accomplishing this is by
assigning each vertexXi a “distinguished neighbor”N∗(Xi). Xi will hold one bitbi whileN∗(Xi)
will hold a second bitb′i such that the current value ofXi is bi ⊕ b′i.

Using such an encoding, there is a simple but relatively inefficient construction for privacy-
preserving Gibbs sampling that uses only secure multipartyfunction computation, but that invokes
Theorem 1 on entire neighborhoods of the graph. In graphs with high degree, this requires broad-
cast communication between a large number of parties, whichwe would like to avoid. Here we
describe a much more communication-efficient protocol using blinded encryption. For concrete-
ness the reader may imagine below that we are using the blindable cryptosystem based on quadratic
residues described in Section 2.2, though other choices arepossible.

We begin by describing a sub-protocol for preprocessing thetableTi before resampling begins. Let
S be the2d indices of the rows of the tableTi. For ease of notation, we will refer to thed neighbors
of Xi asV1, . . . , Vd. The purpose of the sub-protocol is forXi and its neighbors to compute a
random permutationπ of S (which can be thought of as a random permutation of the rows ofTi) in
such a way that during the protocol, eachVj ∈ N (Xi) learns only the sets{π(~x) : Vj = 0} and
{π(~x) : Vj = 1} andXi learns nothing.

The sub-protocol is quite simple. First each neighborVj of Xi encrypts columnj of Ti using its
own public key and passes the encrypted column toXi. NextXi encrypts columnd + 1 using its
own public key.Xi then concatenates thed + 1 encrypted columns together to form an encrypted
version ofTi in which columnj is encrypted using the public key ofVj for 1 ≤ j ≤ d and column
d+ 1 is encrypted using the public key ofXi. Xi then takes the resulting table, randomly permutes
the rows, and blinds (randomly re-encrypts) each entry using the appropriate public keys (i.e. the
key ofVj for columnj where1 ≤ j ≤ d and its own public key for columnd + 1). At this point,
Xi sends the resulting table to its distinguished neighborN∗(Xi).

The purpose of the blinding steps here is to prevent parties from tracking correspondences between
cleartext and encrypted table entries. For instance, without blinding above,N∗(Xi) could recon-
struct the permutation chosen byXi by seeing how its own encrypted values have been rearranged.
Now from the perspective ofN∗(Xi), d columns of the table will look like uniformly distributed
random bits.N∗(Xi) will still be able to decrypt the column of the table that corresponds to its own
values, but it will become clear that decrypting this columnalone cannot yield useful information.

In the next step in the protocol,N∗(Xi) re-encrypts columnd + 1 of the table with its own public
key. It then randomly permutes the rows of the table, blinds each entry using the appropriate public
keys (those ofVj for columns1 ≤ j ≤ d and its own for columnd + 1), and sends the updated
table back toXi. At this point, every entry in the table will look random bitstoXi. Each column
j will be encrypted by the public key ofVj , with the exception of the final column, which will be
encrypted by bothXi andN∗(Xi). Call this new tableT ′

i .

Once these encrypted tables have been computed for each node, we begin the main Gibbs sampling
protocol. We inductively assume that at the start of each step, for eachXj ∈ X , the current value
of Xj is distributed betweenXj andN∗(Xj). At the end of the step, the only information that has
been learned is the new value of a particular nodeXi, but distributed betweenXi andN∗(Xi).

Consider a neighborVj ofXi. Vj can decrypt columnj ofT ′
i in order to learn which rows correspond

to its value being0 and which rows correspond to its values being1. WhileVj alone does not know
what its current value is,Vj andN∗(Vj) could compute it together, and thus could together figure
out which rows of the permutation correspond toVj ’s current value. By Theorem 1, since there is a
way for them to compute this information ignoring privacy, there is a way forVj , N∗(Vj), andXi

to perform this computation such thatXi learns only the rows that correspond toVj ’s value (and in
particular does not learn what this value is), whileVj andN∗(Vj) learn nothing.

After this secure computation of partitions has been completed for all neighbors ofXi, Xi will be
able to compute the intersection of the subsets of rows it hasreceived from each neighbor. This

7

intersection will be a single row corresponding to the current values of all nodes inN (Xi). Initially,
Xi will not be able to decrypt any of the entries in this row. However,Xi andN∗(Xi) could together
decrypt the value in columnd+ 1, use this value in order to sampleXi’s new value according to the
appropriate distribution, and distribute the new value between themselves. Calling upon Theorem 1
once again, this means thatXi andN∗(Xi) could together complete these computations in such a
way that they only learn the new bitsbi andb′i respectively.

After the value of each node has been privately resampled sufficiently many times, we can use
one final application of secure multi-party computation between each nodeXi and its distinguished
neighborN∗(Xi) to allowXi to learn its final value.

As with standard Gibbs sampling, we also need to specify a schedule by which vertices in the
Markov network will have their values updated, as well as thenumber of iterations of this schedule,
which will in turn determine how close the sampled distribution is to the true joint (stationary)
distribution. Since our interests are in privacy considerations only, let us usePrivateGibbs to
refer to the protocol described above when applied to any fixed Markov network, combined with
some fixed updating schedule (such as random or a fixed ordering) and some numberr of iterations.

Theorem 3 Under standard cryptographic assumptions6, PrivateGibbs computes a sample from
the joint distribution afterr iterations, with every variable learning its own value and nothing else.
Direct communication occurs only between variables who areimmediate neighbors or two steps
away, and secure function computation is never invoked on sets of more than three variables.

The full proof is again omitted, but largely follows the sketch above. We note thatPrivateGibbs en-
joys an even stronger privacy property — even if any subset ofparties collude by combining their
post-protocol views, they can learn nothing not implied by their combined sampled values. Fur-
thermore, any convergence guarantees that hold for standard Gibbs sampling [4, 5] with the same
updating schedule will also hold for the secure version.

References
[1] C. Bishop.Pattern Recognition and Machine Learning. Springer, 2006.

[2] G. Casella and E. George. Explaining the Gibbs sampler.The American Statistician, 46:167–174, 1992.

[3] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. InCRYPTO,
pages 112–130, 2000.

[4] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

[5] A. Gibbs. Bounding convergence time of the Gibbs samplerin Bayesian image restoration.Biometrika,
87:749–766, 2000.

[6] O. Goldreich. Secure multi-party computation. WorkingDraft, 1998.

[7] O. Goldreich.Foundations of Cryptography, Volume 2. Cambridge University Press, 2004.

[8] A. Ihler, J. Fisher III, and A. Willsky. Loopy belief propagation: Convergence and effects of message
errors.Journal of Machine Learning Research, 6:905–936, 2005.

[9] M. Kearns, M. Littman, and S. Singh. Graphical models forgame theory. InUncertainty in Artificial
Intelligence, 2001.

[10] M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. InACM
Symposium on Theory of Computing, pages 590–599, 2001.

[11] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. Morgan Kauf-
mann, 1988.

[12] P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. InUncertainty in
Artificial Intelligence, pages 169–198, 1990.

[13] V. Teague. Selecting correlated random actions. InFinancial Cryptography, pages 181–195, 2004.

[14] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In
Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, 2003.

6An example would be intractability of recognizing quadratic residues.

8

