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Abstract

In this paper we introduce and investigate a mathemati-
cally rigorous theory of learning curves that is based on ideas
from statistical mechanics. The advantage of our theory over
the well-established Vapnik-Chervonenkis theory is that our
bounds can be considerably tighter in many cases, and are
also more re
ective of the true behavior (functional form)
of learning curves. This behavior can often exhibit dra-
matic properties such as phase transitions, as well as power
law asymptotics not explained by the VC theory. The dis-
advantages of our theory are that its application requires
knowledge of the input distribution, and it is limited so far
to �nite cardinality function classes. We illustrate our re-
sults with many concrete examples of learning curve bounds
derived from our theory.

1 Introduction

According to the Vapnik-Chervonenkis (VC) theory of learn-
ing curves [27, 26], minimizing empirical error within a func-
tion class F on a random sample of m examples leads to
generalization error bounded by ~O(d=m) (in the case that

the target function is contained in F) or ~O(
p
d=m) plus

the optimal generalization error achievable within F (in the
general case). 1 These bounds are universal: they hold for
any class of hypothesis functions F , for any input distribu-
tion, and for any target function. The only problem-speci�c
quantity remaining in these bounds is the VC dimension
d, a measure of the complexity of the function class F . It
has been shown that these bounds are essentially the best
distribution-independent bounds possible, in the sense that
for any function class, there exists an input distribution for
which matching lower bounds on the generalization error
can be given [5, 7, 22].

The universal VC bounds can give the impression that
the true behavior of learning curves is also universal, and es-

sentially described by the functional forms d=m and
p
d=m.

1Here for simplicity we are using the ~O(�) notation, which hides
logarithmic factors in the same way the O(�) notation hides constant
factors.

However, it is becoming clear that learning curves exhibit a
diversity of behaviors. For instance, some researchers have
attempted to �t learning curves from backpropagation ex-
periments with a variety of functional forms, including expo-
nentials [4]. Backpropagation experiments with handwritten
digits and characters indicate that good generalization error
is sometimes obtained for sample sizes considerably smaller
than the number of weights (presumed to be roughly the
same as the VC dimension) [18], though the VC bounds are
vacuous form smaller than d. Discrepancies between the VC
bounds and actual learning curve behavior have also been
pointed out and analyzed in other machine learning work.

Of course, the VC bounds might simply be inapplica-
ble to these experiments, because backpropagation is not
equivalent to empirical error minimization. Vapnik has con-
jectured that backpropagation can access only a limited por-
tion of the function space, so that the \e�ective dimension"
is much smaller than the VC dimension. According to this
type of reasoning, learning curves are heavily a�ected by
the speci�cs of the algorithm. Another possibility is that
the VC bounds are applicable, but sometimes fail to cap-
ture the true behavior of particular learning curves because
of their independence from the distribution. Hence some
theorists have sought to preserve the functional form of the
VC bounds, but to replace the VC dimension in this func-
tional form by an appropriate distribution-speci�c quantity,
such as the VC entropy (which is the expectation of the log-
arithm of the number of dichotomies realized by the function
class) [26, 15, 3]. Work on the \empirical VC dimension"
has tried to measure the dependence of learning curves on
both the algorithm and the distribution via backpropagation
experiments [25].

Perhaps the most striking evidence for the fact that the
VC bounds can sometimes fail to model the true behavior of
learning curves has come from statistical physics. In recent
years, the tools of statistical mechanics have been applied
to analyze learning curves with rather curious and dramatic
behavior (See the survey of Watkin, Rau and Biehl and the
references therein [28]). This has included learning curves
exhibiting \phase transitions" (sudden drops in the gener-
alization error) at small sample sizes, as well as asymptotic
power law behavior 2 in which the power law exponent is
neither 1 nor 1/2. Although these learning curves do not
contradict the VC bounds, it seems fair to say that their
behavior is qualitatively di�erent. The theoretical revisions
of the VC theory mentioned above cannot explain such be-
havior, because they conservatively modify only with the

2By a power law, we mean the functional form (a=m)b , where
a; b > 0 are constants.



constant factors of the same power laws.
In this paper, we show that ideas from statistical me-

chanics (namely, the annealed approximation [16, 20, 1, 23]
and the thermodynamic limit [23]) can be used as the basis
of a mathematically precise and rigorous theory of learning
curves. 3 This theory will be distribution-speci�c, but will
not attempt to force a power law form on learning curves.
Speaking coarsely, there are two main ideas behind our the-
ory that are novel to someone familiar with the VC theory.
The �rst new idea is related to the annealed approxima-
tion. It is based on the simple observation that in the VC
theory and its proposed distribution-dependent variants, all
hypotheses of generalization error greater than � are treated
equally by the analysis | for instance, by assigning (1��)m

to all such hypotheses as an upper bound on the probability
of being consistent with m random examples. We undertake
a more re�ned analysis that decomposes the function class
into error shells that actually attribute the correct general-
ization error to each hypothesis, and give uniform conver-
gence bounds on each shell. The resulting bounds already
predict learning curve behavior not explained by the VC
theory, but are di�cult to interpret.

The second new idea is to formalize a particular mathe-
matical limit known to statistical physicists as the thermo-
dynamic limit . The goal of this limit is to express the error
shell decomposition bounds in a form that is both useful
and intuitive. The thermodynamic limit accomplishes this
goal by introducing the notion of the correct scale at which
to analyze a learning curve, and by expressing the learning
curve as a competition between an entropy function (mea-
suring the logarithm of number of hypotheses as a function
of their generalization error �) and an energy function (mea-
suring the probability of minimizing the empirical error on
a random sample as a function of generalization error).

The resulting theory provides a formalized variant of
the statistical physics approach that is able to predict and
explain many nontrivial behavioral phenomena of learning
curves, including phase transitions. It is far from being the
last word on learning curves, and indeed, the task of provid-
ing a truly universal theory of learning curves | one that
applies to all function classes, input distributions, and target
functions, and is furthermore tight in all cases | appears to
be a daunting if not unreasonable task. Furthermore, this
paper concentrates on the case of �nite cardinality function
classes (although we provide some discussion of possible ex-
tensions to the in�nite case in the full paper). For someone
familiar with the VC theory, it may be somewhat surpris-
ing that we devote so much e�ort to the �nite case, since
in the VC theory a power law uniform convergence bound
can be obtained trivially for �nite classes. Brie
y, it turns
out that in our formalism, it can be nontrivial to translate a
collection of separate uniform convergence bounds, one for

3Aside to the statistical physicist: the annealed approximationwas
previously used to approximate the learning curve of a Gibbs learner,
which chooses a hypothesis from a Gibbs distribution with the em-
pirical error as energy. Here we adopt a microcanonical rather than
a canonical ensemble, enabling us to obtain rigorous upper bounds
from the annealed theory, rather than approximations. These bounds
hold for all empirical error minimization algorithms, including the
zero temperature limit of the Gibbs algorithm. Because of our de-
sire for rigor, we have not used the replica method [10] in this paper.
Engel, van den Broeck, and Fink have used the replica method to cal-
culate the maximum deviation between empirical and generalization
error in the function class, and the maximum generalization error in
the version space [9, 8]. Although the replica method produces exact
results when used correctly, it rests upon an interchange of limits for
which no rigorous justi�cation has been found.

each error shell, into a learning curve bound, even in the
�nite case. By concentrating on this translation step, our
methods can yield much tighter learning curve bounds than
the VC theory in some cases.

