
Near-Optimal Reinforcement Learning in Polynomial Time

Michael Kearns
AT&T Labs

180 Park Avenue, Room A235
Florham Park, New Jersey 07932

mkearns@research.att.com

Satinder Singh
Department of Computer Science

University of Colorado
Boulder, Colorado 80309
baveja@cs.colorado.edu

Abstract

We present new algorithms for reinforce-
ment learning, and prove that they have
polynomial bounds on the resources required
to achieve near-optimal return in general
Markov decision processes. After observing
that the number of actions required to ap-
proach the optimal return is lower bounded
by the mixing time T of the optimal policy
(in the undiscounted case) or by the horizon
time T (in the discounted case), we then give
algorithms requiring a number of actions and
total computation time that are only poly-
nomial in T and the number of states, for
both the undiscounted and discounted cases.
An interesting aspect of our algorithms is
their explicit handling of the Exploration-
Exploitation trade-o�.

1 Introduction

In reinforcement learning, an agent interacts with an
unknown environment, and attempts to choose actions
that maximize its cumulative payo� (Sutton & Barto,
1998; Barto et al., 1990, Bertsekas & Tsitsiklis, 1996).
The environment is typically modeled as a Markov de-
cision process (MDP), and it is assumed that the agent
does not know the parameters of this process, but has
to learn how to act directly from experience. Thus,
the reinforcement learning agent faces a fundamental
trade-o� between exploitation and exploration (Thrun,
1992; Sutton & Barto, 1998): should the agent exploit
its cumulative experience so far, by executing the ac-
tion that currently seems best, or should it execute a
di�erent action, with the hope of gaining information
or experience that could lead to higher future payo�s?

Too little exploration can prevent the agent from ever
converging to the optimal behavior, while too much
exploration can prevent the agent from gaining near-
optimal payo� in a timely fashion.

There is a large literature on reinforcement learning,
which has been growing rapidly in the last decade. To
the best of our knowledge, all previous results on rein-
forcement learning in general MDP's are asymptotic in
nature, providing no explicit guarantees on either the
number of actions or the computation time the agent
requires to achieve near-optimal performance (Sutton,
1988; Watkins & Dayan, 1992; Jaakkola et al., 1994;
Tsitsiklis, 1994; Gullapalli & Barto, 1994). On the
other hand, �nite-time results become available if one
considers restricted classes of MDP's, if the model of
learning is modi�ed from the standard one, or if one
changes the criteria for success (Saul & Singh, 1996;
Fiechter, 1994; Fiechter, 1997; Schapire & Warmuth,
1994; Singh & Dayan, in press). Fiechter (1994,1997),
whose results are closest in spirit to ours, considers
only the discounted case, and makes the learning pro-
tocol easier by assuming the availability of a \reset"
button that allows the agent to return to a �xed set of
start states at any time.

Thus, despite the many interesting previous results in
reinforcement learning, the literature has lacked algo-
rithms for learning optimal behavior in general MDP's
with provably �nite bounds on the resources (actions
and computation time) required, under the standard
model of learning in which the agent wanders contin-
uously in the unknown environment. The results pre-
sented in this paper �ll this void in what is essentially
the strongest possible sense.

We present new algorithms for reinforcement learn-
ing, and prove that they have polynomial bounds on
the resources required to achieve near-optimal payo�
in general MDP's. The bounds are polynomial in the

number of states, and also in the mixing time of the op-
timal policy (undiscounted case), or the horizon time
1=(1�) (discounted case). One of the contributions
of this work is in simply identifying the fact that �nite-
time convergence resultsmust depend on these param-
eters of the underlying MDP. An interesting aspect of
our algorithms is their rather explicit handling of the
exploration-exploitation trade-o�.

For lack of space, here we present only our re-
sults for the more di�cult undiscounted case. The
analogous results for the discounted case are cov-
ered in a forthcoming longer paper; interested read-
ers can retrieve the latest version from the web page
http://www.research.att.com/~mkearns.

2 Preliminaries and De�nitions

We begin with the basic de�nitions for MDP's.

De�nition 1 AMarkov decision process (MDP)
M on states 1; : : : ; N and with actions a1; : : : ; ak,
consists of:
Transition probabilities P a

M (ij) � 0, which for any
action a, and any states i and j, specify the probability
of reaching state j after executing action a from state
i in M . Thus,

P
j P

a
M (ij) = 1 for any state i and ac-

tion a.
Payo� distributions, for each state i, with mean
RM (i) (where Rmax � RM (i) � 0), and variance
VarM (i) � Varmax . These distributions determine the
random payo� received when state i is visited.

For simplicity, we will assume that the number of ac-
tions k is a constant; it will be easily veri�ed that if k is
a parameter, the resources required by our algorithms
scale polynomially with k.

