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Abstract

We study fairness in linear bandit problems. Starting from
the notion of meritocratic fairness introduced in Joseph et al.
(2016), we carry out a more refined analysis of a more gen-
eral problem, achieving better performance guarantees with
fewer modelling assumptions on the number and structure of
available choices as well as the number selected. We also an-
alyze the previously-unstudied question of fairness in infinite
linear bandit problems, obtaining instance-dependent regret
upper bounds as well as lower bounds demonstrating that this
instance-dependence is necessary. The result is a framework
for meritocratic fairness in an online linear setting that is sub-
stantially more powerful, general, and realistic than the cur-
rent state of the art.

1 Introduction
The problem of repeatedly making choices and learning
from choice feedback arises in a variety of settings, includ-
ing granting loans, serving ads, and hiring. Encoding these
problems in a bandit setting enables one to take advantage of
a rich body of existing bandit algorithms. UCB-style algo-
rithms, for example, are guaranteed to yield no-regret poli-
cies for these problems.

Joseph et al. (2016), however, raises the concern that these
no-regret policies may be unfair: in some rounds, they will
choose options with lower expected rewards over options
with higher expected rewards, for example choosing less
qualified job applicants over more qualified ones. Consider a
UCB-like algorithm aiming to hire all qualified applicants in
every round. As time goes on, any no-regret algorithm must
behave unfairly for a vanishing fraction of rounds, but the
total number of mistreated people – in hiring, people who
saw a less qualified job applicant hired in a round in which
they themselves were not hired – can be large (see Figure 1).

Joseph et al. (2016) then design no-regret algorithms
which minimize mistreatment and are fair in the following
sense: their algorithms (with high probability) never at any
round place higher selection probability on a less qualified
applicant than on a more qualified applicant. However, their
analysis assumes that there are k well-defined groups, each
with its own mapping from features to expected rewards;
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Figure 1: Cumulative mistreatments for UCB. See the ex-
periments section in the full technical version for details and
additional experimental evaluation of the structure of mis-
treatment.

at each round exactly one individual from each group ar-
rives; and exactly one individual is chosen in each round. In
the hiring setting, this equates to assuming that a company
receives one job applicant from each group and must hire
exactly one (rather than m or all qualified applicants) intro-
ducing an unrealistic element of competition and unfairness
both between applicants and between groups.

The aforementioned assumptions are unrealistic in many
practical settings; our work shows they are also unneces-
sary. Meritocratic fairness can be defined without reference
to groups, and algorithms can satisfy the strictest form of
meritocratic fairness without any knowledge of group mem-
bership. Even without this knowledge, we design algorithms
which are fair with respect to any possible group structure
over individuals. In Section 2, we present this general defi-
nition of fairness. The definition further allows for the num-
ber of individuals arriving in any round to vary, and is suf-
ficiently flexible to apply to settings where algorithms can
selectm ∈ [k] individuals in each round.Since the definition
makes no reference to groups, the model makes no assump-
tions about how many individuals arriving at time t belong to
any group. A company can then consider a large pool of ap-
plicants, not necessarily stratified by race or gender, with an



arbitrary number of candidates from any one of these popu-
lations, and hire one, m, or even every qualified applicant.

We then present a framework for designing meritocrati-
cally fair online linear contextual bandit algorithms. In Sec-
tion 3, we show how to design fair algorithms to pick one of
at most k individuals arriving in each round (the linear con-
textual bandits problem (Abe, Biermann, and Long, 2003;
Auer, 2002)), as well as when m individuals may be chosen
in each round (“multiple play” introduced and studied ab-
sent fairness in Anantharam, Varaiya, and Walrand (1987)).
We therefore study a much more general model than Joseph
et al. (2016) and, in Section 3, substantially improve upon
their black-box regret guarantees for linear bandit problems
using a technical analysis specific to the linear setting.

However, these regret bounds still scale (polynomially)
with k, the maximum number of individuals seen in any
given round. This may be undesirable for large k, thus mo-
tivating the investigation of fair algorithms for the infinite
bandit setting (the online linear optimization with bandit
feedback problem (Flaxman, Kalai, and McMahan, 2005)).1
In Section 4 we provide such an algorithm via an adapta-
tion of our general confidence interval-based framework that
takes advantage of the fact that optimal solutions to linear
programs must be extreme points of the feasible region. We
then prove, subject to certain assumptions, a regret upper
bound that depends on ∆gap, an instance-dependent param-
eter based on the distance between the best and second-best
extreme points in a given choice set.