The reader should regard the current paper as having
three primary goals. First, we aim to derive from �rst prin-
ciples a formal theory retaining the spirit of the statistical
mechanics approach. Second, we aim to provide evidence
in the form of speci�c examples and a general lower bound
that the new theory truly is closer to modeling the actual
behavior of learning curves than the standard VC theory.
Third, we aim to precisely relate the statistical mechanics
approach to the VC theory.

2 The Finite and Realizable Case

We begin with the most basic model of learning an unknown
boolean target function. We assume that the target function
f is chosen from a known class F of f0; 1g-valued functions
over an input space X. We refer to this as the realizable
setting, since the learning algorithm knows a class of func-
tions that contains or realizes the target function. We also
assume that F has �nite cardinality.

The learning process consists of giving a learning algo-
rithm a �xed �nite number m of independent random train-
ing examples of f . Thus, let D be any �xed probability dis-
tribution over X. The learning algorithm receives as input
a training sample S = fhxi; f(xi)ig1�i�m. Each input xi in
the training sample is chosen randomly and independently
according to the �xed distribution D. For any boolean func-
tion h, the generalization error of h is the probability of dis-
agreement between h and f : �gen(h) = Prx2D[h(x) 6= f(x)].
Note that the training sample S depends on f and m and
�gen(h) depends on f and D. Throughout the paper we will
consider these quantities as �xed and suppress such depen-
dencies.

If we let h denote the hypothesis function output by a
\reasonable" learning algorithm following training on m ex-
amples, what is the behavior of �gen(h) as a function of the
sample size m? In this paper, \reasonable" will essentially
mean any algorithm that chooses a hypothesis function that
is consistent with the training sample (or one that chooses
a hypothesis with minimum empirical error on the sample
in the unrealizable case). This notion is both natural and
mathematically convenient, because it allows us to give an
analysis of the behavior of �gen(h) that ignores the details
of the learning algorithm, and to instead concentrate exclu-
sively on the expected error of any consistent hypothesis.

2.1 Relating the version space to the �-ball

For any sample S, we de�ne the version space by

VS(S) = fh 2 F : 8hx; f(x)i 2 S; h(x) = f(x)g:
Thus, VS(S) � F is simply the subclass of all functions h
that are consistent with the target function f on the sample
S. The �-ball about the target function f is de�ned as the
set of all functions with generalization error not exceeding
�:

B(�) = fh 2 F : �gen(h) � �g:
Thus, VS(S) is a sample-dependent subclass of F , and B(�)
is a sample-independent subclass of F , and both contain the
target f .



The goal of this subsection is to examine the relation-
ship between VS(S) and B(�). More speci�cally, for a sam-
ple S of size m, we would like to calculate the probability
that VS(S) is contained in B(�). This probability is sig-
ni�cant for learning, because it allows us to bound the er-
ror of any consistent learning algorithm: we can always as-
sert that with probability at least PrS[VS(S) � B(�)], any
consistent hypothesis has generalization error less than �.
Here the probability is taken over the m independent draws
from D used to obtain S. We now derive a lower bound
on PrS[VS(S) � B(�)], or equivalently, an upper bound on
PrS[VS(S) 6� B(�)].

The probability that a function h of generalization er-
ror �gen(h) remains in the version space after m examples
decays exponentially with m:

PrS[h 2 VS(S)] = (1� �gen(h))
m:

Since the rate of decay is slower for small �gen(h), the version
space should consist only of hypotheses with small general-

ization error. Let B(�) = F �B(�), the functions in F with
generalization error greater than �. Since the probability of
a disjunction of events is upper bounded by the sum of the
probabilities of the events, we �nd that

PrS[VS(S) 6� B(�)] = PrS[9h 2 B(�) : h 2 VS(S)](1)

�
X

h2B(�)

PrS [h 2 VS(S)] (2)

=
X

h2B(�)

(1� �gen(h))
m (3)

which proves the following theorem.

Theorem 1 PrS[V S(S) � B(�)] � 1� �, where

� =
X

h2B(�)

(1� �gen(h))
m:

We will refer Theorem 1 as the union bound . It is closely
related to the annealed approximation, which has been used
by physicists to study the performance of the Gibbs learning
algorithm. Note that the sum in the union bound has a
direct interpretation, being the average number of surviving
hypotheses that lie outside B(�).

We can restate Theorem 1 in the following alternate
form, in which we regard � as given and then bound the
achievable �.

Corollary 2 Let F be any �nite boolean function class. For
any 0 < � � 1, with probability at least 1�� any function h 2
F consistent withm random examples of a target function in
F obeys �gen(h) � �, where � is the smallest value satisfyingP

h2B(�)
(1 � �gen(h))

m � �.

2.2 The standard cardinality bound

Since �gen(h) > � for all h 2 B(�), the union bound can be
further transformed byX
h2B(�)

(1 � �gen(h))
m �

X
h2B(�)

(1� �)m � jFj(1� �)m: (4)

By applying Theorem 1 to this bound, we obtain the stan-
dard result that with probability 1 � �, any consistent hy-
pothesis h obeys �gen(h) � (ln(jFj=�))=m. Since the only
dependence of this bound on the learning problem is through
the cardinality of the function class F , we will refer to it as
the cardinality bound. In particular, it depends neither on
the input distribution D nor on the target function f .

Although this bound is powerful because of its generality,
there is no reason to believe that it is tight for speci�c distri-
butions. Its tightness depends on the chain of inequalities
beginning with Equation (1) and those given in Equation
(4), and any link in this chain can be weak.

Most of the work of this paper will be directed toward
�nding tighter alternatives to Equation (4). We will slice

B(�) into many shells with di�erent error levels rather than
lump all of them together at �, as was done in Equation (4).
Furthermore, our calculations will make use of all the shell
cardinalities, not just the crude measure of total cardinality
of the function class. This more re�ned bookkeeping can
lead to learning curves that have radically di�erent behavior
than that predicted by the simple cardinality bound.

On the other hand, we will generally rely on the union
bound as is. It is tight if the survivals of di�erent hypotheses
are mutually exclusive events. In fact, when hypotheses have
small disagreement, their survivals are often positively corre-
lated instead. Nevertheless, for the �nite function classes ex-
amined here, the crudeness of Equation (1) will not weaken
our bounds too severely. In particular, we will exhibit ex-
amples of distribution-speci�c bounds that are much tighter
than the distribution-free VC bounds.

