Efficient Inference for Complex Queries on Complex Distributions

Lili Dworkin
University of Pennsylvania

Abstract

We consider problems of approximate infer-
ence in which the query of interest is given
by a complex formula (such as a formula
in disjunctive formal form (DNF)) over a
joint distribution given by a graphical model.
We give a general reduction showing that
(approximate) marginal inference for a class
of distributions yields approximate inference
for DNF queries, and extend our techniques
to accommodate even more complex queries,
and dense graphical models with variational
inference, under certain conditions. Our re-
sults unify and generalize classical inference
techniques (which are generally restricted to
simple marginal queries) and approximate
counting methods such as those introduced
by Karp, Luby and Madras (which are gen-
erally restricted to product distributions).

1 Introduction

There is a large body of work on performing marginal
inference, both exact and approximate, on complex
probability distributions. One line of research consid-
ers exact inference on sparse (tree or tree-like) graph-
ical models (Pearl, 1988). A second line of work lever-
ages variational methods to perform approximate in-
ference on densely connected, highly cyclical networks
(Jordan et al., 1999; Jaakkola and Jordan, 1999).
Meanwhile, a separate body of literature has consid-
ered the problem of answering more complex queries,
such as the satisfaction probability of a formula in dis-
junctive normal form (DNF), but over simpler distri-
butions (Karp et al., 1989). In this work, we unify
and generalize these lines of work in order to provide
efficient approximate inference techniques that can ac-

Appearing in Proceedings of the 17'" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

Michael Kearns
University of Pennsylvania

Lirong Xia
Rensselaer Polytechnic Institute

commodate complex distributions and complex queries
simultaneously.

In this context, “query” refers to the computation of
the satisfaction probability of a logical formula over
the joint distribution. Thus standard marginal infer-
ence would correspond to a simple conjunction of lit-
erals, specifying the desired setting of each marginal
variable of interest. Our methods apply to both DNF
formulas and threshold DNF's, which are DNF-like for-
mulas but have exponentially large traditional DNF
representations. Our algorithm takes as input a for-
mula F' and a probability distribution P (given as a
graphical model) over a set of variable assignments. In
polynomial time, the algorithm outputs an arbitrarily
accurate multiplicative approximation of the satisfac-
tion probability of F' with high probability.

Our algorithm generalizes the Karp-Luby-Madras
(KLM) algorithm (1989) for approximating the car-
dinality of set unions. The approach consists of three
main steps: 1) calculating the probability that a term
of the formula is satisfied; 2) generating a satisfying
assignment for a term; and 3) checking whether an
assignment satisfies a term. If the types of F' and P
allow us to define an efficient subroutine for each step,
then we can apply the algorithm.

We first show that if F' is a DNF formula, the ap-
proach reduces to performing exact or multiplicatively
approximate marginal inference over P. Thus, if P
belongs to a class of distributions on which we can ef-
ficiently answer marginal queries, then we immediately
have an efficient algorithm for answering more complex
DNF queries as well. We can therefore take advantage
of the large body of existing work on efficient inference
to apply our result in a variety of settings.

As a motivating example for DNF queries on complex
distributions, consider a hedge fund that maintains
multiple portfolios of risky bond or mortgage invest-
ments, where the greatest risk in each investment is
default and subsequent loss of all capital. Because the
failure of any one of its portfolios poses significant risk
to the entire fund (typically due to leverage), we are in-
terested in estimating the probability that one or more

Efficient Inference for Complex Queries on Complex Distributions

Conjunction DNF Threshold DNF
N - - - 1
Product excact - trivial (exact - #P-complete) (exact - #P-complete')
mult. approx. - KLM mult. approx. - new result
exact - Pearl’s (exact - #P-complete) (exact - #P-complete)
Tree .
algorithm mult. approx. - new result mult. approx - new result
exact - Pearl’s (exact - #P-complete)
Polytree algorithm mult. approx - new result open problem
Two-Layer additive approx. - .
Parametric Kearns-Saul additive approx. - new result | open problem

Table 1: Summary of new and prior results. The rows describe classes of joint distributions of increasing complexity,
while the columns describe query or formula classes of increasing complexity. Our new results expand the frontier of

complex distribution-query pairs.

portfolios fail in a given period. We thus might model
the individual assets by boolean variables indicating
default, and the failure of a portfolio by a conjunction
of defaults in its constituent holdings. The overall fail-
ure for the fund is then the disjunction (DNF) of these
portfolio terms. Note that different portfolios (terms)
may overlap in their holdings (variables), and further-
more the joint distribution over default events may
have high-order correlations due to common influenc-
ing factors such as the health of an economic sector or
region (which can be represented as additional, non-
asset variables).

We can also apply the algorithm when F' is a thresh-
old DNF and P is given as a directed tree Bayesian
network. Threshold DNFs would require exponen-
tially many terms if expressed as a standard DNF,
but can be efficiently tested for satisfaction on a given
assignment. Among other motivations, in the hedge
fund example above, threshold DNFs allow us to nat-
urally model the fact that portfolios may have differ-
ent amounts invested in different assets, and that the
threshold for portfolio failure may be less than the de-
fault of all of its constituent holdings, neither of which
can be succinctly captured by a standard DNF.