In Section 5 we show that this instance dependence is
almost tight by exhibiting an infinite choice set satisfying
our assumptions for which any fair algorithm must incur
regret dependent polynomially on ∆gap, separating this set-
ting from the online linear optimization setting absent a fair-
ness constraint. In Section 6 we justify our assumptions on
the choice set by exhibiting a set that both violates our as-
sumptions and admits no fair algorithm with nontrivial re-
gret guarantees. A condensed presentation of our methods
and results appears in Figure 2.

Finally, we note that our algorithms share an overarching
logic for reasoning about fairness. These algorithms all sat-
isfy fairness by certifying optimality, never giving preferen-
tial treatment to x over y unless the algorithm is certain that
x has higher reward than y. The algorithms accomplish this
by computing confidence intervals around the estimated re-
wards for individuals. If two individuals have overlapping
confidence intervals, we say they are linked; if x can be
reached from y using a sequence of linked individuals, we
say they are chained.

1.1 Related Work in Fairness
Fairness in machine learning has seen substantial recent
growth as a subject of study, and many different defini-
tions of fairness exist. We provide a brief overview here; see
e.g. Berk et al. (2017) and Corbett-Davies et al. (2017) for
detailed descriptions and comparisons of these definitions.

1We note that both the finite and infinite settings have infinite
numbers of potential candidates: the difference arises in how many
choices an algorithm has in a given round.

Many extant fairness notions are predicated on the exis-
tence of groups, and aim to guarantee that certain groups
are not unequally favored or mistreated. In this vein, Hardt,
Price, and Srebro (2016) introduced the notion of equality of
opportunity, which requires that a classifier’s predicted out-
come should be independent of a protected attribute (such as
race) conditioned on the true outcome, and they and Wood-
worth et al. (2017) have studied the feasibility and possible
relaxations thereof. Similarly, Zafar et al. (2017) analyzed
an equivalent concurrent notion of (un)fairness they call dis-
parate mistreatment. Separately, Kleinberg, Mullainathan,
and Raghavan (2017) and Chouldechova (2017) showed
that different notions of group fairness may (and sometimes
must) conflict with one another.

This paper, like Joseph et al. (2016), departs from the
work above in a number of ways. We attempt to capture a
particular notion of individual and weakly meritocratic fair-
ness that holds throughout the learning process. This was
inspired by Dwork et al. (2012), who suggest fair treatment
equates to treating “similar” people similarly, where similar-
ity is defined with respect to an assumed pre-specified task-
specific metric. Taking the fairness formulation of Joseph
et al. (2016) as our starting point, our definition of fairness
does not promise to correct for past inequities or inaccurate
or biased data. Instead, it assumes the existence of an ac-
curate mapping from features to true quality for the task at
hand2 and promises fairness while learning and using this
mapping in the following sense: any individual who is cur-
rently more qualified (for a job, loan, or college acceptance)
than another individual will always have at least as good a
chance of selection as the less qualified individual.

The one-sided nature of this guarantee, as well as its for-
mulation in terms of quality, leads to the name weakly mer-
itocratic fairness. Weakly meritocratic fairness may then be
interpreted as a minimal guarantee of fairness: an algorithm
satisfying our fairness definition cannot favor a worse op-
tion but is not required to favor a better option. In this sense
our fairness requirement encodes a necessary variant of fair-
ness rather than a completely sufficient one. This makes our
upper bounds (Sections 3 and 4) relatively weaker and our
lower bounds (Sections 5 and 6) relatively stronger.

We additionally note that our fairness guarantees require
fairness at every step of the learning process. We view this as
an important point, especially for algorithms whose learning
processes may be long (or even continuous). Furthermore,
while it may seem reasonable to relax this requirement to
allow a small fraction of unfair steps, it is unclear how to
do so without enabling discrimination against a correspond-
ingly small population.

Finally, while our fairness definition draws from Joseph et
al. (2016), we work in what we believe to be a significantly
more general and realistic setting. In the finite case we al-
low for a variable number of individuals in each round from
a variable number of groups and also allow selection of a
variable number of individuals in each round, thus dropping

2 Friedler, Scheidegger, and Venkatasubramanian (2016) pro-
vide evidence that providing fairness from bias-corrupted data is
quite difficult.
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Figure 2: Settings in which our framework provides fair algorithms. In all cases, fairness can be imposed only across pairs for
any partitioning of the input space; the bounds here assume they bind across all pairs, and are thus worst-case upper bounds.
See Section 4 for a full explanation of the distribution-dependent constant c in the regret bound for the infinite case.

several assumptions from Joseph et al. (2016). We also ana-
lyze the previously unstudied topic of fairness with infinitely
many choices.