Several comments regarding some benign technical as-
sumptions that we will make on payo�s are in order
here. First, it is common to assume that payo�s are
actually associated with state-action pairs, rather than
with states alone. Our choice of the latter is entirely
for technical simplicity, and all of the results of this
paper hold for the standard state-action payo�s model
as well. Second, we have assumed �xed upper bounds
Rmax and Varmax on the means and variances of the
payo� distributions; such a restriction is necessary for
�nite-time convergence results. Third, we have as-
sumed that expected payo�s are always non-negative
for convenience, but this is easily removed by adding
the minimum expected payo� to every payo�.

If M is an MDP over states 1; : : : ; N and with ac-
tions a1; : : : ; ak, a policy in M is a mapping � :
f1; : : : ; Ng ! fa1; : : : ; akg. An MDP M , combined
with a policy �, yields a standard Markov process on
the states, and we will say that � is ergodic if the
Markov process resulting from � is ergodic (that is,
has a well-de�ned stationary distribution). For the
development and exposition, it will be easiest to con-
sider MDP's for which every policy is ergodic, the so-
called unichain MDP's (Puterman, 1994). Consider-
ing the unichain case simply allows us to discuss the
stationary distribution of any policy without cumber-
some technical details, and as it turns out, the result
for unichains already forces the main technical ideas
upon us. Also, note that the unichain assumption does
not imply that every policy will eventually visit every
state, or even that there exists a single policy that
will do so quickly; thus, the exploration-exploitation
dilemma remains with us strongly. We discuss the ex-
tension to the multichain case in the longer version of
this paper.

If M is an MDP, then a T -path in M is a se-
quence p of T + 1 states (that is, T transitions) of
M : p = i1; i2; : : : ; iT ; iT+1. The probability that p is
traversed inM upon starting in state i1 and executing

policy � is Pr�M [p] = �T
k=1P

�(ik)
M (ikik+1). The (ex-

pected) undiscounted return along p inM is UM (p) =
(1=T)(Ri1 + � � � + RiT) and the T -step undiscounted
return from state i is U�

M (i; T) =
P

pPr
�
M [p]UM (p),

where the sum is over all T -paths p in M that start
at i. We de�ne U�

M (i) = limT!1 U�
M (i; T). Since

we are in the unichain case, U�
M (i) is independent

of i, and we will simply write U�
M . Furthermore,

we de�ne the optimal T -step undiscounted return
from i in M by U�M (i; T) = max�fU

�
M (i; T)g: Also,

U�M (i) = limT!1 U�M (i; T). Finally, we observe that
the maximum possible T -step return is Rmax .

3 Mixing Times for Policies

It is easy to see that if we are seeking results about the
undiscounted return of a learning algorithm after a �-
nite number of steps, we need to take into account
some notion of the mixing times of policies in the
MDP. To put it simply, for �nite-time results, there
may no longer be an unambiguous notion of \the"
optimal policy. There may be some policies which
will eventually yield high return (for instance, by �-
nally reaching some remote, high-payo� state), but
take many steps to approach this high return, and
other policies which yield lower asymptotic return but

Reward RReward 0
State 0

1- ∆

∆ State 1

1

Figure 1: A simple Markov process demonstrating that
�nite-time convergence results must account for mix-
ing times.

higher short-term return. Such policies are simply in-
comparable, and the best we could hope for is an al-
gorithm that \competes" favorably with any policy, in
an amount of time that is comparable to the mixing
time of that policy .

De�nition 2 Let M be an MDP, and let � be an er-
godic policy in M . Then the �-return mixing time
of � is the smallest T such that for all T 0 � T ,
jU�

M (i; T 0)� U�
M j � � for all i 1.

Suppose we are simply told that there is a policy �
whose asymptotic return U�

M exceeds R in an un-
known MDP M , and that the �-return mixing time
of � is T . In principle, a su�ciently clever learning
algorithm (for instance, one that managed to discover
� \quickly") could achieve return close to U�

M � � in
not much more than T steps. Conversely, without fur-
ther assumptions on M or �, it is not reasonable to
expect any learning algorithm to approach return U�

M

in many fewer than T steps. This is simply because
it may take the assumed policy � itself on the order
of T steps to approach its asymptotic return. For ex-
ample, suppose that M has just two states and only
one action (see Figure 1): state 0 with payo� 0, self-
loop probability 1��, and probability � of going to
state 1; and absorbing state 1 with payo� R >> 0.
Then for small � and �, the �-return mixing time is on
the order of 1=�; but starting from state 0, it really
will require on the order of 1=� steps to reach the ab-
sorbing state 1 and start approaching the asymptotic
return R. (A more formal lower bound along the lines
of this argument will be given in the long version.)