Our last result considers the case in which F' is a mono-
tone DNF and P is a dense cyclical network. Exact
inference is infeasible in such networks, and the best
known (variational) algorithms for approximate infer-
ence do not have multiplicative guarantees. Thus, it is
not possible to apply the approach above. Instead, we
use large deviation methods to factor the network into
product distributions on which our algorithm can then
be applied. The formal guarantees for the resulting ap-
proximations are weaker but nontrivial, and provably
tight in certain interesting cases. We also provide some
experimental evaluation of this approach.

'This result follows from the fact that standard DNFs
are a subclass of threshold DNFs (see Section 2).

1.1 Related Work

Many combinations of formula and distribution types
have been handled in previous work. The algorithmic
framework we propose allows us to solve the problem
for several new combinations. A comparison of our
work to existing results is shown in Table 1.

As mentioned previously, when F' is a conjunction, the
problem is equivalent to marginal inference. Pearl’s
algorithm (1988) efficiently computes exact marginal
inference over polytrees. In a general Bayesian net-
work, even approximating marginal inference to within
€ < 1/2 additive error is NP-hard (Dagum and Luby,
1993). However, particular types of networks permit
specialized algorithms with better performance. For
instance, variational methods have been used success-
fully on certain classes of dense cyclic networks (Jor-
dan et al., 1999; Jaakkola and Jordan, 1999). A line
of work initiated by Kearns and Saul (1998; 1999; Ng
and Jordan 2000) provides upper and lower bounds on
marginal probabilities with additive error that dimin-
ishes rapidly with the size of the network.

When P is the uniform distribution, we can com-
pute the satisfaction probability of F' by counting the
number of satisfying assignments of F'. This problem
is known as model counting, or #SAT, and is #P-
complete. When P is a product distribution, then
the problem is equivalent to weighted model counting
(Sang et al., 2005). The original KLM algorithm ap-
plies when P is a product distribution and F' is a DNF.
To our knowledge, our results are the first to consider
cases in which F is a DNF (or DNF variant) and P is
not a product distribution.

2 Preliminaries

Let X = {x1,...,2,} be a set of n binary variables.
Let V = {0,1}" denote the set of all possible variable
assignments, and let P denote the probability distri-

Lili Dworkin, Michael Kearns, Lirong Xia

bution over V. For an assignment v € V, let v, denote
the value of a variable z, and let P(v) denote the prob-
ability of v under the distribution P.

A DNF formula consists of a set of k terms, 17, ..., T},
each of which consists of a set of literals. A literal is
a tuple (z,b) € X x {0,1} where the first element
indicates a variable and the second element indicates
its desired value. For instance, (x, 1) denotes the literal
x and (z,0) denotes —x. Given an assignment v € V, a
literal (z, b) is satisfied if v, = b. A term T; of a DNF is
satisfied if all literals in T} are satisfied, and the entire
DNF is satisfied if at least one term is satisfied.

A threshold DNF' consists of a set of k terms, an in-
teger weight w(l) for each literal in each term, and
an integer threshold ¢; for each term. A term T; of a
threshold DNF is satisfied if the weighted sum of the
satisfied literals in T; is at least ¢;. Again, the entire
threshold DNF is satisfied if at least one term is satis-
fied. A standard DNF can be expressed as a threshold
DNF in which the thresholds are set equal to the term
lengths and all weights are set to one. While a thresh-
old DNF has a succinct representation and can be eas-
ily checked for satisfaction on a given assignment v,
in general it would take an exponentially large DNF
formula to represent a threshold DNF. Proof of this
claim is provided in the appendix.

Let S(T') denote the set of assignments that satisfy the
term T, and let P(T) denote the probability that T is
satisfied. Define S(F') and P(F) similarly with respect
to the formula F.

3 General Algorithm

Our first main contribution is an algorithmic frame-
work that outputs a multiplicative approximation of
P(F) with high probability. The algorithm takes as
input a description of a distribution P, a formula F,
and additional parameters «, ¢, and 6. The parameters
« and e control the accuracy of the approximation, and
0 controls the confidence with which we achieve this ac-
curacy. The algorithm is efficient, by which we mean
it runs in time polynomial in P, F', and the inverses
of these parameters. Generally, such an algorithm is
known as an FPRAS (fully polynomial-time random-
ized approximation scheme).

For now, we assume the existence of three polynomial-
time subroutines, defined below.?

2We note that these subroutines are assumed to provide
the desired behavior only on the unconditioned distribution
P. If we make the stronger assumption that they provide
the desired behavior conditioned on evidence F, we can
also approximate P(F|E). This is directly applicable, for
instance, if P is represented by a polytree.