2 Model
Fix some β ∈ [−1, 1]d, the underlying linear coefficients of
our learning problem, and T the number of rounds. For each
t ∈ [T ], let Ct ⊆ D = [−1, 1]d denote the set of avail-
able choices in round t. We will consider both the “finite”
action case, where |Ct| ≤ k, and the infinite action case. An
algorithm A, facing choices Ct, picks a subset Pt ⊆ Ct,
and for each xt ∈ Pt, A observes reward yt ∈ [−1, 1]
such that E [yt] = 〈β, xt〉, and the distribution of the noise
ηt = yt − 〈β, xt〉 is sub-Gaussian.

Refer to all observations in round t as Yt ∈ [−1, 1]|Pt|

where Yt,i = yt,i for each xt,i ∈ Pt. Finally, let Xt =
[X1; . . . ;Xt],Yt = [Y1; . . . ;Yt] refer to the design and ob-
servation matrices at round t.

We are interested in settings where an algorithm may face
size constraints on Pt. We consider three cases: the standard
linear bandits problem (|Pt| = 1), the multiple choice linear
bandits problem (|Pt| = m), and the heretofore unstudied
(to the best of the authors’ knowledge) case in which the
size of Pt is unconstrained. For short, we refer to these as
1-bandit, m-bandit, and k-bandit.

Regret The notion of regret we will consider is
that of pseudo-regret. Facing a sequence of choice sets
C1, . . . , CT , suppose A chooses sets P1, . . . , PT .3 Then,
the expected reward of A on this sequence is Rew(A) =

E
[∑

t∈[T ]

[∑
xt∈Pt yt

]]
.

Refer to the sequence of feasible choices4 which maxi-
mizes expected reward as P∗,1 ⊆ C1, . . . , P∗,T ⊆ CT , de-

3If these are randomized choices, the randomness ofA is incor-
porated into the expected value calculations.

4We assume these have the appropriate size for each problem
we consider: singletons in the 1-bandit problem, size at most m in
the m-bandit problem, and arbitrarily large in the k-bandit problem.

fined with full knowledge of β.
Then, the pseudo-regret ofA on a sequence is defined as

Rew(P∗,1, . . . , P∗,T )− Rew(A) = R(T ).

The pseudo-regret of A refers to the maximum pseudo-
regret A incurs on any sequence of choice sets and any β ∈
[−1, 1]d. If R(T ) = o(T ), then A is said to be no-regret.
If, for any input parameter δ > 0, R(T ) upper-bounds the
expectation of the rewards of the sequence chosen byAwith
probability 1− δ, then we call this a high-probability regret
bound for A.

Fairness Consider an algorithm A, which chooses a se-
quence of probability distributions π1, π2, . . . , πT over fea-
sible sets to pick, πt ∈ ∆(2Ct). Note that distribution πt
depends upon C1, . . . , Ct, the choices P1, . . . , Pt−1, and
Y1, . . . , Yt−1.

We now give a formal definition of fairness of an algo-
rithm for the 1-bandit, m-bandit, and k-bandit problems. We
adapt our fairness definition from Joseph et al. (2016), gen-
eralizing from discrete distributions over finite action sets to
mixture distributions over possibly infinite action sets. We
slightly abuse notation and refer to the probability density
and mass functions of an element x ∈ Ct: this refers to the
marginal distribution of x being chosen (namely, the proba-
bility that x belongs to the set picked according to the distri-
bution πt).
Definition 1 (Weakly Meritocratic Fairness). We say that
an algorithm A is weakly meritocratic if, for any input δ ∈
(0, 1] and any β, with probability at least 1 − δ, at every
round t, for every x, x′ ∈ Ct such that 〈β, x〉 ≥ 〈β, x′〉:
• If πt is a discrete distribution: For gt(x) = πt(x) (the

probability mass function)

gt(x) ≥ gt(x′).
• If πt is a continuous distribution: For gt(x) = ft(x) (the

probability density function)

gt(x) ≥ gt(x′).