1In the long version, we relate the notion of �-return
mixing time to the standard notion of mixing time to sta-
tionary distributions (Puterman, 1994). The important
point here is that the �-return mixing time is polynomially
bounded by the standard mixing time, but may in some
cases be substantially smaller.

Thus, we would like a learning algorithm such that for
any T , in a number of actions that is polynomial in
T , the return of the learning algorithm is close to that
achieved by the best policy among those that mix in
time T . This motivates the following de�nition.

De�nition 3 Let M be a Markov decision process.
We de�ne �T;�

M to be the class of all ergodic policies
� in M whose �-return mixing time is at most T . We
let opt(�T;�

M) denote the optimal expected asymptotic

undiscounted return among all policies in �T;�
M .

Our goal in the undiscounted case will be to compete
with the policies in �T;�

M in time that is polynomial
in T , 1=� and N . We will eventually give an algo-
rithm that meets this goal for every T and � simulta-
neously . An interesting special case is when T = T �,
where T � is the �-mixing time of the asymptotically
optimal policy, whose asymptotic return is U�. Then
in time polynomial in T �, 1=� and N , our algorithm
will achieve return exceeding U� � � with high proba-
bility. It should be clear that, modulo the degree of the
polynomial running time, such a result is the best that
one could hope for in general MDP's. We briey note
that in the case of discounted reward, we can still hope
to compete with the asymptotically optimal policy in
time polynomial in the horizon time; this is discussed
and achieved in the long version.

4 Main Theorem

We are now ready to describe our learning algorithm,
and to state and prove our main theorem: namely, that
the new algorithm will, for a general MDP, achieve
near-optimal undiscounted performance in polynomial
time. For ease of exposition only , we will �rst state
the theorem under the assumption that the learning al-
gorithm is given as input a \targeted" mixing time T ,
and the value opt(�T;�

M) of the optimal return achieved
by any policy mixing within T steps. These assump-
tions are entirely removed in Section 4.6.

Theorem 1 (Main Theorem) Let M be a Markov de-

cision process over N states. Recall that �T;�
M is the

class of all ergodic policies whose �-return mixing time
is bounded by T , and that opt(�T;�

M) is the optimal
asymptotic expected undiscounted return achievable in
�T;�
M . There exists an algorithm A, taking inputs

�; �;N; T and opt(�T;�
M), such that if the total number

of actions and computation time taken by A exceeds
a polynomial in 1=�; 1=�;N , T , and Rmax , then with
probability at least 1� �, the total undiscounted return
of A will exceed opt(�T;�

M)� �.

In the long version, we give a similar theorem for the
discounted case (via a similar algorithm), with the
horizon time playing the role of T . The criterion for
success needs to be altered, however, since in the dis-
counted case it is not possible to insist that the actual
return achieved by the learning algorithm approach
the optimal. This is due to the exponentially damped
contribution of successive payo�s. Intuitively, in the
discounted case it is not possible for a learning algo-
rithm to recover from its \youthful mistakes" as it can
in the undiscounted case, so we must settle for an al-
gorithm that simply �nds a near-optimal policy from
its current state after a short learning period.

The remainder of this section is divided into several
subsections, each describing a di�erent and central as-
pect of the algorithm and proof. The full proof of the
theorem is rather technical, but the underlying ideas
are quite intuitive, and we sketch them �rst as an out-
line.

4.1 Overview of the Proof and Algorithm

Our algorithm will be what is commonly referred to
as indirect or model-based : namely, rather than only
maintaining a current policy or value function, the al-
gorithm will actually maintain a model for the tran-
sition probabilities and the expected payo�s for some
subset of the states of the unknown MDP M . It is
important to emphasize that although the algorithm
maintains a partial model ofM , it may choose to never
build a complete model of M , if doing so is not neces-
sary to achieve high return.

It is easiest to imagine the algorithm as starting o�
by doing what we will call balanced wandering . By
this we mean that the algorithm, upon arriving in a
state it has never visited before, takes an arbitrary
action from that state; but upon reaching a state it
has visited before, it takes the action it has tried the
fewest times from that state (breaking ties between ac-
tions randomly). At each state it visits, the algorithm
maintains the obvious statistics: the average payo�
received at that state so far, and for each action, the
empirical distribution of next states reached (that is,
the estimated transition probabilities).

A crucial notion for both the algorithm and the anal-
ysis is that of a known state. Intuitively, this is a
state that the algorithm has visited \so many" times
(and therefore, due to the balanced wandering, has
tried each action from that state many times) that the
transition probability and expected payo� estimates
for that state are \very close" to their true values in

M . An important aspect of this de�nition is that it is
weak enough that \so many" times is still polynomially
bounded, yet strong enough to meet the simulation re-
quirements we will outline shortly.

