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Abstract

We present an on-line investment algorithm which achieves almost the same wealth as the

best constant-rebalanced portfolio determined in hindsight from the actual market outcomes.

The algorithm employs a multiplicative update rule derived using a framework introduced by

Kivinen and Warmuth. Our algorithm is very simple to implement and requires only constant

storage and computing time per stock in each trading period. We tested the performance of our

algorithm on real stock data from the New York Stock Exchange accumulated during a 22-year

period. On this data, our algorithm clearly outperforms the best single stock as well as Cover's

universal portfolio selection algorithm. We also present results for the situation in which the

investor has access to additional \side information."



1 Introduction

We present an on-line investment algorithm which achieves almost the same wealth as the best
constant-rebalanced portfolio investment strategy. The algorithm employs a multiplicative update
rule derived using a framework introduced by Kivinen and Warmuth [20]. Our algorithm is very
simple to implement and its time and storage requirements grow linearly in the number of stocks.
Experiments on real New York Stock Exchange data indicate that our algorithm outperforms
Cover's [9] universal portfolio algorithm.

The following simple example demonstrates the power of constant-rebalanced portfolio strate-
gies. Assume that two investments are available. The �rst is a risk-free, no-growth investment
stock whose value never changes. The second investment is a hypothetical highly volatile stock.
On even days, the value of this stock doubles and on odd days its value is halved. The relative
returns of the �rst stock can be described by the sequence 1; 1; 1; : : : and of the second by the
sequence 1

2
; 2; 1

2
; 2; : : :. Neither investment alone can increase in value by more than a factor of 2,

but a strategy combining the two investments can grow exponentially. One such strategy splits the
investor's total wealth evenly between the two investments, and maintains this even split at the end
of each day. On odd days the relative wealth decreases by a factor of 1

2
� 1 + 1

2
� 1

2
= 3

4
. However,

on even days the relative wealth grows by 1
2 � 1 + 1

2 � 2 = 3
2 . Thus, after two consecutive trading

days the investor's wealth grows by a factor of 3
4
� 3

2
= 9

8
. It takes only twelve days to double the

wealth, and over 2n trading days the wealth grows by a factor of (98)
n
.

Investment strategies which maintain a �xed fraction of the total wealth in each of the under-
lying investments, like the one described above, are called constant-rebalanced portfolio strategies.
Previously, Cover [9] described a portfolio-selection algorithm that provably performs \almost as
well" as the best constant-rebalanced portfolio. In this paper, we describe a new algorithm with
similar properties. Like the results for Cover's algorithm, this performance property is proven
without making any statistical assumptions on the nature of the stock market.

The theoretical bound we prove on the performance of our algorithm relative to the best
constant-rebalanced portfolio is not as strong as the bound proved by Cover and Ordentlich [11].
However, the time and space required for our algorithm is linear in the number of stocks whereas
Cover's algorithm is exponential in the number of stocks. Moreover, we tested our algorithm experi-
mentally on historical data from the New York Stock Exchange (NYSE) accumulated over a 22-year
period, and found that our algorithm clearly outperforms the algorithm of Cover and Ordentlich.

Following Cover and Ordentlich [11], we also present results for the situation in which the
investor has some �nite \side information," such as the current interest rate. Side information may
provide hints to the investor that one or a set of stocks are likely to outperform the other stocks in
the portfolio. Moreover, the side information may be dependent on the past and future behavior of
the market. At the beginning of each trading day, the side information is presented to the investor
as a single scalar representing the \state" of the �nite side information; the signi�cance of this
information must be learned by the investor.