• If πt can be written as a mixture distribution:∑
i αiπti,

∑
i αi = 1, such that each constituent distri-

bution πti ∈ ∆(2Ct) is either discrete or continuous and
satisfies one of the above two conditions.

For brevity, as we consider only this fairness notion in this
paper, we will refer to weakly meritocratic fairness as “fair-
ness”. We say A is round-fair at time t if πt satisfies the
above conditions.

This definition can be easily generalized over any parti-
tion G of D, by requiring this weak monotonicity hold only
for pairs x, x′ belonging to different elements of the partition
G,G′. The special case above of the singleton partition is the
most stringent choice of partition. We focus our analysis on
the singleton partition as a minimal worst-case framework,
but this model easily relaxes to apply only across groups, as
well as to only requiring “one-sided” monotonicity, where
monotonicity is required only for pairs where the more qual-
ified member belongs to group G rather than G′.
Remark 1. In the k-bandit setting, Definition 1 can be sim-
plified to require, with probability 1 − δ over its observa-
tions, an algorithm never select a less-qualified individual
over more-qualified one in any round, and can be satisfied
by deterministic algorithms.

3 Finite Action Spaces: Fair Ridge
Regression

In this section, we introduce a family of fair algorithms
for linear 1-bandit, m-bandit, and the (unconstrained) k-
bandit problems. Here, an algorithm sees a slate of at most
k distinct individuals each round and selects some subset of
them for reward and observation. This lets us encode set-
tings where an algorithm repeatedly observes a new pool of
k individuals, each represented by a vector of d features,
then decides to give some of those individuals loans based
upon those vectors, observes the quality of the individuals to
whom they gave loans, then updates the loan allocation rule.
The regret of these algorithms scales polynomially in k and
d as the algorithm gets tighter estimates of β.

All of the algorithms are based upon the following tem-
plate. They maintain an estimate β̂t of β from observations,
along with confidence intervals around the estimate. They
use β̂t to estimate the rewards for the individuals on day t
and the confidence interval around β̂t to create a confidence
interval around each of these estimated rewards.

Any two individuals whose intervals overlap on day t will
be picked with the same probability by the algorithm. Call
any two individuals whose intervals overlap on day t linked,
and any two individuals belonging to the transitive closure of
the linked relation chained. Since any two linked individuals
will be chosen with the same probability, any two chained
individuals will also be chosen with the same probability.

An algorithm constrained to pick exactly m ∈ [k] in-
dividuals each round will pick them in the following way.
Order the chains by their highest upper confidence bound.
In that order, select all individuals from each chain (with
probability 1), while that results in taking fewer than m in-
dividuals. When the algorithm arrives at the first chain for

which it does not have capacity to accept every individual in
the chain, it fills its remaining capacity uniformly at random
from that chain’s individuals. If the algorithm can pick any
number of individuals, it will pick all individuals chained
to any individual with positive upper confidence bound. The
full pseudocode for RIDGEFAIRm is given in Figure 3. We
now present the regret guarantees for fair 1-bandit, m-bandit,
and k-bandit using this framework.

Theorem 1. Suppose, for all t, ηt is 1-sub-Gaussian, Ct ⊆
[−1, 1]d, and ||xt||2 ≤ 1 for all xt ∈ Ct, and ||β|| ≤ 1.
Then, RIDGEFAIR1, RIDGEFAIRm, and RIDGEFAIR≤k are
fair algorithms for the 1-bandit, m-bandit, and k-bandit
problems, respectively. With probability 1 − δ, for j ∈
{1,m, k}, the regret of RIDGEFAIRj is

R(T ) = O

(
dkj
√
T log

(
T

δ

))
= Õ(dkj

√
T ).

We pause to compare our bound for 1-bandit to that found
in Joseph et al. (2016). Their work supposes that each of
k groups has an independent d-dimensional linear func-
tion governing its reward and provides a fair algorithm re-
gret upper bound of Õ

(
min{T 4

5 k
6
5 d

3
5 , k3}

)
. To directly

encode this setting in ours, one would need to use a sin-
gle dk-dimensional linear function, yielding a regret bound
of Õ

(
dk2
√
T
)

. This is an improvement on their upper
bound for all values of T for which the bounds are non-
trivial (recalling that the bound from Joseph et al. (2016)
becomes nontrivial for T > d3k6, while the bound here be-
comes nontrivial for T > d2k4). We also briefly observe
that RIDGEFAIR≤k satisfies an additional “fairness” prop-
erty: with high probability, it always selects every available
individual with positive expected reward.