States are thus divided into three categories: known
states, states that have been visited before, but are still
unknown (due to an insu�cient number of visits and
therefore unreliable statistics), and states that have
not even been visited once. An important observation
is that we cannot do balanced wandering inde�nitely
before at least one state becomes known: by the Pi-
geonhole Principle, we will soon start to accumulate
accurate statistics at some state.

Perhaps our most important de�nition is that of the
known-state MDP . If S is the set of currently known
states, the current known-state MDP is simply an
MDP MS that is naturally induced on S by the full
MDP M ; briey, all transitions in M between states
in S are preserved in MS, while all other transitions
in M are \redirected" in MS to lead to a single ad-
ditional, absorbing state that intuitively represents all
of the unknown and unvisited states.

Although the learning algorithm will not have direct
access to MS , by virtue of the de�nition of the known
states, it will have an approximation cMS. The �rst
of two central technical lemmas that we prove (Sec-
tion 4.2) shows that, under the appropriate de�nition

of known state, cMS will have good simulation accu-
racy : that is, the expected T -step return of any policy
in cMS is close to its expected T -step return in MS .
(Here T is the mixing time.) Thus, at any time, cMS

is a partial model of M , for that part of M that the
algorithm \knows" very well.

The second central technical lemma (Section 4.3) is
perhaps the most enlightening part of the analysis,
and is named the \Explore or Exploit" Lemma. It
formalizes a rather appealing intuition: either the opti-
mal (T -step) policy achieves its high return by staying,
with high probability, in the set S of currently known
states | which, most importantly, the algorithm can
detect and replicate by �nding a high-return exploita-
tion policy in the partial model cMS | or the optimal
policy has signi�cant probability of leaving S within
T steps | which again the algorithm can detect and
replicate by �nding an exploration policy that quickly
reaches the additional absorbing state of the partial
model cMS.

Thus, by performing two o�-line, polynomial-time
computations on cMS (Section 4.4), the algorithm is
guaranteed to either �nd a way to get near-optimal

return in M quickly, or to �nd a way to improve the
statistics at an unknown or unvisited state. Again by
the Pigeonhole Principle, the latter case cannot occur
too many times before a new state becomes known,
and thus the algorithm is always making progress. In
the worst case, the algorithm will build a model of the
entire MDP M , but if that does happen, the analysis
guarantees that it will happen in polynomial time.

The following subsections esh out the intuitions
sketched above, providing a detailed sketch of the
proof of Theorem 1; the full proofs are provided in
the long version. In Section 4.6, we discuss how to
remove the assumed knowledge of the optimal return
and the targeted mixing time.

4.2 The Simulation Lemma

In this section, we prove the �rst of two key techni-
cal lemmas mentioned in the sketch of Section 4.1:
namely, that if one MDP cM is a su�ciently accurate
approximation of another MDP M , then we can actu-
ally approximate the T -step return of any policy in M
quite accurately by its T -step return in cM . The im-
portant technical point is that the goodness of approx-
imation required depends only polynomially on 1=T ,
and thus the de�nition of known state will require only
a polynomial number of visits to the state. Eventually,
we will appeal to this lemma to show that we can ac-
curately assess the return of policies in the induced
known-state MDP MS by computing their return in
the algorithm's approximation cMS (that is, we will
appeal to Lemma 2 below using the settings M =MS

and cM = cMS).

We begin with the de�nition of approximation we re-
quire.

De�nition 4 Let M and cM be Markov decision pro-
cesses over the same state space. Then we say thatcM is an �-approximation of M if for any state i,
RM (i)� � � R bM (i) � RM (i) + �, and for any states
i and j, and any action a, P a

M (ij) � � � P abM (ij) �

P a
M (ij) + �:

We now state and prove the Simulation Lemma, which
says that provided cM is su�ciently close to M in the
sense just de�ned, the T -step return of policies in cM
and M will be similar.

Lemma 2 (Simulation Lemma) Let M be any

Markov decision process over N states. Let cM be
an O((�=(NTRmax))

2)-approximation of M . Then for

any policy � and for any state i,

U�
M (i; T)� � � U�bM (i; T) � U�

M (i; T) + �: (1)

Proof:(Sketch) Let cM be an �-approximation of M ,
and let us �x a policy � and a start state i. Let us
say that a transition from a state i0 to a state j0 un-
der action a is �-small in M if P a

M (i0j0) � �. It
is possible to bound the di�erence between U�

M (i; T)
and U�bM (i; T) contributed by those T -paths that cross

at least one �-small transition by (� + 2�)NTRmax

(details omitted). For the value of � stated in the
theorem, our analysis chooses a value of � that yields
(�+ 2�)NTRmax � �=4.