Algorithm 1 Generalized KLM
1: procedure GENERALIZEDKLM(a, €, d, P, F')
2. L+ 3%n(2)
3. P(T;) < TermProb(P, T}, €)
4 D« YF P(T)
5: fort=1to L do A
6 P(T:)
7
8
9

Vi € [k]

Choose T; with probability —p5
v < GenAssign(P, T;,)
for j =1to k do

if SatAssign(7T;,v) then

10: t(v) « j
11: break
12: if t(v) =i then
13: Zy+ 1

14: else

15: Zy <0

6: Z=1y1l 2z

17: return ZD

Definition 1 (Subroutines).

e TermProb calculates the approximate probabil-
ity that a term T is satisfied. The inputs are
P, T, and ¢, and the output is P(T'), where
(1—e)P(T) < P(T) < (14 ¢)P(T).

e GenAssign generates a satisfying assignment for
a term T. The inputs are P, T, and €, and the
output is v € V such that 1) v satisfies T and 2)
the probability that v was generated is equal to
P(v)/P(T), where P(v) denotes a 1 + e approx-
imation to P(v), and P(T) is the same approxi-
mation used in TermProb.

e SatAssign determines whether an assignment v
satisfies a term T. The inputs are v and T, and
the output is True in the case of satisfaction and
False otherwise.

The framework, shown in Algorithm 1, generalizes
the importance sampling scheme of the KLM algo-
rithm. In each iteration, rather than sampling an
assignment directly, we first choose a term T; from
the formula F' with probability p(ﬂ)/D, where D =
Zle P(T;). We calculate P(T;) for i € {1,...,k} by
calling TermProb. Next we call GenAssign to generate
an assignment v that satisfies T;. We then find the first
term Tj in F' that v satisfies by making the necessary
calls to SatAssign. If T; = T}, we set a random vari-
able equal to one, and otherwise, we set it to zero. The
intuition behind this step is to correct overcounting an
assignment that satisfies multiple terms. Finally, the
algorithm outputs ZD, where Z is the average value
of the random variable.

As shown in the following theorem, the Generalized

Efficient Inference for Complex Queries on Complex Distributions

KLM algorithm is efficient, and outputs a multiplica-
tive approximation to P(F') with high probability.

Theorem 1. Let TermProb, GenAssign, and SatAs-
sign be polynomial-time subroutines as described in
Definition 1. Then Generalized KLM is efficient, and

for any a €, 0, the algorithm outputs an approximation
P(F) such that, with probability 1 — 9,

(1—a)(1—e)P(F) < P(F) < (14 a)(1+¢)P(F).
Proof. The proof closely follows the original proof of
Karp, Luby, and Madras (1989). To begin, it is easy
to see that the algorithm runs in polynomial time.
On line 2, we set the number of iterations L equal to
(3k/a?)In(2/5). Because we assume that each subrou-
tine runs in polynomial time, each iteration requires
only polynomial time as well.

To analyze the correctness of the algorithm, first we
will show that the expected value of the output E[Z]D
is a multiplicative approximation of P(F’). Then we
will use a Chernoff bound to show that the actual out-
put ZD is close to its expectation.

For any trial t, E[Z;] = Z(i,v)e[n]XV Pr[T;, v chosen] x
I(Z, = 1). Recall that Z; = 1 when t(v) = i. Be-
cause t(v) is uniquely defined for each v, the num-
ber of pairs (i,v) for which ¢ = ¢(v) is exactly equal
to the number of satisfying assignments of F, i.e.
|S(F)|. Furthermore, we can rewrite Pr[T;, v chosen]
as Pr[T; chosen] x Pr[v chosen | T; chosen]. By the
definition of TermProb, Pr[T; chosen] = IAD(TZ»)/D7
and by the definition of GenAssign, Pr[v chosen |
T; chosen] = P(v)/P(T;). Because we require the
P(T;) approximations used in TermProb and GenAs-
sign to be the same, we have

pTi P(v Pv

vES(F) vES(F)

Note that E[Z] =
(1-e)P(v) < P(v) <

P(v
)& P emazag ¥

veS(F)

E[l/LY.F | Z)] = B[], and recall
(14 €)P(v). So we have

1—6

Because P(F) =}, cg(p) P(v), it follows that (1 —
€)P(F) < E[Z]D < (1+¢€)P(F).

We apply a Chernoff bound to finish the proof. Let n =
P(F)/D. So (1—€)n < E[Z] < (14+¢€)n. For any a > 0,
Pr[Z > (1+a)(1+ €)n] < exp(—a?nL/3), and we can
similarly bound Pr[Z < (1—a)(1—¢€)n]. The minimum
value of 1 occurs when all T; are the same, in which
case P(F) = P(T;) and D = kP(T;), so n = 1/k.
Thus, n > 1/k, and exp(—a?nL/3) < exp(—a?L/3k).

Because the algorithm sets L = (3k/a?)In(2/6), we
have exp(—a?L/3k) = exp(—In(2/§)) = 6/2. So, with
probability at least 1 — 9,

lI-a)l—en<Z <(A+a)(l+en
(1-—a)(1—€)P(F)<ZD < (1+a)(1+¢)P(F).

Because ZD is the output of the algorithm, the proof
is complete. O

We have therefore shown that the Generalized KLM
algorithm is both efficient and correct, as long as the
three subroutines are defined appropriately. In the
following sections, we examine particular settings of P
and F' for which we can provide these subroutines.