It is only for in�nite function classes that the union
bound fails spectacularly, for here the bound diverges and
becomes useless. The VC dimension, VC entropy, and ran-
dom covering number [26, 19, 6, 14] are the known tools for
dealing with the correlations neglected by the union bound.
These tools have previously been applied to the function
class as a whole. In our current research e�orts, we are
attempting to re�ne these tools by applying them to error
shells. In the full paper, we discuss an alternative approach
that reduces the in�nite case to a sequence of �nite prob-
lems.

2.3 Decomposition into error shells

Since we are assuming F to be a �nite class of functions,
there are only a �nite number of possible values that �gen(h)
can assume. Let us name and order these possible error val-
ues 0 = �1 < �2 < � � � < �r � 1. Thus, r � jFj, and for each
1 � i � r there exists an hi 2 F such that �gen(hi) = �i.
Then for each index 1 � j � r we can de�ne the cardinality
of the jth error shell Qj = jff 0 2 F : �gen(f

0) = �jgj. Thus
Qj is the number of functions in F whose generalization er-
ror is exactly �j, and

Pr

j=1
Qj = jFj. Hence we arrive at

the shell decomposition of the union bound:X
h2B(�i)

(1� �gen(h))
m =

rX
j=i

Qj(1� �j)
m (5)

Together with Theorem 1, we can obtain the following bound
on �gen(h) for consistent learning algorithms.

Theorem 3 For any �xed sample size m and con�dence
value �, with probability at least 1� � any h 2 VS(S) obeys
�gen(h) � �i, where �i is the smallest error value satisfyingPr

j=i
Qj(1� �j)

m � �.



In other words, if we �x the con�dence � then Theorem 3
provides the bound

�gen(h) � min

(
�i :

rX
j=i

Qj(1� �j)
m � �

)
(6)

with probability at least 1 � � for any consistent h. While
this bound is clearly a function of m, its behavior is not
especially easy to understand in its current form. For this we
rely on a particular limit popular in the statistical mechanics
literature known as the thermodynamic limit .

2.4 The thermodynamic limit method

There are two basic ideas or assumptions behind the ther-
modynamic limit method as we formalize it. The �rst idea
is that we are often interested in the learning curve of a
parametric class of functions, and in such cases the number
of functions in the class at any given error value may have a
limiting asymptotic behavior as the number of parameters
becomes large. The second idea is to exploit this limiting
behavior in order to describe learning curves as a competi-
tion between the logarithm of the number of functions at a
given error value (an entropy term) and the error value itself
(an energy term).

As we shall see, the most important step in applying the
thermodynamic limit method, both technically and concep-
tually, is to �nd the right scaling with which to analyze the
learning curve, and to �nd the best entropy bound for this
scaling. The thermodynamic limit method assumes that an
appropriate scaling and entropy bound are given, and then
provides a learning curve analysis for them, much in the
same way that VC theory assumes that the VC dimension
is known and then provides learning curve upper bounds.
Thus the real work of the user in applying the thermody-
namic limit method (which may be considerable) lies in �nd-
ing the best scaling and entropy bound.

In order to properly de�ne and use the thermodynamic
limit method, we cannot limit our attention to a �xed �nite
class F of functions, but must instead assume an in�nite
sequence of �nite function classes (of presumably increasing
but always �nite cardinality). As we have already suggested,
it will be convenient to think of this sequence as being ob-
tained in some uniform manner by increasing the number
of parameters in a parametric class of functions. Thus,
let F1;F2; : : : ;FN ; : : : be any in�nite sequence of classes of
functions, where each FN is a class of boolean functions over
an input space XN and obeys jFN j � 2N . We may think of
N as just an abstract indexing obeying N � log jFN j, and
thus representing the number of bits or parameters required
to encode functions in FN . Let DN be a �xed probability
distribution over XN . A typical example of these objects
is where we let XN be N -dimensional Euclidean space, DN

be the uniform distribution over the unit sphere in XN , and
FN be the class of all N -dimensional perceptrons in which
each weight is constrained to be either 1 or �1.

Now suppose that for each class FN we also choose a
�xed target function fN 2 FN , thus yielding an in�nite se-
quence of target functions f1; f2; : : : ; fN ; : : :. Our goal now
is to provide a framework in which we can analyze the lim-
iting generalization error, as N !1, of any algorithm that
always chooses a hypothesis consistent with m random ex-
amples of fN drawn according to DN .

There are a number of problems with this proposal. Fore-
most among these is the question of whether there actually

exists any interesting limiting behavior. For instance, in our
discussion so far we have been suggesting that all the classes
FN are \similar" in the sense of being obtained through
some nice uniform parametric process, with only the number
of parameters varying. If this assumption is grossly violated,
and each FN looks radically di�erent than the last, it may be
nonsensical to analyze the limiting behavior of a consistent
algorithm's error. Similarly, even if the FN are generated in
a uniform fashion, a highly nonuniform sequence of target
functions fN may render the limit meaningless.

There is no de�nitive solution to such obstacles: there
do exist function class, distribution and target function se-
quences for which there is no limiting generalization error
for consistent algorithms, and obviously no theory can as-
sign a tight asymptotic limit in such cases. The thermody-
namic limit method survives these problems by only provid-
ing an upper bound on the asymptotic generalization error.
In those cases where the limit does not exist, this upper
bound may be weak or even vacuous. However, we hope
to show through examples that in many natural cases the
limiting behavior is both well-de�ned and captured by our
theory, and that the resulting upper bound correctly pre-
dicts learning curve behavior that is radically di�erent from
that predicted by more standard methods.

A second and more technical objection to our proposal
is that if we �x a sample size m and let N !1, we should
not expect to obtain any nontrivial bound on the general-
ization error, since the function classes are becoming larger
but the sample size remains �xed. This is exactly right, and
for this reason the thermodynamic limit method examines
the learning curve behavior as both m ! 1 and N ! 1,
but at some �xed rate. This allows us to meaningfully in-
vestigate, for instance, the asymptotic generalization error
when the number of examples is 1=2 the number of param-
eters, twice the number of parameters, 10 times the number
of parameters, and so on. This is frequently the language in
which experimentalists discuss learning curves.