Thus, for now we restrict our attention to the walks of
length T that do not cross any �-small transtion ofM .
It can be shown that for any T -path p that, under �,
does not cross any �-small transitions of M , we have

(1��)TPr�M [p] � Pr�bM [p] � (1 +�)TPr�M [p] (2)

where � = �=�. The approximation error in the pay-
o�s yields

UM (p)� � � U bM (p) � UM (p) + �: (3)

Since these inequalities hold for any �xed T -path that
does not traverse any �-small transitions in M under
�, they also hold when we take expectations over the
distributions on such T -paths in M and cM induced by
�. Thus,

(1��)T [U�
M (i; T)� �]� �=4 � U�bM (i; T)

� (1 +�)T [U�
M (i; T) + �] + �=4

where the additive �=4 terms account for the contribu-
tions of the T -paths that traverse �-small transitions
under �, as bounded above. The desired constraint
that the outermost quantities in this chain of inequal-
ities be separated by an additive factor of at most 2�
determines choices for � and � that yield the theorem
(details omitted). 2

What role does T play in the Simulation Lemma? As
we make T larger, cM must be a better approximation
of M in order to satisfy the conditions of the Sim-
ulation Lemma | but then we are guaranteed of the
simulation accuracy of cM for a larger number of steps.
If we wish to \compete" with the policies in �T;�

M , then
by appealing to the Simulation Lemma using T , we en-
sure that the asymptotic return in M of any policy in
�T;�
M is well approximated by its T -step return in cM .

Thus, the Simulation Lemma essentially determines
what the de�nition of known state should be: one that
has been visited enough times to ensure (with high
probability) that the estimated transition probabilities
and the estimated payo�s for the state are all within
O((�=(NTRmax))

2) of their true values. A straight-
forward application of Cherno� bounds shows that the
desired approximation will be achieved for those states
from which every action has been executed at least

mknown = O(((NTRmax)=�)
4Varmax log(1=�)) (4)

times, where Varmax = max(1;maxi[VarM (i)]) is the
maximum of 1 and the maximum variance of the ran-
dom payo�s over all states.

4.3 The \Explore or Exploit" Lemma

The Simulation Lemma indicates the degree of ap-
proximation required for su�cient simulation accu-
racy, and led to the de�nition of a known state. If we
let S denote the set of known states, we now specify
the straightforward way in which these known states
de�ne an induced MDP. This induced MDP has an ad-
ditional \new" state, which intuitively represents all of
the unknown states and transitions.

De�nition 5 Let M be a Markov decision process,
and let S be any subset of the states of M . The in-
duced Markov decision process on S, denoted
MS, has states S [fs0g, and transitions and payo�s
de�ned as follows:

� For any state i 2 S, RMS
(i) = RM (i); all payo�s

in MS are deterministic (zero variance) even if
the payo�s in M are stochastic.

� RMS
(s0) = 0.

� For any action a, P a
MS

(s0s0) = 1. Thus, s0 is an
absorbing state.

� For any states i; j 2 S, and any action a,
P a
MS

(ij) = P a
M (ij). Thus, transitions in M be-

tween states in S are preserved in MS.

� For any state i 2 S and any action a, P a
MS

(is0) =P
j =2S P

a
M (ij). Thus, all transitions in M that are

not between states in S are redirected to s0 in MS.

De�nition 5 describes an MDP directly induced on S
by the true unknown MDP M , and as such preserves
the true transition probabilities between states in S.
Of course, our algorithm will only have approximations

to these transition probabilities, leading to the follow-
ing obvious approximation to MS : if we simply let cM
denote the empirical approximation to M | that is,
the states of cM are simply all the states visited so far,
the transition probabilities of cM are the observed tran-
sition frequencies, and the rewards are the observed re-
wards | then cMS is the natural approximation toMS .
Now if we let S be the set of known states, as de�ned
by Equation (4), then the simulation accuracy of cMS

with respect to MS in the sense of Equation 1 follows
immediately from the Simulation Lemma. Let us also
observe that any return achievable in MS (and thus

approximately achievable in cMS) is also achievable in
the \real world" M | that is, for any policy � in M ,
any state i 2 S, and any T , U�

MS
(i; T) � U�

M (i; T).

We are now at the heart of the analysis: we have iden-
ti�ed a \part" of the unknown MDP M that the algo-
rithm \knows" very well, in the form of the approxima-
tion cMS to MS . The key lemma follows, in which we
demonstrate the fact that MS (and thus, by the Simu-

lation Lemma, cMS) must always provide the algorithm
with either a policy that will yield near-optimal return
in the true MDP M , or a policy that will allow rapid
exploration of an unknown state in M (or both).