4 DNF Formulas

We first apply Generalized KLM to the setting in
which F' is a DNF. As we will show, if P belongs to
a class of networks on which we can perform exact or
multiplicatively approximate inference, then it is pos-
sible to define the three necessary subroutines. Thus,
we will have reduced the problem of calculating the
probability of DNF satisfaction to the problem of per-
forming approximate inference.

We begin by assuming the existence of an oracle that
can efficiently compute Pr[Y" = y] within a 1+ ¢ factor
for any set of variables Y C X and any instantia-
tion y € {0, 1}‘Y| of these variables. In the following
paragraphs, we use this oracle to define the three sub-
routines TermProb, GenAssign, and SatAssign. These
procedures are polynomial in the number of variables
in F', the length of the longest term in F', and the
running time of marginal inference over P.

TermProb Subroutine The probability that a
term of a DNF is satisfied is exactly equal to a marginal
probability over the variables of the term. Formally,
P(T) = Prjx = b,¥(x,b) € T]. So P(T) (or a multi-
plicative e-approximation p(T)) can be calculated by
the marginal inference oracle described above.

GenAssign Subroutine The GenAssign subrou-
tine, shown in Algorithm 2, sequentially generates val-
ues for variables in X. To start, all variables that
appear in the term T are set so that their literal is
satisfied. Then, given a set C consisting of pairs of
variables and values, we choose the value of a variable
x that does not appear in C' to be 1 with probability
P(C A (2,1))/P(C). To calculate these probabilities,
we use the marginal inference oracle. We then add the
chosen assignment to C, and repeat.

The number of required iterations is |X|. Thus, as
long as the marginal inference oracle is efficient, this

Lili Dworkin, Michael Kearns, Lirong Xia

subroutine will be as well. The first step ensures that
the generated assignment will satisfy v, and the follow-
ing lemma shows that v is generated with the correct
probability. The proof can be found in the appendix.

Lemma 1. The GenAssign subroutine for DNF' for-
mulas generates an assignment v € V' with probability

P(v)/P(T).

Algorithm 2 GenAssign for DNFs

1: procedure GENASSIGN(P, T\ ¢)

2 Vg b Y(z,b)eT

3 C+«T

4 forxe{z e X |(x,0)¢ CA(x,1) ¢ C} do
5: P(C A (2,1)) < TermProb(P,C A (1), €)
6 with probability %

7 v 1

8 C+ CA(x,1)

9 else
10: vy <— 0
11: C+ CA(z,0)
12: return v

SatAssign Subroutine The SatAssign subroutine
returns True if v, = b,V(x,b) € T. The running time
of the subroutine is linear in |T|, and its correctness
follows from the definition of DNF satisfaction.

Now that we have described correct and efficient sub-
routines, the following theorem follows immediately.

Theorem 2. Let F' be a DNF and let P be a distribu-
tion over which marginal inference is efficient. Then
there is an efficient algorithm that for any a,€,d, with
probability at least 1 — 5, will compute an approxrima-
tion P(F) such that (1 — a)(1 — €)P(F) < P(F) <
I+ a)(1+e)P(F).

Note that if exact marginal inference is efficient on P,
we can set € = 0 in the above theorem.

Thus, given a class of distributions on which it is pos-
sible to answer simple marginal queries, Generalized
KLM makes it possible to answer more complex DNF
queries as well. In this way, the algorithm can be
viewed as a black box to “boost” the complexity of
queries that can be answered on a distribution.

5 Threshold DNFs

In the previous section, we restricted our attention to
DNF formulas. We now apply Generalized KLM to
the setting in which F' is a threshold DNF. Recall that
these formulas assign an integer weight w(l) to each
literal [, and a term Tj is satisfied if the weighted sum
of satisfied literals in the term is at least ¢;.

We make one important restriction in this section. We
no longer consider any distribution over which infer-
ence is efficient, and instead restrict our attention to
distributions given as a subset of the nodes of a di-
rected tree Bayes net. This restriction is necessary
because a marginal inference oracle cannot be used
to calculate the satisfaction probability of a threshold
DNF term, and is therefore insufficient for defining the
three subroutines. The subroutines instead depend on
a dynamic program that operates over a directed tree.
To simplify the analysis, we assume the tree is binary,
and that P is given over the leaves of the tree only. As
we explain in the appendix, both assumptions can be
removed. We proceed to define the three subroutines
TermProb, GenAssign, and SatAssign.

TermProb Subroutine For a set of literals .S, let
W(S) = > csw(l). For a term T and a subset
S C T, let VI(S) C V denote the set of vari-
able assignments in which x = b,VY(z,b) € S, and
z=1—-bVreT—-S. Let T be a term with thresh-
old ¢g. The satisfaction probability of T is P(T) =
S Y scriws)—iy Toevr(s) P0).