Returning to the development, once we �x target func-
tion sequence fN 2 FN , we can again de�ne the error levels
0 = �N1 < �N2 < � � � < �Nr(N) � 1 for FN with respect to DN ,
where r(N) � jFN j is the number of error levels for this FN ,
DN and fN , and for clarity we have included a superscript
on the error levels indicating N . Recall that by Theorem 3,
we can reduce the problem of bounding the error of a hy-
pothesis from FN consistent with m examples of fN drawn
according to DN to the problem of �nding the smallest er-
ror level �Ni such that the right-hand sum in Equation (6) is
bounded by � (where, in the thermodynamic limit, � will go
to 0). The �rst step of the thermodynamic limit method is
to simply rewrite this sum in a more convenient but entirely
equivalent exponential form:

r(N)X
j=i

QN
j (1� �Nj )

m =

r(N)X
j=i

elogQ
N
j
+m log(1��N

j
): (7)

Notice that in each term of this sum, the exponent term
logQN

j is positive, and the exponent term m log(1 � �Nj ) is
negative. Thus, informally speaking, the contribution of the
jth term in the sum is largely determined by the competition
between these two quantities: if logQN

j � �m log(1 � �Nj )
then the contribution of the jth term is large (and thus,
to make the overall sum smaller than �, we must eliminate
terms by increasing i and consequently weakening our bound
on the error), and if logQN

j � �m log(1 � �Nj ) then the



contribution of the jth term is negligible.
In particular, if the sample size m is such that logQN

j �
�m log(1 � �Nj ) for all j then we cannot give a nontrivial

bound on the error, and if logQN
j � �m log(1� �Nj ) for all

j, and r(N) is not too large, then the error should be close
to 0. Such cases are uninteresting. In general, the values of
the sample size m for which it will be most interesting to
analyze the learning curve are those for which there is some
real competition between the logQN

j and the �m log(1��Nj ).
Thus we need to �nd the right scale at which to examine
the learning curve. At the same time, we would like to re-
place the competition between these two discrete quantities
by the competition between two continuous functions of a
single real parameter �. The obvious choice for a continuous
approximation to the �m log(1� �Nj ) is simply m log(1� �).

The choice of a continuous approximation to the logQN
j de-

pends on their behavior, which may be quite complex, and
which we now try to capture.

Thus the next and crucial step of the thermodynamic
limit method is to choose the appropriate scaling function
and to provide an associated entropy bound . As mentioned
already, these are functions that are assumed to be given in
the thermodynamic limit method. Let t(N) be any mapping
from the natural numbers to the natural numbers such that
t(N) ! 1 as N ! 1, and let s : [0; 1] ! <+ be any
continuous function. Then we say that s(�) is a permissible
entropy bound with respect to t(N) if there exists a natural
number N0 such that for all N � N0 and for all 1 � j �
r(N), (1=t(N)) logQN

j � s(�Nj ).
We refer to t(N) as a scaling function. The intention

is that when t(N) is properly chosen it captures the scale
at which the learning curve is most interesting, and that
the entropy bound s(�) tightly captures the behavior of the
(1=t(N)) logQN

j . We will see that we obtain our best up-
per bounds on generalization error for a given scaling func-
tion when the thermodynamic limit method is used with the
smallest possible permissible entropy bound for this scaling
function.

Given a scaling function t(N) and a permissible entropy
bound s(�), for N � N0 we may now rewrite and bound our
sum:

r(N)X
j=i

elogQ
N
j
+m log(1��N

j
) (8)

=

r(N)X
j=i

et(N)[(1=t(N)) logQN
j
+(m=t(N)) log(1��N

j
)] (9)

�
r(N)X
j=i

et(N)[s(�N
j
)+� log(1��N

j
)] (10)

where we de�ne � = m=t(N), and in taking our limit m;N !
1, � will remain constant. Before doing so, however, let
us pause to notice the bene�ts of our de�nitions in the �-
nal summation: each exponent's dependence on N has been
isolated in the factor t(N), and the remaining factor is the
continuous function s(�)+� log(1��), evaluated at only the
discrete points �Nj .

Let us now let m;N ! 1 (and thus t(N)! 1) but let
m=t(N) = � > 0 remain constant. De�ne �� 2 [0; 1] to be
the largest � 2 [0; 1] such that s(�) � �� log(1 � �). Note
that both s(�) and �� log(1� �) are non-negative functions,

and 0 = �� log(1� �) � s(�) for � = 0. Thus �� is simply
the rightmost crossing point of these functions (we de�ne
�� = 1 if s(�) stays above �� log(1� �) for all 0 � � < 1).
We wish to argue that provided we examine our sum only
for terms in which � > ��, then under certain conditions the
thermodynamic limit of the sum is 0. In other words, in the
thermodynamic limit we can bound the generalization error
of any consistent hypothesis by ��. Intuitively, the reason for
this is that if s(�) < �� log(1��) then et(N)[s(�)+� log(1��)] !
0 as t(N)!1.

More precisely, let � 2 (0; 1] be an arbitrarily small quan-
tity, and for each N , de�ne the index iN;� to be the smallest
satisfying �NiN;�

� �� + � . Let us de�ne � by

� = minf�� log(1� �)� s(�) : � 2 [�� + �; 1]g: (11)

Note that � is well-de�ned since the quantify

�� log(1� �)� s(�)

is strictly positive for all � 2 [�� + �; 1]. We can now write

r(N)X
j=iN;�

et(N)[s(�N
j
)+� log(1��N

j
)] (12)

�
r(N)X
j=iN;�

e�t(N)� (13)

� (r(N)� iN;� )e
�t(N)� (14)

� r(N)e�t(N)� (15)

where the �rst inequality follows from the fact that for all
iN;� � j � r(N) we have �Nj 2 [�� + �; 1]. The expression

r(N)e�t(N)� will go to 0 in the thermodynamic limit, as

desired, provided r(N) is o(et(N)�) (this condition is easily
met by all of the examples we shall analyze, but for com-
pleteness its relaxation is discussed in the full paper).

We have shown:

Theorem 4 Let s(�) be any continuous function that is a
permissible entropy bound with respect to the scaling function
t(N), and suppose that r(N) = o(et(N)�) for any positive
constant �. Then as m;N ! 1 but � = m=t(N) remains
constant, for any positive � we have

PrS[VS(S) � B(�� + �)]! 1: (16)

Here the probability is taken over all samples S of size m =
�t(N) for the target function in f 2 FN , and �� is the
rightmost crossing point of s(�) and �� log(1� �). In other
words, in the thermodynamic limit any hypothesis h con-
sistent with �t(N) examples will have generalization error
�gen(h) � �� + � with probability 1.

We note that the condition on the growth rate of r(N) can
be greatly relaxed, and we do so in the full paper.

We can �nally see in Theorem 4 the roles of the scal-
ing function t(N) and the entropy bound s(�). The scaling
function t(N) de�nes the units by which we shall measure
learning curves, since the sample size in the thermodynamic
limit is always a constant times t(N). Given the scaling
function, the smaller the the entropy bound s(�), the smaller
the rightmost crossing �� will be, and consequently the bet-
ter the bound obtained from Theorem 4.



2.5 Extracting scaled learning curves from the thermody-
namic limit method

Theorem 4 gives a bound on the limiting generalization er-
ror of consistent algorithms on a sample size m that is a
�xed constant � times the scaling function t(N). However,
the real value of the thermodynamic limit method emerges
only when we now allow the value of � to vary, taking the
thermodynamic limit by applying Theorem 4 to each value,
and examine the learning curve as a function of increasing
�. As we shall now see, it is in such scaled learning curves
(we refer to them as scaled because they are expressed as a
function of the multiple � of t(N) rather than in the more
traditional absolute number of examples) that interesting
behavior such as phase transitions appears. We shall also
see that the thermodynamic limit method permits an intu-
itive and highly visual derivation of scaled learning curves.