Each of these algorithms will use `2-regularized least-
squares regressor to estimate β. Given a design matrix X,
response vector Y, and regularization parameter γ ≥ 1 this
is of the form β̂ = (XTX + γI)−1XTY. Valid confidence
intervals (that contain β with high probability) are nontriv-
ial to derive for this estimator (which might be biased); to
construct them, we rely on martingale matrix concentration
results (Abbasi-Yadkori, Pál, and Szepesvári, 2011).

We now sketch the proof of Theorem 1 (the full proof of
this and all other results are in the full technical version of
this paper). We first establish that, with probability 1 − δ,
for all rounds t, for all xt,i ∈ Ct, that yt,i ∈ [`t,i, ut,i] (i.e.
that the confidence intervals being used are valid). Using this
fact, we establish that the algorithm is fair. The algorithm
plays any two actions which are linked with equal probabil-
ity in each round, and any action with a confidence inter-
val above another action’s confidence interval with weakly
higher probability. Thus, if the payoffs for the actions lie
anywhere within their confidence intervals, RIDGEFAIR is
fair, which holds as the confidence intervals are valid.

Proving a bound on the regret of RIDGEFAIR requires
some non-standard analysis, primarily because the widths of
the confidence intervals used by the algorithm do not shrink
uniformly. The sum of the widths of the intervals of our se-
lected (and therefore observed) actions grows sublinearly in



1: procedure RIDGEFAIRm(δ, T, k, γ ≥ 1, ExactBool)
2: for t ≥ 1, 1 ≤ i ≤ k do
3: Let Xt,Yt = design matrix, observed payoffs

before round t
4: Let Ct be the choice set in round t
5: Let V̄t = Xt

TXt + γI

6: Let β̂t = (V̄t)
−1Xt

TYt . regularized LSE
7: Let ŷt,i = 〈β̂t, xt,i〉 for each xt,i ∈ Ct
8: Letwt,i = ||xt,i||(V̄t)−1(

√
2d log( 1+t/γ

δ )+
√
γ)

9: Let [`t,i, ut,i] = [ŷt,i − wt,i, ŷt,i + wt,i]
10: . Conf. int. for ŷt,i
11: if ExactBool then
12: PICK (m, {(xt,i, [`t,i, ut,i])})
13: else PICK≤ (m, {(xt,i, [`t,i, ut,i])})
14: Xt+1 = Xt :: Xt,Yt+1 = Yt :: Yt.
15: . Update design matrices
16: procedure PICK(m, (xt,1, [`t,1, ut,1]), . . . , (xt,k, [`t,k, ut,k]))
17: Let M = Ct
18: Let Pt = ∅
19: while |Pt| < m do
20: Let xt,̂i = argmaxxt,i∈Mut,i
21: . Highest UCB not yet selected
22: Let St be the set of actions in Ct chained to xt,̂i
23: . Highest chain not yet selected
24: if |St| ≤ m− |Pt| then
25: Pt = Pt ∪ St
26: . Take the chain with probability 1
27: M = M \ St
28: else
29: LetQt bem−|Pt| actions chosen UAR from

St
30: Let Pt = Pt ∪Qt
31: . fill remaining capacity UAR from the chain
32: Play Pt
33: procedure PICK≤(m, (xt,1, [`t,1, ut,1]), . . . , (xt,k, [`t,k, ut,k]))
34: LetPt = {all actions chained to any xt,i ∈ Ct : ut,i > 0 }
35: Let M = Ct
36: Let Pt = ∅
37: while |Pt| < m ∧ ut,xt,̂i > 0 for xt,̂i =

argmaxxt,i∈Mut,i do
38: Let St be the set of actions in Ct chained to xt,̂i
39: . Highest chain not yet selected
40: if |St| ≤ m− |Pt| then
41: Pt = Pt ∪ St
42: . Take the chain with probability 1
43: M = M \ St
44: else
45: LetQt bem−|Pt| actions chosen UAR from

St
46: Let Pt = Pt ∪Qt
47: . fill remaining capacity UAR from the chain
48: Play Pt

Figure 3: RIDGEFAIRm, a fair no-regret algorithm for pick-
ing ≤ m actions whose payoffs are linear.

t. UCB variants, by virtue of playing an action a with high-
est upper confidence bound, have regret in round t bounded
by a’s confidence interval width. RIDGEFAIR, conversely,
suffers regret equal to the sum of the confidence widths of
the chained set, while only receiving feedback for the action
it actually takes. We overcome this obstacle by relating the
sum of the confidence interval widths of the linked set to the
sum of the widths of the selected actions.