Let r be the root of the tree. Let up denote the
parent of a node u, and let ur, and ugr denote the
left and right children of u. Let T, C T denote
the set of literals in the term 7T whose variables

appear as leaves in the subtree rooted at w. Let
Pr[QT(q)] denote the probability that W(T,) = gq.
Then Pr(Qy(q)] = X(scr.w(s)=q} 2ovevru(s) P(V),
so P(T) = ZZ;T) Pr[QZ (i)]. We give a dynamic pro-
gram to compute Pr[QZ (i) | up = 2] for any u, i, and
z, which therefore allows us to calculate P(T) as well.

If i > W(T,), then Pr[QT(i)] = 0. If u is a leaf, then
there is some | = (u,b) € T}, and we have

Pr(Qy (i) | up = 2] =

Prlu=0b]up =2] ifi=w()>0

1 if i = w(l) =0
Prlu=1-blup=2z2] ifi=0Aw()>0
0 otherwise.

In the general case,

Pr(QT (i) |up = 2] = Z Prlu=0bAQL (i) | up = 2]
be{0,1}

= Z Priu=10b|up = 2] x Pr[QL (i) | u = 0]

be{0,1}

>

be{0,1}

Y Pr(Ql (@) |u="bPr(Qy, (y) | u=1]|.

{z,yle+y=i}

{Pr[uzbup:z]x

Efficient Inference for Complex Queries on Complex Distributions

The last line is the dynamic program, and its correct-
ness is evident from the derivation. To analyze the
running time, note that we must compute Pr[QZ (i) |
up = z|] for every possible value of u, i, and z, and
each computation requires summing over all pairs z, y
such that = + y = i. The number of choices for w is
equal to the number of nodes in the tree, which we
denote |V|. The number of choices for i is bounded
by |W(T)|, and the number of choices for z is two.
Finally, the number of possible z,y pairs is bounded
by |[W(T)|?>. So the running time is O(|V||W(T)|?),
which is pseudo-polynomial with respect to |W (T)].

GenAssign Subroutine As before, this subroutine
sequentially generates values for variables in X. We
start at the top of the tree and work downward, setting
values for each internal node as we go. At the root r,
we choose a value for the weighted sum of satisfied
literals in the term 7. We choose this value to be
i€{q,...,W(T)} with probability equal to
Pr(Q7 (i)]
W(T) TN\

Dimq PTQT(D)]
We then choose the value of r to be b € {0,1} with
probability equal to

Pr[r = b] Pr[QL (i) | r = b]
PrQI (1) '
Inductively, once we have set the value of an internal
node u to be b, we choose the values for the weighted
sums of satisfied literals in the subtrees rooted at up,
and ur. We choose these values to be x,y such that
x + y = ¢ with probability equal to
Pr(Qy, () | u= b Pr[Qy, (y) | u=10]

PrQL() [u =1
Then we choose the value for u;, to be b’ with proba-
bility equal to

Priup =b" | u=0bPr[QL (2) | up =]

Pr(QY, (z) | u=1b] '
We choose the value for ug similarly, and we repeat
until we have set values for all variables.

The subroutine visits each node once, and all neces-
sary probabilities can be calculated efficiently using
the TermProb dynamic program described previously.
Thus, the GenAssign subroutine is efficient as well.
Its correctness follows from the two lemmas below, for
which proofs can be found in the appendix.

Lemma 2. The GenAssign subroutine for threshold
DNFs generates an assignment v € V' with probability
P(v)/P(T).

Lemma 3. The GenAssign subroutine for threshold

DNFs generates an assignment v € V' such that v sat-
isfies T'.

SatAssign Subroutine The subroutine for SatAs-
sign returns True if Z{l:(m’b)eT‘UI:b}w(l) > q. The
running time of the subroutine is linear in |T'|, and
its correctness follows from the definition of threshold
DNF satisfaction.

As before, the following theorem follows immediately.
Because TermProb and GenAssign work with exact
probabilities, we can set ¢ = 0, and therefore remove
this parameter.

Theorem 3. Let F be a threshold DNF and let P be a
directed tree Bayes net. Then there is an efficient al-
gorithm (pseudo-polynomial in the weights of F') that
for any «, §, with probability at least 1 — §, will com-
pute an approzimation P(F) such that (1 —a)P(F) <
P(F) < (1+a)P(F).

In the next section, we return to standard DNFs, and
show that these queries can also be answered efficiently
on a much different class of networks.

6 Dense Networks

In Section 4, we provided a very general and efficient
reduction that takes a class of distributions for which
(approximate) marginal (i.e. conjunctive) inference is
tractable, and yields an efficient algorithm for approx-
imate inference on more complex DNF queries. The
main application of this reduction today would be
to the polytree or junction tree algorithms for exact
marginal inference, and to various tree decomposition
methods for more general graphs. However, future ad-
vances in approximate inference might yield more tar-
gets for the reduction.

There is another class of distributions for which ap-
proximate marginal inference is also thought to be
tractable, but in a less formal and rigorous sense than
for tree-like graphs. These are dense, cyclical networks
with high in-degrees and parametric CPTs acting on
weighted sums of parents, for which variational infer-
ence algorithms have enjoyed wide interest and success
(Jordan et al., 1999; Jaakkola and Jordan, 1999). In
this section we show that our methods can also be ap-
plied to these networks, even if the formal guarantees
are (necessarily) weaker.