We �rst illustrate the derivation of scaled learning curves
using several arti�cial examples. By arti�cial we mean that
rather than de�ning natural function class, target function
and distribution sequences FN , fN and DN , and then deriv-
ing an appropriate scaling function t(N) and entropy bound
s(�), instead we will simply start with a given s(�) and carry
the analysis forward. However, the lower bound provided in
Section 2.8 demonstrates that there do exist function class
and distribution sequences whose true scaled learning curves
match the bounds we will give in this section. In the follow-
ing sections, we give examples of complete analyses (that
is, beginning with given FN , fN and DN) for some natural
function classes.

To start, suppose that for some scaling function t(N)
we have the permissible entropy bound s(�) = 1 (a rather
weak entropy bound). Then in Figure 1, we have plotted
both the constant entropy bound s(�) = 1, and the function
�� log(1� �) for three values � = �1; �2; �3. The resulting
rightmost intersections �1 = ��(�1); �2 = ��(�2); �3 = ��(�3)
are then identi�ed on the �-axis. Here we now adopt the
convention of writing �� as a function of �, since we no
longer regard � as a constant.

In Figure 2, we then plot the rightmost crossing ��(�) as
a continuous function of � (and identify the points (�i; �i)
for i = 1; 2; 3 from Figure 1). This plot is what we mean by
the scaled learning curve, and Theorem 4 tells us that in the
limit N ! 1, this scaled learning curve bounds the general-
ization error of consistent algorithms given �t(N) examples.

Note from Figure 1 that �� log(1� �) is essentially lin-
ear with slope �, and it is the rightmost intersection of this
roughly linear function with s(�) that gives the correspond-
ing point on the scaled learning curve. Furthermore, the
energy function is independent of the learning problem in
Theorem 4, and thus in general, for any entropy bound s(�),
to get the scaled learning curve we will be looking at the left-
ward progress of the rightmost intersection ��(�) between
the nearly-linear energy and s(�) as � grows. In the par-
ticular example s(�) = 1, this progress is quite uniform,
resulting in the familiar power law scaled learning curve of
Figure 2.

A less familiar and more interesting example occurs for
the single-peak entropy bound s(�) shown in Figure 3. 4

We shall shortly see in Section 2.6 that this entropy bound
actually occurs for a natural and well-studied learning prob-

4Throughout this section, we will refrain from giving the explicit
functions s(�) used to generate the plots, since some of them are
rather complicated, and it is their shape rather than their mathemat-
ical de�nitions that are of interest here.

lem. In this example we see that for small �, the leftward
progress of ��(�) is rather slow, due to the large negative
slope of s(�) on the right side of its peak. This for instance
is the case for � near the plotted value �1. For some larger
value of �, ��(�) moves over the peak of s(�) and thus begins
decreasing more rapidly.

Then something interesting happens. There is a critical
value �2 that gives the intersection ��(�2) = �2. For this
critical value, we see that the energy curve is barely inter-
secting the entropy curve. For � > �2 (for example, for the
plotted value �3), we see from Figure 3 that the rightmost
intersection is 0! Theorem 4 can be applied to obtain the
scaled learning curve bound of Figure 4, which exhibits a
phase transition from error �2 to perfect generalization (er-
ror 0) at � = �2.

A similar but more subtle example is shown for another
single-peak s(�) in Figures 5 and 6. Here again, leftward
progress of ��(�) for smaller � is slow due to the large neg-
ative slope of s(�) on the right-hand side of its peak (for
instance, at � = �1). Again, there is a critical value �2

which results in an intersection at �+2 = ��(�2), slightly to
the left of the peak of s(�). However, for � just larger than
�2 we do not transition to perfect learning, but to error ��2 .
The di�erence between this example and that of Figures 3
and 4 is that this time the entropy curve is su�ciently large
near ��2 to \catch" ��(�) for � above the critical value. Fol-
lowing the transition, the decrease of ��(�) resumes rather
gradual behavior (for instance, near �3). This is all clearly
seen in the scaled learning curve of Figure 6.

As our next example we consider a double-peak entropy
bound in Figures 7 and 8. Here we see there are two critical
values, �2 and �4. Initial progress of �

�(�) occurs at a steady
but controlled rate, for instance at �1. As � becomes larger
than �2, there is a sudden burst of generalization (a phase
transition), not to perfect generalization, but from error �+2
to ��2 on the right side of the left peak of s(�). Then progress
is slow, for instance at �3, until � becomes larger than �4,
at which point we have a transition to perfect generalization
(so for �5 the error is 0). One aspect of this example worth
noting is the fact that although the energy may intersect
s(�) many times, we are interested only in the rightmost
intersection.

As our �nal arti�cial example, we consider a three-peak
entropy bound in Figures 9 and 10. This example demon-
strates the interesting phenomenon of shadowing predicted
by our theory, because despite the change in s(�) from our
last example, we see that the scaled learning curve of Fig-
ure 10 is quite similar in form to that of Figure 8. Figure 9
shows the reason for this: by the time � becomes larger than
the �rst critical value �2, the energy curve is already above
the small middle peak of s(�), and thus the phase transition
is from �+2 to ��2 , completely bypassing the middle peak.
Thus, the small middle peak of s(�) is in the \shadow" of
the large rightmost peak. There is an intuitive explana-
tion for this phenomenon. Despite the fact that (relative to
the scaling function) there are a signi�cant number of func-
tions of generalization error approximately �0 (resulting in
the middle peak of s(�) centered at �0), by the time the sam-
ple size is large enough to eliminate the considerably larger
number of functions of generalization error approximately
�+2 from the version space, the functions at generalization
error �0 are already eliminated from the version space. Note
that if this middle peak were higher, there would be a brief
transition from �+2 to near �0, and then from there to a value



on the right side of the left peak.
It is worth noting that although we have been devoting

our attention to the rightmost intersection, since this upper
bounds the generalization error, the leftmost intersection
also has a meaning. With high probability, there are no
hypotheses in the version space with error less than the left-
most intersection except for the target itself. So the version
space minus the target is contained within an annulus [8]
whose inner and outer limits are the leftmost and rightmost
intersections.

In all of these examples, we have concentrated on the
qualitative behavior (including coarse phenomena such as
phase transitions) of scaled learning curves at moderate val-
ues of �. Also of interest are the large � asymptotics of
the scaled learning curve, that is, the asymptotic rate of ap-
proach to generalization error 0. In our theory this rate is
obviously determined by the behavior of the entropy bound
s(�) for � � 0. It turns out that many natural examples of
s(�) fall into a few broad categories of behavior near 0, and
this is discussed in the full paper.