2 Preliminaries

Consider a portfolio containing N stocks. Each trading day,1 the performance of the stocks can
be described by a vector of price relatives, denoted by x = (x1; x2; : : : ; xN) where xi is the next
day's opening price of the ith stock divided by its opening price on the current day. Thus the value

1The unit of time \day" was chosen arbitrarily; we could equally well use minutes, hours, weeks, etc. as the time

between actions.
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of an investment in stock i increases (or falls) to xi times its previous value from one morning to
the next. A portfolio is de�ned by a weight vector w = (w1; w2; : : : ; wN) such that wi � 0 andPN

i=1 wi = 1. The ith entry of a portfolio w is the proportion of the total portfolio value invested in
the ith stock. Given a portfolio w and the price relatives x, investors using this portfolio increase
(or decrease) their wealth from one morning to the next by a factor of

w � x =
NX
i=1

wixi:

2.1 On-line portfolio selection

In this paper, we are interested in on-line portfolio selection strategies. At the start of each day t, the
portfolio selection strategy gets the previous price relatives of the stock market x1; : : : ;xt�1. From
this information, the strategy immediately selects its portfolio wt for the day. At the beginning
of the next day (day t + 1), the price relatives for day t are observed and the investor's wealth
increases by a factor of wt � xt.

Over time, a sequence of daily price relatives x1;x2; : : : ;xT is observed and a sequence of
portfolios w1;w2; : : : ;wT is selected. From the beginning of day 1 through the beginning of day
T + 1, the wealth will have increased by a factor of

ST (fwtg; fxtg) def
=

TY
t=1

wt � xt:

Since in a typical market the wealth grows exponentially fast, the formal analysis of our algo-
rithm will be presented in terms of the normalized logarithm of the wealth achieved. We denote
this normalized logarithm of the wealth by

LST (fwtg; fxtg) def
=

1

T

TX
t=1

log
�
wt � xt

�
:

2.2 Constant-rebalanced portfolios

With the bene�t of hindsight, on each day one can invest all of one's wealth in the single best-
performing stock for that day. It is certainly absurd to hope to perform as well as a prescient
agent with this level of information about the future. Instead, in this paper, we compete against
a more restricted class of investment strategies called constant-rebalanced portfolios. As noted in
the introduction, a constant-rebalanced portfolio is rebalanced each day so that a �xed fraction of
the wealth is held in each of the underlying investments. Therefore, a constant-rebalanced portfolio
strategy employs the same investment vector w on each trading day and the resulting wealth and
normalized logarithmic wealth after T trading days are

ST (w)
def
= ST (w; fxtg) =

TY
t=1

w � xt ; LST (w)
def
= LST (w; fxtg) = 1

T

TX
t=1

log
�
w � xt

�
:

Note that such a strategy might require vast amounts of trading, since at the beginning of each
day t the investment proportions are rebalanced back to the vector w. In this paper we ignore
commission costs (however, see the discussion in Section 6).
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Given a sequence of daily price relatives x1;x2; : : : ;xT we can de�ne, in retrospect, the best
rebalanced portfolio vector which would have achieved the maximum wealth ST , and hence also
the maximum logarithmic wealth, LST . We denote this portfolio by w? = w?(T ). That is,

w? def
= argmax

w

ST (w) = argmax
w

LST (w);

where the maximum is taken over all possible portfolio vectors (i.e., vectors in RN with non-negative
components that sum to one). Iterative methods for �nding this vector using the entire sequence
of price relatives x1; : : : ;xT are discussed in our earlier paper [15] which gives several updates for
solving a general mixture estimation problem, including multiplicative updates like those described
in this paper. We denote the logarithmic wealth achieved using the optimal constant-rebalanced
portfolio w? by LS?

T (fxtg). Whenever it is clear from the context, we will omit the dependency on
the price relatives and simply denote the above by LS?. Clearly, w? depends on the entire sequence
of price relatives fxtg and may be dramatically di�erent for di�erent market behaviors.

Obviously, the optimal vector w? can only be computed after the entire sequence of price
relatives is known (at which point, it is no longer of value). However, the algorithm described in
this paper (as well as Cover's [9] algorithm) performs almost as well as w? while using only the
previously observed history of price relatives to make each day's investment decision.

2.3 Universal portfolios

Cover [9] introduced the notion of universal portfolio. An on-line portfolio selection algorithm that
results in the sequence fwtg is said to be universal (relative to the set of all constant-rebalanced
portfolios) if

lim
T!1

max
fxtg

h
LS?(fxtg)� LS(fwtg; fxtg)

i
= 0 :

That is, a universal portfolio selection algorithm exhibits the same asymptotic growth rate in
normalized logarithmic wealth as the best rebalanced portfolio for any sequence of price relatives
fxtg.