Our point of departure is the approach initiated by
Kearns and Saul (1998; 1999; Ng and Jordan 2000),
one of the few works providing provable upper and
lower bounds on marginal probabilities for dense net-
works. Their basic insight is that in such dense net-
works, the probability that all incoming weighted sums
are near their means is high, and conditioned on this
event, the network factors into simple product distri-
butions providing rigorous upper and lower bounds on
marginal inferences. In order to adapt these meth-

Lili Dworkin, Michael Kearns, Lirong Xia

ods to (monotone®) DNF queries, we consider three
schemes of increasing sophistication. All three can be
viewed as variational algorithms (the variational pa-
rameters arising from the trade-off between the tight-
ness of concentration around the means and the failure
probability for this event). The first two can be shown
to provide provable upper bounds on the true probabil-
ities, and all three can be shown to have exponentially
small error in interesting cases. For ease of exposition
we focus on two-layered networks (Kearns and Saul,
1998), but the same methods can be applied to the
multi-layer case (Kearns and Saul, 1999).

6.1 Preliminaries

The formal definition of a two-layer network is as fol-
lows. We have a set X of n input binary variables and
a set Y of m output binary variables. For every input
x; and output y;, there is a real-valued weight 6;;. Let
Prlz; = 1] = ¢; and Prly; = 1] = p; = (31, 0i70),
where f is a smooth transfer function with bounded
derivatives. Let P be the true distribution over the
output variables. Let P* be the product distribution
defined by p; = f(;), and let PT(e) and P~ (e) be
the product distributions defined by p; = f(u; + €)
and p; = f(p; — €), respectively.

Let p; = Y.i",60:;qg; be the mean of the incoming
weighted sum for variable y;. We use Hoeffding’s in-
equality to show that the weighted sums are tightly
concentrated around their means. For any j and € > 0,

1 n
g

Taking a union bound, we let §(¢) = 2m exp(—2ne?) be
an upper bound on the probability of the failure event
in which some incoming weighted sum falls more than
€ from its mean.

Pr

> e] < 2exp(—2ne?).

6.2 A Simple Upper Bound

We will use factorization arguments to derive various
upper bounds on P(F'). Let m denote the event in
which all weighted sums lie within € of their means,
so P(r) = 1 — d(e). We write P(F | m) to denote
the probability that F' is satisfied conditioned on the
event m. Because F' is a monotone DNF, P~(F) <
P(F | m) < P*(F). In other words, conditioned on
the event m, we can factorize P into upper and lower
bound product distributions P and P~. But with-
out the conditioning, we can only claim 0 < P(F) < 1.
Therefore, P(F) < (1 — §(€))PT(F) + d(¢). Because

3We can also handle DNF formulas in which each vari-
able always appears with the same sign, i.e. either negated
or unnegated.

we cannot calculate PT(F) directly, we instead use a
union bound over the sum of the satisfaction probabil-
ities of each term in the DNF. Thus, our first upper
bound on P(F) is

k
P(F)<@=6e) | D I flws+o | +6(e). (1)

i=1y,€T;

Note that the summation in this upper bound is over
a small number (k) of products that we expect to be
exponentially small in the interesting case where the
terms T; are long (if there are short terms in a DNF
over a product distribution, the probability of satis-
faction can typically be approximated well by naive
frequency sampling). The additive term d(e) is also
decreasing exponentially with the number n of input-
layer variables. So overall we can obtain a provable
upper bound that is exponentially small.

More precisely, consider the nontrivial special case
in which all terms are of the same length [and all
weighted sums have the same mean u. By applying
a Taylor expansion and the binomial theorem to the
upper bound above, it can be shown that

l
P(F) < kp' Y (Ive/p)! + d(e)

Jj=0

where p = f(u) and v is a constant involving the first
and second derivatives of f. We can make the sum
Zézo(l’ye/p)j smaller by choosing e smaller, but this
must be balanced against larger 6(e). For instance,
choosing € = p/(ly) yields an upper bound of kip' +
2m exp(—2np?/(I1?~?)). Viewing p and v as constants,
the first term is exponentially small in the term length,
which again is large (e.g. linear in m) in the interesting
case. The second term becomes exponentially small
in the input layer size n, as long as n is Q(I?). So
for the case of DNFs with long terms, and two-layer
networks where the input layer is sufficiently larger
than the output layer, we get an exponentially small
upper bound. Obviously other trade-offs are possible.

6.3 More Sophisticated Algorithms

To obtain the closed-form upper bound in the section
above, we used the fact that the probability of satisfy-
ing a DNF must be less than the union bound over the
probabilities of satisfying each term. Of course, this
may overestimate the true probability. Rather than
applying a union bound to P*(F), we can instead es-
timate PT(F) directly using Generalized KLM. We
then turn this into a rigorous upper bound by divid-
ing appropriately to compensate for the 1 + « error
allowed in the algorithm.