2.6 Analysis of the Ising perceptron

We now tackle some real examples of the application of our
theory, complete with determination of the appropriate scal-
ing function and a permissible entropy bound.

We �rst consider the class of Ising perceptrons [11, 13,
24]. Suppose that the function class FN consists of all ho-
mogeneous perceptrons in which the weights are constrained
to be �1. 5 Let the distribution DN be any spherically
symmetric distribution on <N , and let the target function
fN 2 FN be arbitrary. It will turn out that for this prob-
lem, the appropriate scaling function is simply t(N) = N .
We now derive a permissible entropy bound for this scaling
function, and then extract the associated scaled learning
curve.

An Ising perceptron is parametrized by a weight vector w
in the hypercube f�1; 1gN , and maps x 2 <N to sgn(w �x).
For a spherically symmetric distribution DN , the probability
of disagreement between two perceptrons is proportional to
the angle between them. Hence if w0 is the weight vector of
the target function,

�gen(w) =
1

�
cos�1 w �w0

N
=

1

�
cos�1

�
1� 2dH(w;w0)

N

�
(17)

where dH denotes the Hamming distance. The Hamming
distance layers the function class like an onion with N error
shells surrounding the target at the center. The number
of perceptrons at Hamming distance j from the target is
QN
j =

�
N
j

�
, and they all have generalization error �Nj =

(1=�) cos�1(1 � 2j=N). Since the binomial coe�cients are
bounded by

1

N
logQN

j � H
�
j

N

�
= H

�
sin2(��Nj =2)

�
(18)

where H(p) � �p log p � (1 � p) log(1 � p), a permissible
entropy bound for scaling function t(N) = N is

s(�) = H �sin2(��=2)� : (19)

5The designation \Ising" refers to the �1 constraint, which is
present in the original Ising model of magnetism with N interacting
spins.

We have acutally already discussed the resulting entropy-
energy competition for this problem in Section 2.5. Recall
that in Figure 3 we graph the competition, and in Figure 4
we graph the scaled learning curve obtained by applying
Theorem 4. Thus for this problem our theory predicts slow
initial learning, followed by a phase transition to perfect
generalization at �2 = 1:448. We remind the reader that a
sudden transition in our bound does not necessarily imply
a sudden transition in the true behavior of any consistent
learning algorithm. However, this bound does show that any
consistent learning algorithm must have reached zero error
with probability approaching 1 in the thermodynamic limit
for scaled sample size greater than 1:448. This bound on
the critical value was known from the work of Gardner and
Derrida [11], and extended to the case of boolean inputs by
Baum, Lyuu and Rivin [2, 17]. Here we are actually giving a
bound on the entire learning curve, and the behavior of our
bound is very similar in shape to learning curves obtained in
both simulations and non-rigorous replica calculations from
statistical physics [13, 24, 21, 8]. 6

It is instructive to compare our bounds with the cardi-
nality and VC bounds for this problem. Since both of these
latter bounds go like N=m, and the lowest error shell is at

�1 � 1=
p
N , the critical m for perfect learning is m � N3=2,

rather than m � N .

2.7 Analysis of monotone boolean conjunctions

In this example, the input space XN is the boolean hyper-
cube f0; 1gN . The class FN consists of the 2N functions
computed by the conjunction of a subset of the input vari-
ables x1; : : : ; xN , along with the empty (always 0) function
; and the universal (always 1) function f0; 1gN . The input
distribution DN is uniform over f0; 1gN .

We will examine the thermodynamic limit for two dif-
ferent choices of target functions fN . We begin with the
target function f = f0; 1gN , in which every input is a posi-
tive example. Any conjunction h of exactly i variables from
x1; : : : ; xN has generalization error

�gen(h) = Pr~x2DN
[h(~x) = 0] = 1� 1=2i:

Hence the error shells are 1=2 = �N1 < �N2 < � � � < �NN =
1�1=2N , where �Ni = 1�1=2i. The number of conjunctions
in the ith shell is QN

i =
�
N
i

� � N i. Since

lnQN
i

log2N
� i ln 2 = � ln(1� �Ni ) (20)

we choose the scaling function to be t(N) = logN and thus
the sample size is written as m = � logN . A permissible
entropy bound for t(N) is s(�) = � ln(1� �).

The competition between s(�) and �� log(1� �) results
in a scaled learning curve that exhibits a sudden transition:
for any 0 � � < 1, the rightmost crossing ��(�) does not
exist and our bound on the generalization error is 1. But for
� � 1, s(�) is dominated by �� log(1 � �), so ��(�) makes
a sudden transition to 0. In summary, our theory predicts

6According to calculations using the replica method of statistical
physics, for this problem the true scaled learning curve of the Gibbs
learning algorithm (which chooses a random consistent hypothesis
from the version space) exhibits a phase transition to perfect gener-
alization at � = 1:245. This picture is consistent with the results of
exhaustive enumeration by computer for up to N = 32.



that in the thermodynamic limit, for � < 1 there is no
generalization, but for � > 1 there is perfect generalization.

Our bound can be checked by deriving the exact learning
behavior. In the problem described, every random example
is positive for fN , and every positive example ~x eliminates
from the version space any conjunction containing a variable
that is set to 0 in ~x. Since half of the remaining variables is
eliminated by each example, it should take roughly log2N
examples to eliminate all N variables and hence all conjunc-
tions, leaving only the target function.

A more precise calculation goes as follows. Since each
variable has probability 2�m of surviving m examples, the
number j of surviving variables obeys a binomial distribu-
tion:

P (j) =

�
N

j

��
1

2m

�j �
1� 1

2m

�N�j

(21)

The function with maximum generalization error in the ver-
sion space is a conjunction of all j surviving variables, so
that maxh2VS (S) �gen(h) = �Nj . Then Cherno� bounds on
the 
uctuations in j yield

1 � 2�N2�m(1��) � max
h2VS(S)

�gen(h) � 1� 2�N2�m(1+�)

(22)

with con�dence greater than 1�2e�N�2=3. Taking the ther-
modynamic limit with m = � log2N , then � ! 1 for any
� > 1, and � ! 0 for any � < 1 with con�dence approach-
ing 1.

For this model, the cardinality and VC bounds give a
learning curve of order N=m, which drops below the lowest
error level �N1 = 1=2 for m of order N . Hence these bounds
also predict perfect generalization, but with a bound on the
critical m of order N rather than logN .

Now let the target function be the empty function fN =
;. Since a conjunction h of i variables has �gen(h) = 1=2i,
the error shells are 1=2N = �N1 < �N2 < � � � < �NN = 1=2,
where �Ni = 1=2N�i+1. The number of conjunctions in the

ith shell is QN
i =

�
N
N�i

�
� NN�i. We again choose t(N) =

logN as the scaling function. Then

lnQN
i

log2N
� (N � i) ln 2 = � ln 2�Ni (23)

so that s(�) = � ln 2� is a permissible entropy bound for
t(N). The rightmost zero crossing of s(�) and �� log(1� �)
gives the scaled learning curve � � O(log �=�).