4 Fair algorithms for convex action sets
In this section we analyze linear bandits with infinite choice
sets in the 1-bandit setting.5 We now provide a fair algorithm
with an instance-dependent sublinear regret bound for infi-
nite convex choice sets; Section 5 shows that instance depen-
dence is necessary for fair algorithms in an infinite setting.

A naive adaptation of RIDGEFAIR to an infinite setting
requires maintenance of infinitely many confidence inter-
vals and is therefore impractical. We instead assume that
our choice sets are convex bodies and exploit the result-
ing geometry: since our underlying function is linear, it is
maximized at an extremal point. This simplifies the problem,
since we need only reason about the relative quality of ex-
tremal points. The relevant quantity is ∆gap, a notion adapted
from Dani, Hayes, and Kakade (2008) that denotes the dif-
ference in reward between the best and second-best extremal
points in the choice set. When ∆gap is large we can identify
the optimal choice more quickly, then select it determinis-
tically without violating fairness. When ∆gap is small, we
need more observations to determine which of the top two
points is best – and before we make this determiniation, de-
terministically selecting any action violates fairness for any
points infinitesimally close to the true best point (and we are
forced to play randomly from the entire choice set).

Our resulting fair algorithm, FAIRGAP, proceeds as fol-
lows: in each intervals around the two extreme points with
highest estimated reward round it uses its current estimate of
β to construct confidence and selects the higher one if these
intervals do not overlap; otherwise, it selects uniformly at
random from the entire convex body. We prove fairness and
bound regret by analyzing the rate at which random explo-
ration shrinks our confidence intervals and relating it to the
frequency of exploitation, a function of ∆gap, defined below.
Definition 2 (Gap, adapted from Dani, Hayes, and Kakade
(2008)). Given sequence of action sets C = (C1, . . . , CT ),
define Ωt to be the set of extremal points ofCt, i.e. the points
in Ct that cannot be expressed as a proper convex combina-
tion of other points in Ct, and let x∗t = maxx∈Ct〈β, x〉. The
gap of Ct is

∆gap = min
1≤t≤T

(
inf

xt∈Ωt,xt 6=x∗
t

〈β, x∗t − xt〉
)
.

∆gap is a lower bound on difference in payoff between
the optimal action and any other extremal action in any Ct.

5Note that no-regret guarantees are in general impossible for in-
finite choice sets in m-bandit and k-bandit settings, since the con-
tinuity of the infinite choice sets we consider makes selecting mul-
tiple choices while satisfying fairness impossible without choosing
uniformly at random from the entire set.



When ∆gap > 0, this implies the existence of a unique
optimal action in each Ct. Our algorithm (implicitly) and
our analysis (explicitly) exploits this quantity: a larger gap
enables us to confidently identify the optimal action more
quickly. We now present the regret and fairness guarantees
for FAIRGAP.

Theorem 2. Given sequence of action sets C =
(C1, . . . , CT ) where each Ct has nonzero Lebesgue mea-
sure and is contained in a ball of radius r and feedback with
R-sub-Gaussian noise, FAIRGAP is fair and achieves

REGRET (T ) = O

(
r6R2 ln(2T/δ)

κ2λ2∆2
gap

)

where κ = 1 − r

√
2 ln( 2dT

δ )
Tλ and λ =

min1≤t≤T
[
λmin(Ext∼UARCt [xtxt

T ])
]

A full proof of FAIRGAP’s fairness and regret bound, as
well as pseudocode, appears in the full technical version.
We sketch the proof here: our proof of fairness proceeds
by bounding the influence of noise on the confidence inter-
vals we construct (via matrix Chernoff bounds) and prov-
ing that, with high probability, FAIRGAP constructs correct
confidence intervals. This requires reasoning about the spec-
trum of the covariance matrix of each choice set, which is
governed by λ, a quantity which, informally, measures how
quickly we learn from uniformly random actions. 6. With
correct confidence intervals in hand, fairness follows almost
immediately, and to bound regret we analyze the rate at
which these confidence intervals shrink.