Lemma 3 (Explore or Exploit Lemma) Let M be any
Markov decision process, let S be any subset of the
states of M , and let MS be the induced Markov deci-
sion process on M . For any i 2 S and any T , and any
1 > � > 0, either there exists a policy � in MS such
that U�

MS
(i; T) � U�M (i; T) � �, or there exists a pol-

icy � in MS such that the probability that a walk of T
steps following � will terminate in s0 exceeds �=Rmax .

Proof:Let � be a policy in M satisfying U�
M (i; T) =

U�M (i; T), and suppose that U�
MS

(i; T) < U�M (i; T) �
� (otherwise, � already witnesses the claim of the
lemma). We may write

U�
M (i; T) =

X
p

Pr�M [p]UM (p)

=
X
q

Pr�M [q]UM (q) +
X
r

Pr�M [r]UM (r)

where the sums are over, respectively, all T -paths
p in M, all T -paths q in M in which every state
in q is in S, and all T -paths r in M in which at
least one state is not in S. Keeping this interpreta-
tion of the variables p; q and r �xed, we may writeP

q Pr
�
M [q]UM (q) =

P
q Pr

�
MS

[q]UMS
(q) � U�

MS
(i; T).

The equality follows from the fact that for any path
q in which every state is in S, Pr�M [q] = Pr�MS

[q]

and UM (q) = UMS
(q), and the inequality from the

fact that U�
MS

(i; T) takes the sum over all T -paths in
MS , not just those that avoid the absorbing state s0.
Thus

P
q Pr

�
M [q]UM (q) � U�M (i; T)� � which implies

that
P

r Pr
�
M [r]UM (r) � �. But

P
rPr

�
M [r]UM (r) �

Rmax

P
r Pr

�
M [r] and so

P
r Pr

�
M [r] � �=Rmax as de-

sired. 2

4.4 O�-line Optimal Policy Computations

Let us take a moment to review and synthesize. The
combination of the simulation accuracy of cMS and the
Explore or Exploit Lemma establishes our basic line
of argument:

� At any time, if S is the set of current known states,
the T -step return of any policy � in cMS (approx-
imately) lower bounds the T -step return of (any
extension of) � in M .

� At any time, there must either be a policy in cMS

whose T -step return in M is nearly optimal, or
there must be a policy in cMS that will quickly
reach the absorbing state | in which case, this
same policy, executed in M , will quickly reach a
state that is not currently in the known set S.

At certain points in the execution of the algorithm,
we will perform T -step value iteration (which takes

O(N2T) computation) o�-line twice: once on cMS , and

a second time on what we will denote cM 0

S. The MDP
cM 0

S has the same transition probabilities as cMS , but

di�erent payo�s: in cM 0

S, the absorbing state s0 has
payo� Rmax and all other states have payo� 0. Thus
we reward exploration (as represented by visits to s0)
rather than exploitation. If b� is the policy returned
by value iteration on cMS and b�0 is the policy returned
by value iteration on cM 0

S , then Lemma 3 guarantees
that either the T -step return of b� from our current
known state approaches the optimal achievable in M
(which for now we are assuming we know, and can
thus detect), or the probability that b�0 reaches s0,
and thus that the execution of b�0 in M reaches an
unknown or unvisited state in T steps with signi�cant
probability (which we can also detect). Finally, note
that even though T -step value iteration produces a
non-stationary policy, it is the expected payo� that
is important, not whether we follow a stationary or
non-stationary policy.

4.5 Putting it All Together

All of the technical pieces we need are now in place,
and we now give a more detailed description of the
algorithm, and sketch the remainder of the analysis.
(Again, full details are provided in the long version.)
We emphasize that for now we assume the algorithm
is given as input a targeted mixing time T and the
optimal return opt(�T;�

M) achievable in �T;�
M . In Sec-

tion 4.6, we remove these assumptions.

We call the algorithm Explicit Explore or Exploit , or
E3, because whenever the algorithm is not engaged
in balanced wandering, it performs an explicit o�-line
computation on the partial model in order to �nd a
T -step policy guaranteed to either explore or exploit.

Explicit Explore or Exploit (E3) Algorithm:

� (Initialization) Initially, the set S of known states is
empty.

� (Balanced Wandering) Any time the current state is
not in S, the algorithm performs balanced wandering.

� (Discovery of New Known States) Any time a state i
has been visited mknown times during balanced wan-
dering, it enters the known set S, and no longer par-
ticipates in balanced wandering.

� Observation: Clearly, after N(mknown � 1)+1 steps
of balanced wandering, by the Pigeonhole Principle
some state becomes known. More generally, if the
total number of steps of balanced wandering the al-
gorithm has performed ever exceeds Nmknown , then
every state of M is known (even if these steps of bal-
anced wandering are not consecutive).