One interesting aspect of this learning problem is that
the scaled learning curve is highly dependent on the tar-
get function. Whereas learning the target functions fN =
f0; 1gN led to a sudden transition in generalization, learn-
ing the empty function fN = ; led to a slow power law
decrease. This is in marked contrast to the Ising perceptron
problem, where the learning curve is independent of which
weight vector is the target function.

2.8 The thermodynamic limit lower bound

In this section, we give a theorem demonstrating that Theo-
rem 4 is tight in a fairly general sense (modulo the given en-
tropy bound). More precisely, for any function s(�) meeting
certain mild conditions, we construct a family of function
classes F = fFNg such that s(�) is a permissible entropy
bound for the scaling function t(N) = N , and in the ther-
modynamic limit the rightmost crossing of the functions s(�)

and 2�� is a lower bound on the generalization error of worst
hypothesis in the version space. Note that although this
does not exactly match Theorem 4, which gives as an upper
bound the rightmost crossing of s(�) and �� log(1� �), the
qualitative behavior of the scaled learning curves obtained
by intersecting with 2�� and �� log(1� �) is essentially the
same. In particular, our lower bound shows that the various
scaled learning curve phenomena examined in Section 2.5
(such as phase transitions and shadowing) can actually oc-
cur for certain function classes and distributions.

In the same way that lower bounds for the VC theory
show that if the only parameter of the learning problem
we consider is the VC dimension, then the existing learning
curve upper bounds based on the VC dimension are essen-
tially the best possible, Theorem 5 shows that if the only
parameter of the learning problem we use is a given entropy
bound s(�), then Theorem 4 gives essentially the best pos-
sible learning curve upper bound. Thus, in the absence of
further information about the function class, distribution
and target function sequences, the scaled learning curves
derived in Section 2.5 are essentially the best possible. Sim-
ilarly, the lower bound shows that better learning curves for
the Ising perceptron and boolean conjunction problems that
depend only on the entropy bound cannot be obtained.

Theorem 5 Let s : [0; 1=2]! [0; 1] be any continuous func-
tion bounded away from 1 and such that s(0) = s(1) = 0.
Then there exists a function class sequence FN over XN

(where jFN j = 2N ), a distribution sequence DN over XN ,
and a target function sequence fN 2 FN such that: (1) s(�)
is a permissible entropy bound with respect to the scaling
function t(N) = N , and (2) For any � > 0, if �� 2 [0; 1=2]
is the largest value satisfying 2��� � s(��), then as N !1
there is constant probability that there exists a function h 2
FN consistent with m = �N random examples satisfying
�gen(h) � ��.

Proof: (Sketch) For every N , the class FN will contain the
function fN which is identically 0 on all inputs. For the lower
bound argument, for every value of N , fN will always be
the target function against which we measure generalization
error. The distribution DN will always be uniform over the
domain XN , which will always consist of 2N discrete points,
so XN = f1; 2; : : : ; 2Ng.

A high-level sketch of the main ideas follows. For any N ,
the class FN will be constructed so that there are exactly
N=2 error levels, namely �Nj = j=N for 1 � j � N=2. Now
let s : [0; 1=2] ! [0; 1] be any continuous function bounded
away from 1 and satisfying s(0) = s(1=2) = 0. The idea
is that for any N and any 1 � j � N=2, FN will contain

exactly 2s(j=N)�N functions whose error with respect to fN
is j=N . Thus, for any �, as N !1, there will eventually be

arbitrarily close to 2s(�)�N functions of error arbitrarily close
to �. This ensures that s(�) will be a permissible entropy
bound with respect to the scaling function t(N) = N . Fur-
thermore, these functions will be specially chosen to force
the claimed lower bound.

In more detail, for every N and every 1 � j � N=2,

FN will contain a subclass of functions F j
N , where jF j

N j =
2s(j=N)�N . Note that this implies jFN j < (N=2)2N since

s(�) < 1. For every h 2 F j
N and every (2j=N)2N < x � 2N ,

h(x) = 0. In other words, on a fraction 1 � (2j=N) of the
input space, all the h 2 F j

N agree with the target function
fN .



However, on the points f1; 2; : : : ; (2j=N)2Ng each h 2
F j
N will behave as a unique parity function on a domain

of size (2j=N)2N . More precisely, we can de�ne an iso-
morphism between f1; 2; : : : ; (2i=N)2Ng and the hypercube
of the same size, and let each function in F j

N (when re-

stricted to f1; 2; : : : ; (2j=N)2Ng) be isomorphic to a unique
parity function on this hypercube. (Note that s(�) must

obey 2s(�)�N � 2� � 2N in order to ensure there are enough
unique parity functions. The condition s(�) < 1 is su�-

cient to give this asymptotically.) Thus, each h 2 F j
N has

�gen(h) = j=N since each parity function outputs 1 on half
of the hypercube inputs and fN is identically 0.

Now let us analyze, in the thermodynamic limit, the
largest generalization error of any function in the version
space of the constructed family FN (for target functions fN
and uniform distributions DN). By our construction, for any

�, as N !1 there are eventually 2s(�)�N functions in FN of
generalization error arbitrarily close to � (namely, �� 1=N).
Let the sample size m = �N . As N ! 1, the number of
sample points falling in the set f1; 2; : : : ; 2� � 2Ng becomes
sharply peaked at (2�)�N . The remaining sample points
fail to eliminate any of the functions of generalization error
� since they all agree with the target function fN on the
remaining points.

Now it is known [12] that in order to eliminate 2s(�)�N

parity functions over a uniform distribution, the sample size
m must obey m � s(�) �N ; for smaller m, there is a constant
probability that at least one parity function remains in the
version space. Thus, we obtain that if (2�)�N � s(�)N then
there is constant probability that the version space contains
a function of generalization error at least �. In other words,
2�� � s(�) is a condition for eliminating all functions of
generalization error � from the version space, thus proving
the theorem.