The analysis above implies identical regret and fairness
guarantees when each Ct is finite. For comparison, the re-
sults of Section 3 guarantee REGRET (T ) = O(dk

√
T ).

This result, in comparison, enjoys a regret independent of
k which is especially useful in cases with large k.

Finally, our analysis so far has elided any computational
efficiency issues arising from sampling randomly from C.
We note that it is possible to circumvent this issue by re-
laxing our definition of fairness to approximate fairness and
obtain similar regret bounds for an efficient implementation.
We achieve this using results from the broad literature on
sampling and estimating volume in convex bodies, as well
as recent work on finding “2nd best” extremal solutions to
linear programs. Full details appear in the appendix of the
full technical version.

5 Instance-dependent Lower Bound for Fair
Algorithms

We now present a lower bound instance for which any
fair algorithm must suffer gap-dependent regret. More for-
mally, we show that when each choice set is a square, i.e.
Ct = [0, 1]2 for all t, for any fair algorithm REGRET (T ) =

Ω̃(1/∆gap) with probability at least 1− δ. This also implies
the weaker result that no fair algorithm enjoys an instance-
independent sub-linear regret bound o(T ) holding uniformly

6λ can be computed for finite Ct or approximated by any posi-
tive lower bound for infinite Ct and substituted into our results.

over all β. We therefore obtain a clear separation between
fair learning and the unconstrained case (Dani, Hayes, and
Kakade, 2008), and show that an instance-dependent up-
per bound like the one in Section 4 is unavoidable. Our ar-
guments establish fundamental constraints on fair learning
with large choice sets and quantify through the ∆gap param-
eter how choice set geometry can affect the performance of
fair algorithms. The lower bound employs a Bayesian argu-
ment resembling that in Joseph et al. (2016) but with a novel
“chaining” argument suited to infinite action sets; we defer
its proof to the full technical version of this paper.

Theorem 3. For all t let Ct = [−1, 1]d, β ∈ [−1, 1]d, and
yt = 〈xt, β〉+ηt,where ηt ∼ U [−1, 1]. LetA be any fair al-
gorithm. Then for every gap ∆gap, there is a distribution over
instances with gap Ω(∆gap) such that any fair algorithm has
regret REGRET (T ) = Ω̃(1/∆gap) with probability 1− δ.

We note that this impossibility result only holds for d ≥ 2.
When d = 1, the choice set reduces to [−1, 1], and simi-
larly β ∈ [−1, 1]. Thus, the optimal action is sign(β)). It
takes O(1/β2) observations to determine the sign of β. A
fair algorithm may play randomly from [−1, 1] until it has
determined sign(β), and then play sign(β) for every round
thereafter. As the maximum per-round regret of any action is
O(β), and because the maximum cumulative regret obtained
by the algorithm is with high probability O(β · 1/β2) =
O(1/β), the regret of this simple algorithm over T rounds is
O(min(β · T, 1/β2)). Taking the worst case over β, we see
that this quantity is bounded uniformly byO(

√
T ), a sublin-

ear parameter independent regret bound.

6 Zero Gap: Impossibility Result
Section 4 presents an algorithm for which the sublinear re-
gret bound has dependence 1/∆2

gap on the instance gap. Sec-
tion 5 exhibits an choice setC with a Ω̃(1/∆gap) dependence
on the gap parameter. We now exhibit a choice set C for
which ∆gap = 0 for every β, and for which no fair algo-
rithm can obtain non-trivial regret for any value of β. This
precludes even instance-dependent fair regret bounds on this
action space, in sharp contrast with the unconstrained bandit
setting.

Theorem 4. For all t let Ct = S1, the unit circle, and ηt ∼
Unif(−1, 1). Then for any fair algorithmA, ∀β ∈ S1,∀T ≥
1, we have

Eβ [REGRET (T )] = Ω(T ).

S1 makes fair learning difficult for the following reasons:
since S1 has no extremal points, there is no finite set of
points which for any β contains the uniquely optimal action,
and for any point in S1, and any finite set of observations,
there is another point in S1 for which the algorithm can-
not confidently determine relative reward. Since this prop-
erty holds for every point, the fairness constraint transitively
requires that the algorithm play every point uniformly at ran-
dom, at every round. The formal argument again relies on a
Bayesian analysis of chaining, as well as a basic fact about
the topology of S1.



References
Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Improved
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