
          April 3, 2011 
The Crowdsourcing Compiler 
 
Michael Kearns 
Computer and Information Science 
University of Pennsylvania 
mkearns@cis.upenn.edu 
 
 
The past several years have provided a growing number of successful examples of the 
phenomenon broadly known as “crowdsourcing” or “peer production”: the deliberate (or 
sometimes even inadvertent) marshalling of large numbers of online volunteers in service of 
the creation of a powerful technology-based service or artifact. Among the more visible 
instances are the Web itself, Wikipedia, the ESP game, deli.cio.us, social networking 
services, online labor markets such as Amazon’s Mechanical Turk, the DARPA Balloon 
Challenge, and FoldIt, a protein folding game. Every week witnesses both new startups 
betting almost entirely on crowdsourced contributions, or online grass-roots movements that 
simply build something powerful quickly, and from the bottom up.  
 
While the list of such apparently successful examples grows, we actually have very poor --- 
in fact, almost no --- understanding of the phenomenon of crowdsourcing from a design and 
engineering standpoint: all we can do is look at what has already been done, and guess what 
might work in a new setting. But this is not how we design computers or systems, where we 
have well-understood and tested design principles, successful abstractions, notions of 
modularity that allow componentwise design and construction, and so on. We thus propose 
that a similar design and engineering discipline is both interesting and necessary for the 
advancement of crowdsourcing. We posit that massive volunteer forces (both online and in 
the physical world) can be viewed as a valuable computing substrate for crowdsourced 
systems and services, and we should begin to create a science for how to best use such a 
powerful resource for specific tasks. Central to this goal will be two fundamental issues: 
understanding the incentives under which volunteers will work most effectively; and 
understanding how best to organize volunteers in service of a particular task. The research 
will necessarily be interdisciplinary, requiring ideas and methods from computer science, 
game theory and economics (both traditional and behavioral), sociology, and many other 
fields.  
 
A Grand Challenge for this endeavor might be called the Crowdsourcing Compiler: the 
development of high-level programming languages for specifying large-scale, distributed 
tasks whose solution requires combining traditional computational and networking resources 
with volunteer human intelligence and contributions.  The compiler would translate an 
abstract program into a more detailed organizational plan for machines and people to jointly 
carry out the desired task. In the same way that today’s Java programmer is relieved of low-
level, machine-specific decisions (such as which data to keep in fast registers, and which in 
main memory or disk), the future crowdsourcing programmer would specify the goals of their 
system, and leave many of the implementation details to the Crowdsourcing Compiler. Such 
details might include which components of the task are best carried out by machine and 
which by human volunteers; whether the human volunteers should be incentivized by 
payment, recognition, or entertainment; how their contributions should be combined to solve 



the overall task; and so on.  We acknowledge the difficulty of this challenge --- at its logical 
extreme, the Crowdsourcing Compiler might be unattainable --- but at a minimum, 
significant progress towards it would imply a much deeper scientific understanding of 
crowdsourcing than we currently have, which in turn should have great engineering benefits. 
 
We would note that the organizational schemes in virtually all of the successful 
crowdsourcing examples to date share much in common. The tasks to be performed (e.g. 
building an online encyclopedia, labeling images for their content, creating a network of 
website bookmark labels, finding surveillance balloons) are obviously parallelizable, and 
furthermore the basic unit of human contribution required is extremely small (fix some 
punctuation, label an image, etc.). Furthermore, there is very little coordination required 
between the contributions, and often the task is very open-ended (we want an online 
encyclopedia, but it’s fine if the article about Britney Spears is three times longer than the 
one on the Vietnam War).  The presence of these commonalities is a source of optimism for 
the Crowdsourcing Compiler --- so far, there seems to be some shared structure to successful 
crowdsourcing that the compiler might codify. But are such commonalities present because 
they somehow delineate fundamental limitations on successful crowdsourcing --- or is simply 
because this is the “low-hanging fruit”, and no one has tried more ambitious tasks or designs 
yet? 
 
The Crowdsourcing Compiler is an intriguing long-term challenge, but not (yet) a short-term 
agenda for crowdsourcing research --- it is too underspecified, and there are too many 
intermediate questions for which we do not yet have answers, for us to start working on a 
compiler tomorrow. But we feel the goal of the Crowdsourcing Compiler can help shape and 
focus a more concrete research agenda. Examples of some of the first questions this research 
might address include the following:  
 

• For a given set of assumptions about the volunteer force, and given the nature of the 
task, what is the best scheme for organizing the volunteers and their contributions? 
For instance, is it a “flat” scheme where all contributors are equal and their 
contributions are combined in some kind of majority vote fashion? Or is it more 
hierarchical, with proven and expert contributors given higher weight and harder 
subproblems? Which of these (or other) schemes should be used under what 
assumptions on the nature of the task? 

• How can we design crowdsourced systems for solving tasks that are much more 
challenging and less “transactional” than what we currently see in the field --- for 
instance, complex problems where there are strong constraints and interdependencies 
between the contributions of different volunteers? There is indeed strong evidence 
that such tasks can be tackled with crowdsourcing, at least in moderate size --- over 
the past five years at Penn, we have conducted an extensive series of human-subject 
experiments in solving difficult, interdependent tasks such as graph coloring, often 
with surprising behavioral success. 

 
 
 
 