Efficient Inference for Complex Queries on Complex Distributions

More formally, let P (F) be the output of Generalized
KLM on inputs Pt and F. By Theorem 2, for any a,
&', with probability 1 — &', (1 —)P+ (F) < PT(F) <
(14 a)PT(F). Therefore, a second upper bound is

P(F) < (1= 8(e))(PH(F)/(1—a)) +6(e). (2)

For a sufficiently small, the term P+ (F)/(1 — a) will
be (potentially much) smaller than the union bound
Zle I1,,er, f(1; +¢€) from our first upper bound. So
theoretically this second approach enjoys at least the
same analyses we provided for the union bound ap-
proach, but would be expected to be better in practice,
since it directly estimates PT(F) rather than using a
known overestimate.

Yet a third approach is to apply Generalized KLM
not to the upper product distribution P*, but to the
mean product distribution P*. Assuming all output
variables fall close to their means, P* is a good ap-
proximation of P, in which case P*(F') is a good ap-
proximation of P(F). We can therefore approximate
P(F) by the output of running Generalized KLM on
P#. This approximation is no longer guaranteed to
be an upper bound, but its accuracy can be analyzed
along the same lines as before (details omitted).

6.4 Experimental Results

Above we have provided three different approximation
schemes for monotone DNFs on dense networks. The
accuracy of each scheme depends on multiple factors,
including the tuning of the parameters € and ¢, as well
as the size of F' and P. It is natural to question how
these approximations perform in practice under vari-
ous assumptions. Thus, we ran the following exper-
iments. We randomly generated two-layer networks
with m = 25 outputs, a sigmoidal transfer function,
and a varying number of inputs n. For each network,
the scaled weights were set to 6;; = 7,; /N, where each
T;; was chosen from a normal distribution with zero
mean and unit variance. Then a random DNF with
k € [5,10] terms and ! € [10,15] variables per term
was generated.

In each trial, we first approximated P(F') by naive fre-
quency sampling 10% times from the distribution over
the output variables. Let P(F) denote the value of this
approximation. We then computed the three approx-
imations we have discussed: the upper bound from
Equation 1, which we call union bound; the upper
bound from Equation 2, which we call KLM-upper;
and the output of running Generalized KLM on P*,
which we call KLM-mean. Both union bound and
KLM-upper require a tradeoff between e and 4, so we
varied € over the set {107* | i = 1,...,5} and chose
the value that resulted in the smallest bound. Both

—©&— Union Bound
—— KLM-Upper
—O&— KLM-Mean

Absolute Error

0 L L L I I L
100 150 200 250 300 350 400 450 500
Size of Input Layer (n)

L y

Figure 1: Average absolute errors of three approximation
schemes as a function of the size of the input layer n.

KLM-upper and KLM-mean use the Generalized KLM
algorithm and therefore require us to set the parame-
ters « and ¢’. For KLM-upper, we set o = 0.01 and
0’ = 0.1. For KLM-mean, we set « = 0.1 and ¢’ = 0.1.

The absolute errors of each approximation are plot-
ted as a function of the size of the input layer n in
Figure 1. Each data point represents an average over
25 trials. As expected, since their estimates directly
involve a trade-off between € and d(e€) as in the theoret-
ical analysis, the error of the union bound and KLM-
upper methods decreases with increasing input layer
size. The KLM-mean approximation consistently has
the best performance, followed by KLM-upper.

The algorithm for KLM-mean is also significantly more
efficient than a frequency sampling approach. On aver-
age, it took about 3.3 seconds to compute KLM-mean,
compared to 266.7 seconds to compute an approxima-
tion of comparable accuracy using frequency sampling.

7 Future Work

We have presented an algorithmic framework that ap-
proximates P(F') whenever P and F allow us to define
three necessary subroutines. We have identified several
new combinations of P and F for which these subrou-
tines exist, but there are likely other combinations as
well. In particular, we leave as an open question the
case in which F' is a threshold DNF and P is a poly-
tree or dense cyclic network. Additionally, it would
be interesting to consider other types of formulas with
compact DNF representations that have more complex
term satisfaction rules.

Lili Dworkin, Michael Kearns, Lirong Xia

References

Paul Dagum and Michael Luby. Approximating prob-
abilistic inference in Bayesian belief networks is NP-
hard. Artificial Intelligence, 60(1):141 — 153, 1993.

Tommi S. Jaakkola and Michael I. Jordan. Variational
probabilistic inference and the QMR-DT network.
Journal of Artificial Intelligence Research, 10:291—
322, 1999.

Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. In Ma-
chine Learning, volume 37, pages 183-233. The MIT
Press, 1999.

Richard M. Karp, Michael Luby, and Neal Madras.
Monte-Carlo approximation algorithms for enumer-
ation problems. Journal of Algorithms, 10(3):429—
448, 1989.

Michael Kearns and Lawrence Saul. Large deviation
methods for approximate probabilistic inference. In
Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 311-319. Mor-
gan Kaufmann Publishers Inc., 1998.

Michael Kearns and Lawrence Saul. Inference in mul-
tilayer networks via large deviation bounds. In Ad-
vances in Neural Information Processing Systems,

volume 11, pages 260-266. The MIT Press, 1999.