3 The Finite and Unrealizable Case

One highly restrictive aspect of our analysis so far is the as-
sumption that the labels of the examples are generated by
by some target function in F , and hence it is always pos-
sible to obtain zero generalization error. In this section we
sketch the extension of our theory to the case of an unrealiz-
able target, in which there exists no function in F with zero
generalization error; details are given in the full paper. As
in the realizable case, learning curve bounds are found us-
ing a thermodynamic limit method to extract scaled learn-
ing curves. Of course, now the learning curve approaches
�min = �gen (h

�) rather than 0 as the number of examples is
increased, where we de�ne

h� = argmin
h2F

�gen(h): (24)

Recall that in the realizable case, we focused on bound-
ing the error of any consistent algorithm. In the unrealizable
case, we analyze algorithms which choose a hypothesis with
minimum empirical (or training) error, the frequency of dis-
agreement with the target on a sample S. An empirical
error minimization algorithm chooses a hypothesis from the
version space, which we now rede�ne to be the set of all
functions that minimize the training error �trn(h; S):

V S(S) = fh 2 F : �trn(h; S) = min
h02F

�trn(h
0; S)g: (25)

One of the main di�erences between the unrealizable and
realizable cases is the form of the bound we can obtain on
the probability that a �xed function h 2 F \survives" m
random examples, remains in the version space and hence is
eligible to be chosen by an empirical error minimization al-
gorithm. Recall that in the realizable case, this probability
was exactly (1��gen(h))

m since �min = 0 and minimum em-
pirical error is equivalent to consistency. In the unrealizable
case, the situation is more complicated, and we will only
be able to upper bound this survival probability. We will
treat this bound on the survival probability as a parameter
of the analysis. More precisely, let us refer to a function
u(�) as a permissible energy bound (with respect to F , D
and the target function) if for any h 2 F and any sample

size m we may write PrS[h 2 VS(S)] � e�u(�gen (h))m. In
other words, we imagine that u(�gen(h)) assesses a penalty
to �gen(h) that increases with larger �gen(h), and the proba-
bility that h survives to be in the version space (and thus the
probability that an empirical minimization algorithm may
choose h) decreases exponentially in m times this penalty.
In the full paper we show that u(�) = � ln(1�(p��p�min)2)
is a universally permissible energy bound. However, for a
speci�c learning model a larger permissible u(�) may typi-
cally be derived, and this may result in better learning curve
bounds.

Once a permissible energy bound is obtained, the bound
on the generalization error is then found as the rightmost
zero crossing of s(�)��u(�), just as in the realizable case (de-
tails are given in the full paper). As an illustrative example
we consider an unrealizable variant of the Ising perceptron
problem considered in Section 2.6. Let the target function
fN be the perceptron in which every weight is +1, and let
the function class FN consist of all Ising perceptrons which
have at least 
N weights (
 2 [0; 1]) that are �1. (Note
that unlike the realizable Ising perceptron case, here the
choice of target function matters.) Again let the distribu-
tion DN be any spherically symmetric distribution on <N .
Thus, the target function is not contained in FN , and the
minimum error �min(
) is given by applying Equation (17),
so �min(
) = (1=�) cos�1(1 � 2
). This minimum error is
achieved by all of those functions in FN with the minimum
allowed number 
N of �1 weights, of which there are ex-
actly

�
N

N

�
. We shall regard 
 as a parameter measuring the

extent of the unrealizability.
The correct scaling function for this problem is again

t(N) = N , and it is easy to see the e�ects of the unrealizabil-
ity parameter 
 on this problem. The resulting permissible
entropy bound s
(�) is identically 0 in the range [0; �min(
)],
as there are no functions in FN at these generalization er-
rors. In the range [0; �min(
)], however, s
(�) = s(�), where
s(�) is simply the entropy bound for the realizable Ising per-
ceptron given by Equation (19). Thus our entropy bound
in the unrealizable case is simply that of the realizable case,
but truncated to the left of �min(
).

The e�ects of this truncation on the predicted scaled
learning as a function of 
 turn out to be quite interesting.
If we use the universally permissible energy bound, then Fig-
ure 11 shows the resulting scaled learning curves for three
values of �min(
). Thus we see that the increase of 
 not only
increases the best error �min(
), it a�ects the very form of
the learning curve. In particular, as 
 increases the asymp-
totic rate of approach to �min(
) becomes slower. Further-
more, the value �min(
) = 0:01224 is a critical value, in the
sense that the learning curve phase transition disappears for



larger �min(
). Figure 12 shows a phase diagram that plots
the critical value of � for which the learning curve experi-
ences a phase transition as a function of �min(
). As the best
achievable error �min(
) increases, the location of the phase
transition becomes progressively larger, in an essentially lin-
ear fashion. At the critical value �min(
) = 0:01224, the
phase transition disappears entirely, and for larger �min(
)
the learning curves look progressively closer to power laws,
as in the topmost learning curve of Figure 11.

4 Conclusion

Two questions have often been raised in the computational
learning theory community regarding the statistical physics
approach to learning curves. Can it be made rigorous? Does
it give any results that can not be derived from the VC the-
ory? In this paper, we shown that for �nite function classes
and excluding replica calculations, the answer to both ques-
tions is a�rmative. Under certain circumstances, our theory
provides much tighter bounds than the VC theory, best il-
lustrated in our examples exhibiting phase transitions.

Our theory gives tighter bounds than the VC theory at
the expense of increasing the number of problem-dependent
quantities. Since the computation of the entropy bound s(�)
requires knowledge of the input distribution, it is consider-
ably more di�cult than the computation of the VC dimen-
sion, which requires knowledge of only the function class.
For this reason, applications of our theory to real problems
may be di�cult. Thus, our theory is descriptive rather than
prescriptive at this point: it should be regarded more as
an attempt to come to a theoretical understanding of the
true behavior of learning curves, rather than as a tool for
application.
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Figure 1: Rightmost intersections for a constant entropy bound
s(�) = 1 and �� log(1� �) for three values � = �1; �2; �3.
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Figure 2: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 1.
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Figure 3: Rightmost intersections for a single-peak entropy
bound (for the Ising perceptron of Section 2.6) and �� log(1� �).
The curves corresponding to the three values �1 = 0:7, �2 =
1:448 and �3 = 2:5 are plotted. The resulting three intersections
are �1 = 0:6011, �2 = 0:2543 and 0. The value �2 = 1:448 is a
critical value, resulting in the phase transition seen in Figure 4.
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Figure 4: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 3 (Ising perceptron), show-
ing a phase transition to zero error at the critical value �2 =
1:448.
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Figure 5: Rightmost intersections for a single-peak entropy
bound and �� log(1� �), showing a critical value �2.
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Figure 6: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 5, showing a phase tran-
sition to nonzero error at the critical value �2.
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Figure 7: Rightmost intersections for a double-peak entropy
bound and �� log(1� �), showing critical values �2 and �4.
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Figure 8: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 7, showing a phase tran-
sition to nonzero error at the critical value �2, and a phase tran-
sition to 0 error at the critical value �4.
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Figure 9: Rightmost intersections for a triple-peak entropy
bound and �� log(1 � �), showing critical values at �2 and �4
and demonstrating the phenomenon of shadowing.
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Figure 10: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 9, showing a phase tran-
sition to nonzero error at the critical value �2, and a phase tran-
sition to 0 error at the critical value �4.
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Figure 11: The scaled learning curves �
�

(�) for the unrealiz-

able Ising perceptron discussed in Section 3, for the three values
�min(
) = 0:005;0:01224;0:05 (bottom to top). The value 0:01224
for �min(
) is a critical value, in the sense that the learning curve
phase transition disappears for larger �min(
).
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Figure 12: Phase diagram showing line of �rst-order transi-
tions beginning at � = 1:448 for �min(
) = 0 and terminating
at � = 2:659 for �min(
) = 0:01224.