� (O�-line Optimizations) Upon reaching a known state
i 2 S during balanced wandering, the algorithm per-
forms the two o�-line optimal policy computations onbMS and bM 0

S described in Section 4.4:

{ (Attempted Exploitation) If the resulting ex-

ploitation policy b� achieves return from i in bMS

that is at least opt(�T;�

M) � �=2, the algorithm
executes b� for the next T steps.

{ (Attempted Exploration) Otherwise, the algo-
rithm executes the resulting exploration policy

b�0 (derived from the o�-line computation on bM 0

S)
for T steps in M , which by Lemma 3 is guaran-
teed to have probability at least �=(2Rmax) of
leaving the set S.

� (Balanced Wandering) Any time an attempted ex-
ploitation or attempted exploration visits a state not
in S, the algorithm immediately resumes balanced
wandering.

This concludes the description of the algorithm; we can
now wrap up the analysis. One of the main remain-
ing issues is our handling of the con�dence parameter
� in the statement of the main theorem: Theorem 1
ensures that a certain performance guarantee is met
with probability at least 1 � �. There are essentially
three di�erent sources of failure for the algorithm:

� At some known state, the algorithm actually has
a poor approximation to the next-state distribu-
tion for some action, and thus cMS does not have
su�ciently strong simulation accuracy for MS .

� Repeated attempted explorations fail to yield
enough steps of balanced wandering to result in a
new known state.

� Repeated attempted exploitations fail to result in
actual return that is near opt(�T;�

M).

Our handling of the failure probability � is to simply
allocate �=3 to each of these sources of failure. The fact
that we can make the probability of the �rst source of
failure (a \bad" known state) small is handled by a
standard Cherno� bound analysis applied to the de�-
nition of known states.

For the second source of failure (failed attempted ex-
plorations), a standard Cherno� bound analysis again
su�ces: by Lemma 3, each attempted exploration
can be viewed as an independent Bernoulli trial with
probability at least �=(2Rmax) of \success" (at least
one step of balanced wandering). In the worst case,
we must make every state known before we can ex-
ploit, requiring Nmknown steps of balanced wander-
ing. The probability of having fewer than Nmknown

steps of balanced wandering will be smaller than �=3
if the number of (T -step) attempted explorations is
O((Rmax=�)N log(1=�)mknown).

Finally, we do not want to simply halt upon �nding
a policy whose expected return is near opt(�T;�

M), but

want to achieve actual return approaching opt(�T;�
M),

which is where the third source of failure (failed at-
tempted exploitations) enters. We have already ar-
gued that the total number of T -step attempted ex-
plorations the algorithm can perform before S con-
tains all states of M is polynomially bounded. All
other actions of the algorithm must be accounted for
by T -step attempted exploitations. Each of these T -
step attempted exploitations has expected return at
least opt(�T;�

M) � �=2. The probability that the ac-
tual return, restricted to just these attempted exploita-
tions , is less than opt(�T;�

M) � 3�=4, can be made

smaller than �=3 if the number of blocks exceeds
O((1=�)2 log(1=�)); this is again by a standard Cher-
no� bound analysis. However, we also need to make
sure that the return restricted to these exploitation
blocks is su�cient to dominate the potentially low re-
turn of the attempted explorations. It is not di�cult
to show that provided the number of attempted ex-
ploitations exceeds O(1=�) times the number of at-
tempted explorations, both conditions are satis�ed,
for a total number of actions bounded by O(T=�)
times the number of attempted explorations, which
is O(NT (Rmax=�

2) log(1=�)mknown). The total com-
putation time is thus O(N2T=�) times the number of
attempted explorations, and thus bounded by

O(N3T (Rmax=�
2) log(1=�)mknown): (5)

This concludes the proof of the main theorem. We re-
mark that no serious attempt to minimize these worst-
case bounds has been made; our immediate goal was to
simply prove polynomial bounds in the most straight-
forward manner possible. It is likely that a practical
implementation based on the algorithmic ideas given
here would enjoy performance on natural problems
that is considerably better than the current bounds
indicate. (See Moore and Atkeson, 1993, for a related
heuristic algorithm.)

4.6 Eliminating Knowledge of T and opt(�T;�
M)

In order to simplify our presentation of the main the-
orem and the E3 algorithm, we made the assumption
that the learning algorithm knew the targeted mixing
time T and the target optimal return opt(�T;�

M) achiev-
able in this mixing time. In this section, we briey out-
line the straightforward way in which these assump-
tions can be removed without changing the qualitative
nature of the results. Details are in the long version
of this paper.