Andrew Y. Ng and Michael I. Jordan. Approximate in-
ference algorithms for two-layer Bayesian networks.
In Advances in Neural Information Processing Sys-
tems, volume 12, pages 533-539. The MIT Press,
2000.

Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1988.

Tian Sang, Paul Bearne, and Henry Kautz. Perform-
ing Bayesian inference by weighted model counting.
In Proceedings of the 20th National Conference on
Artificial Intelligence, pages 475-481. AAAI Press,
2005.

Efficient Inference for Complex Queries on Complex Distributions

Technical Appendix

Threshold DNFs An exponentially large standard
DNF is required to represent a threshold DNF. Con-
sider a threshold DNF with just a single term con-
taining all n of the binary variables x1,...,z,, and let
the threshold value be 5, with each variable having
equal weight. Consider any standard DNF for this &
threshold function, and let T" be any term in it. If T'
has fewer than % variables appearing unnegated, then
T has a satisfying assignment with fewer than 7 bits
on, which is a contradiction. Furthermore, if T" has
any variables appearing negated, then these variables
can be removed, and all previously satisfying assign-
ments for T will remain satisfying. Thus, the smallest
T will contain only unnegated variables, and at least %
of them. The DNF formula must contain such a term
for every possible subset of 5 bits, of which there are
exponentially many.

Section 5 Assumptions In Section 5 we assume
that the tree is binary and that the distribution P is
given over the leaves only. To remove the first assump-
tion, rather than summing over {z,y | +y = i}, we
use another dynamic program that calculates the prob-
ability that exactly ¢ amount of weight is distributed
among the children of u. The approach is similar to
calculating the probability that exactly k£ out of n bi-
ased coins come up heads. To remove the second as-
sumption, we check at each node u (not just the leaves)
whether u corresponds to a literal in T, and if so, we
make a case analysis similar to the one currently re-
stricted to our base case.

Lemma 1. The GenAssign subroutine for DNF for-
mulas generates an assignment v € V' with probability

P(v)/P(T).

Proof. Let x1,...,x, denote variables in the order
as they appear in the loop from lines 5 to 12, where
m = n — |T|. Let v be the assignment generated by
GenAssign(P, T, ¢). Let [; = (z;,vy,). The probability
that v was generated is

PHWA)X P(TALAL) P(v)
P(T) P(T A ly) P(T AL, .. ly)
After cancelling terms, we have P(v)/P(T). O

Lemma 2. The GenAssign subroutine for threshold
DNF's generates an assignment v € V' with probability

P(v)/P(T).

Proof. The probability that an assignment v is gener-

ated is:
SCADIN
S pr(QT (1))
Pr[r = v,] Pr[QL (i) | r = v,] "

Pr{QF (i)]
Pr(Qy, (=)Ir—vr}

P

|
P[’/‘L—’UTL|’I‘—’UT]

Pr(QT (z |r:vr}

Pr [TR = Urg | r= U?"] Pr [Q;R(y) ‘ TR = U?"R] «
PriQf, (y) | r =]

After cancelling terms, we have

Pr[r = v, Pr[r = v, | r =0 Prlre =v,, | r =0, ..
i PriQE ()]
Prr=v.Arp =0, ATR=0Upp...|
N P(T)
P(v)
~ P(T)

O

Lemma 3. The GenAssign subroutine for threshold
DNF's generates an assignment v € V' such that v sat-
isfies T'.

Proof. Tt suffices to prove that the process generates
an assignment v in which the weighted sum of satisfied
literals is equal to ¢, where ¢ > ¢ is the value we chose
in the first step. We will use induction to prove the fol-
lowing more general claim. For any internal node wu, if
we have chosen the value for the weighted sum of sat-
isfied literals in u’s subtree to be i, then the generated
assignment will meet this requirement.

Suppose we are at a leaf node u where | = (u,1) € T
and we have chosen up = b. We then choose i with
probability proportional to Pr[Q7 (i)]. The only values
for ¢ which correspond to a nonzero probability are
w(l) and 0. In order for u’s literal to be satisfied, u’s
value must be 1. So if we have chosen i to be w(l), then
we should choose u’s value to be 1 with probability 1.
According to the subroutine, we choose the value for
u to be 1 with probability equal to

Prlu=1|up =0 Pr[QF (w(l)) | u=1]
Pr 5((1) up =10
_ Prju=1|up = b](1)
Priu=1|up =1]
=1.

Lili Dworkin, Michael Kearns, Lirong Xia

On the other hand, if we have chosen 7 to be 0, then
we should choose u’s value to be 0 with probability 1.
According to the process, we choose the value for u to
be 0 with probability equal to

The case where ! = (u,0) € T follows similarly. For the
inductive step, suppose we are at a node u and have
chosen the value 7. According to the subroutine, we
have also chosen values z,y for the subtrees of uy, and
uR, such that x +y = i. By the induction hypothesis,
we can assume that the conditions were met for wuy,
and ug. Thus, the weighted sum of satisfied literals in
the subtree of u will be equal to x + y = 1. O