In Section 3 we adapt a framework developed for supervised learning and give a simple update
rule that selects a new portfolio vector from the previous one. We prove that this algorithm is
universal in Section 4.

2.4 Side information

In reality, the investor might have more information than just the price relatives observed so far.
Side information such as prevailing interest rates or consumer-con�dence �gures can indicate which
stocks are likely to outperform the other stocks in the portfolio. Following Cover and Ordentlich [11],
we denote the side information by an integer y from a �nite set f1; 2; : : : ; Kg. Thus, the behavior
of the market including the side information is now denoted by the sequence fxt; ytg.

Following Cover and Ordentlich [11], we allow the constant-rebalanced portfolio to exploit the
side information by expanding the single portfolio into a set of portfolios, one for each possible
value of the side information. Thus, a constant-rebalanced portfolio with side information consists
of the vectors w(1);w(2); : : : ;w(K) and uses portfolio vector w(yt) on day t. The wealth and
normalized logarithmic wealth resulting from using a set of constant-rebalanced portfolios based
on side information are,

ST (w(�); fxt; ytg) def
=

TY
t=1

w(yt) � xt ; LST (w(�); fxt; ytg) def
=

1

T

TX
t=1

log
�
w(yt) � xt

�
:
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Just like the de�nition of the best constant-rebalanced portfolio, we de�ne the best side information
dependent portfolio set w?(�) as the maximizer of ST (w(�); fxt; ytg). Note that the dimension of a
side information dependent portfolio selection problem is K times larger than the single portfolio
selection problem.

The sequence of side information fytg could be meaningless random noise, neither a function
of the past market nor a predictor of future markets. On the other hand, it might be a perfect
indicator of the best investment. Extending the two-investment example given in Section 1, we
might have side information y = 1 on odd days (when the volatile stock loses half its value) and
y = 2 on even days (when the volatile stock doubles). This side information can be exploited by the
constant-rebalanced portfolio set w(1) = (1; 0) and w(2) = (0; 1) to double its wealth every other
trading day. However, the only side information communicated to the investor (at the beginning
of day t) is the single value yt with no further \explanations," and the sequence fytg may or may
not contain any useful information. Hence, the importance of each side information value must be
learned from the performance of the market during previous trading days.

An on-line investment algorithm in this setting has access on day t both to the past history
of price relatives (as before) and to the past and current side information values y1; : : : ; yt. The
goal of the algorithm now is to invest in a manner competitive with ST (w

?(�); fxt; ytg), the wealth
of the best constant-rebalanced portfolio with side information. One can easily de�ne a notion of
universality analogous to the de�nition given in Section 2.3.

As noticed by Cover and Ordentlich [11], the investor can partition the trading days based
on the side information, and treat each partition separately. Exploiting the side information is
therefore no more di�cult than running K copies of our algorithm, one for each possible value of
the side information. Since the logarithm of the wealth is additive, the logarithm of the wealth on
the entire sequence with side information is just the sum of the logarithms of the wealths generated
by the K copies of the algorithm.

2.5 Related work

Distributional methods are probably the most common approach to adaptive investment strategies
for rebalanced portfolios. Kelly [19] assumed the existence of an underlying distribution of the
price relatives and used Bayes decision theory to specify the next portfolio vector. Under various
conditions, it was demonstrated (e.g. [5, 8, 6, 4, 2]) that with probability one the Bayes decision
approach achieves the same growth rate of the wealth as the best rebalanced portfolio. In this
approach, the price relative sequences can be drawn from one of a known set of possible distribu-
tions. This approach was used by Algoet [1] who considered the set of all ergodic and stationary
distributions on in�nite sequences, and estimated the underlying distribution in order to choose
the next portfolio vector. Cover and Gluss [10] considered the restricted case where the set of price
relatives is �nite and gave an investment scheme with universal properties.