In the absence of knowledge of opt(�T;�
M), the Explore

or Exploit Lemma (Lemma 3) ensures us that it is safe
to have a bias towards exploration. More precisely,
any time we arrive in a known state i, we will �rst
determine the exploration policy b�0 and compute the
probability that b�0 will reach the absorbing state s0 ofcM 0

S in T steps. We can then compare this probability
to the lower bound �=(2Rmax) of Lemma 3. As long as
this lower bound is exceeded, we may execute b�0 in an
attempt to visit a state not in S. If this lower bound
is not exceeded, Lemma 3 guarantees that the o�-line
computation on cMS in the Attempted Exploitation
step must result in an exploitation policy b� that is
close to optimal. We execute b� in M and continue.

Note that this exploration-biased solution to remov-
ing knowledge of opt(�T;�

M) or V �(i) results in the al-
gorithm always exploring all states of M that can be
reached in a reasonable amount of time, before doing
any exploitation. This is a simple way of removing the
knowledge while keeping a polynomial-time algorithm;
but we explore more practical variants of this strategy
in the longer paper.

To remove the assumed knowledge of T , we observe
that we already have an algorithm A(T) that, given T
as input, runs for P (T) steps for some �xed polynomial
P (�) and meets the desired criterion. We now propose
a new algorithm A0, which does not need T as input,
and simply runs A sequentially for T = 1; 2; 3; : : :. For
any T , the amount of time A0 must be run before A0

has executed A(T) is
PT

t=1 P (t) � TP (T) = P 0(T),
which is still polynomial in T . We just need to run A0

for su�ciently many steps after the �rst P 0(T) steps
to dominate any low-return periods that took place
in those P 0(T) steps, similar to the analysis done for
the undiscounted case towards the end of Section 4.5.
We again note that this solution, while su�cient for
polynomial time, is not the one we would implement
in practice.

5 Conclusion

In this paper, we presented the E3 algorithm, and
showed that it achieves near-optimal undiscounted re-
turn in general MDP's in polynomial time. In the long
version, we show that a slight modi�cation of E3 gives
similar results for the discounted case, that the algo-
rithms can deal with MDP's with terminating states in
a natural way, and that they also work in multichain
MDP's.

There are a number of interesting lines for further re-
search. We are developing the basic ideas underlying
E3 into a practical algorithm, and hope to report on
an implementation and experiments soon. Finding an
e�cient model-free version of our algorithm, and tech-
niques for dealing with large state spaces, remain for
future work.

Acknowledgements

We give warm thanks to Tom Dean, Tom Dietterich,
Tommi Jaakkola, Leslie Kaelbling, Michael Littman,
Lawrence Saul, Terry Sejnowski, and Rich Sutton for
valuable comments. Satinder Singh was supported by
NSF grant IIS-9711753.

References

Barto, A. G., Sutton, R. S., Watkins, C. (1990). Sequential
decision problems and neural networks. In NIPS 2, pages
686{693, Morgan Kaufmann.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Belmont, MA: Athena Scienti�c.

Fiechter, C. (1994). E�cient reinforcement learning. In
COLT94, pages 88{97. ACM Press.

Fiechter, C. (1997). Expected mistake bound model for on-
line reinforcement learning. InMachine Learning: Proceed-
ings of the Fourteenth International Conference (ICML97),
pages 116{124. Morgan Kaufmann.

Gullapalli, V., Barto, A. G. (1994). Convergence of indi-
rect adaptive asynchronous value iteration algorithms. In
NIPS 6, pages 695{702. Morgan Kau�man.

Jaakkola, T., Jordan, M. I., Singh, S. (1994). On the con-
vergence of stochastic iterative dynamic programming al-
gorithms. Neural Computation, 6 (6), 1185{1201.

Moore, A. W., Atkeson, C. G. (1993). Prioritized sweeping:
Reinforcement learning with less data and less real time.
Machine Learning, 13 (1).

Puterman, M. L. (1994). Markov decision processes : dis-
crete stochastic dynamic programming. New York: John
Wiley & Sons.

Saul, L., Singh, S. (1996). Learning curve bounds for
Markov decision processes with undiscounted rewards. In
COLT96.

Schapire, R. E. , Warmuth, M. K. (1994). On the worst-
case analysis of temporal-di�erence learning algorithms. In
Machine Learning: Proceedings of the Eleventh Interna-
tional Conference, pages 266{274. Morgan Kaufmann.

Singh, S., Dayan, P. (in press). Analytical mean squared
error curves for temporal di�erence learning. Machine
Learning.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal di�erences. Machine Learning, 3, 9{44.

Sutton, R. S. , Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.

Thrun, S. B. (1992). The role of exploration in learning
control. In White, D. A. , Sofge, D. A. (Eds.), Hand-
book of Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Florence, Kentucky 41022: Van Nostrand
Reinhold.

Tsitsiklis, J. (1994). Asynchronous stochastic approxima-
tion and Q-learning. Machine Learning, 16 (3), 185{202.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8 (3/4), 279{292.