The most closely related previous results are by Cover [9] and Cover and Ordentlich [11]. They
prove that certain investment strategies are universal without making any statistical assumptions
on the nature of the stock market. Cover [9] proved that the wealth achieved by his universal
portfolio algorithm is \almost as large" as the best constant-rebalanced portfolio. His analysis was
improved by Cover and Ordentlich [11] who also introduced the notion of side information, and
generalized Cover's algorithm to use the Dirichlet(1=2; : : : ; 1=2) and the Dirichlet(1; : : : ; 1) priors
over the set of all possible portfolio vectors.

Cover and Ordentlich's investment strategies use an averaging method to pick their portfolio
vectors. The portfolio vector used on day t is the weighted average over all feasible portfolio vectors
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(all N -dimensional vectors with non-negative components that sum to 1), where the weight of each
possible portfolio vector is determined by its performance in the past. That is,

wt =

R
w St�1(w) d�(w)R
St�1(w) d�(w)

; (1)

where d� is one of the Dirichlet distributions mentioned above. Note that the portfolio vectors
are weighted according to their past performance, St�1(w), as well as the prior �(w). Discrete
approximation [9] or recursive series expansion [11] are used to evaluate the above integrals. In
both cases, however, the time and space required for �nding the new portfolio vector appears to
grow exponentially in the number of stocks. While the bounds achieved by the generalized universal
portfolio algorithm of Cover and Ordentlich are stronger than ours, we show that on historical stock
data our algorithm performs better while requiring time and space linear in the number of stocks.

3 Multiplicative portfolio selection algorithms

Our framework for updating a portfolio vector is analogous to the framework developed by Kivinen
and Warmuth [20] for on-line regression. In this on-line framework the portfolio vector itself
encapsulates the necessary information from the previous price relatives. Thus, at the start of day
t, the algorithm computes its new portfolio vector wt+1 as a function of wt and the just observed
price relatives xt. In the linear regression setting analyzed by Kivinen and Warmuth, they show
that good performance can be achieved by choosing a vector wt+1 that is \close" to wt. We adapt
their method and �nd a new vector wt+1 that (approximately) maximizes the following function:

F (wt+1) = � log(wt+1 � xt)� d(wt+1;wt); (2)

where � > 0 is some parameter called the learning rate and d is a distance measure that serves as
a penalty term. This penalty term, �d(wt+1;wt), tends to keep wt+1 close to wt. The purpose
of the �rst term is to maximize the logarithmic wealth if the current price relative xt is repeated.
The learning rate � controls the relative importance between the two terms. Intuitively, if wt is
far from the best constant-rebalanced portfolio w? then a small learning rate means that wt+1 will
move only slowly toward w?. On the other hand, if wt is already close to w? then a large learning
rate may cause the algorithm to be misled by day-to-day 
uctuations.

Di�erent distance functions lead to di�erent update rules. One of the main contributions of
this line of work is the use of the relative entropy as a distance function for motivating updates:

DRE(ujjv) def
=

NX
i=1

ui log
ui
vi

:

Many other on-line algorithms with multiplicative weight updates [21, 3, 20, 14] are also motivated
by this distance function and are thus rooted in the minimum relative entropy principle of Kull-
back [18, 13]. To derive learning rules using relative entropy, we set d(wt+1;wt) = DRE(wt+1jjwt).

It is hard to maximize F since both terms depend non-linearly onwt+1. One possible approach is
to use an iterative optimization algorithm, such as gradient projection, to �nd the maximum vector
wt+1 that maximizes F under the constraint

PN
i=1 w

t+1
i = 1 (see, for instance, Fletcher [12]). This

approach is time consuming as it requires solving a di�erent non-linear equation on each trading
period. Furthermore, as we later demonstrate in Section 5, the portfolio algorithm that �nds the
exact solution to Equation (2) in practice does not yield better results than the algorithm we
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now present which is based on the following e�cient approximation. Instead of �nding the exact
maximizer of F , we replace the �rst term with its �rst-order Taylor polynomial around wt+1 = wt.
This approximation is reasonable if F satis�es a Lipschitz condition and the vectorwt+1 is relatively
close to wt. We also use a Lagrange multiplier to handle the constraint that the components of
wt+1 must sum to one. This leads us to maximize F̂ instead of F :

F̂ (wt+1; 
) = �

 
log(wt � xt) + xt � (wt+1 �wt)

wt � xt
!
� d(wt+1;wt) + 


 
NX
i=1

wt+1
i � 1

!
:

This is done by setting the N partial derivatives to zero (for 1 � i � N):

@F̂ (wt+1; 
)

@wt+1
i

= �
xti

wt � xt �
@d(wt+1;wt)

@wt+1
i

+ 
 = 0 : (3)

If the relative entropy is used as the distance function then Equation (3) becomes

�
xti

wt � xt � (log
wt+1
i

wt
i

+ 1) + 
 = 0 or wt+1
i = wt

i exp

 
�

xti
wt � xt + 
 � 1

!
:

Enforcing the additional constraint
PN

i=1 w
t+1
i = 1 gives a portfolio update which we call the

exponentiated gradient (EG(�)) update:

wt+1
i =

wt
i exp

�
�xti=w

t � xt�PN
j=1w

t
j exp

�
�xtj=w

t � xt
� : (4)

A similar update for the case of linear regression was �rst given by Kivinen and Warmuth [20].
In addition to the updates, we also need to choose an initial portfolio vector w1. When no prior

information is given, a reasonable choice would be to start with an equal weight assigned to each
of the stocks in the portfolio, that is, w1 = (1=N; : : : ; 1=N). When side information is presented,
we employ a set of portfolio vectors. We use the EG(�) update to change the portfolio vector
indexed by the side information. Hence, the problem of portfolio selection with side information
simply reduces to a parallel selection of K di�erent portfolios. If the side information is indeed
informative, the set of portfolios will achieve larger wealth than a sequence of portfolio vectors
resulting from the entire sequence. We demonstrate this in the experimental section that follows.

In the next section we analyze our EG(�)-update based portfolio selection algorithm. We com-
pare the performance of the EG(�)-update as well as the Exact EG(�)-update (which maximizes the
F in Equation 2 rather than the approximation F̂ ) with other on-line portfolio selection algorithms
for di�erent settings in Section 5.

4 Analysis

In this section, we analyze the logarithmic wealth obtained by the EG(�) portfolio update rule. We
prove worst-case bounds on the update which imply that the EG(�) update is almost as good as
the best constant-rebalanced portfolio when certain assumptions hold on the relative volatility of
the stocks in the portfolio. We also present a variant of EG(�) which requires no such assumptions.

Although the analysis is presented for a single portfolio vector, it can be generalized to the
multiple vectors kept when side information is present by partitioning the trading days based on
the side information and treating each partition separately.
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Since xti represents price relatives, we have that xti � 0 for all i and t. Furthermore, we
assume that maxi x

t
i = 1 for all t. We can make this assumption without loss of generality since

multiplying the price relatives xt by a constant c simply adds log c to the logarithmic wealth, leaving
the di�erence between the logarithmic wealth achieved by the EG(�)-update and the best achieved
logarithmic wealth LS? unchanged. Put another way, the assumed lower bound r on xti used in
Theorem 1 (below) can be viewed as a lower bound on the ratio of the worst to best price relatives
for trading day t.

To remind the reader, a portfolio vector is a vector of non-negative numbers that sum to 1. The
EG(�) portfolio update algorithm uses the following rule:

wt+1
i =

wt
i exp

�
�

xt

i

w
t�xt

�
Zt

where � > 0 is the learning rate, and Zt is the normalization

Zt =
X

1�i�N

wt
i exp

 
�

xti
wt � xt

!
:

The following theorem characterizes a general property of the EG(�)-update.

Theorem 1 Let u 2 RN be a portfolio vector, and let x1; : : : ;xT be a sequence of price relatives

with xti � r > 0 for all i; t and maxi xti = 1 for all t. For � > 0 the logarithmic wealth due to the

portfolio vectors produced by the EG(�)-update is bounded from below as follows:

TX
t=1

log(wt � xt) �
TX
t=1

log(u � xt)� DRE(ujjw1)

�
� �T

8r2
:

Furthermore, if w1 is chosen to be the uniform proportion vector, and we set � = 2r
p
2 logN=T

then we have
TX
t=1

log(wt � xt) �
TX
t=1

log(u � xt)�
p
2T logN

2r
:

Proof Let �t = DRE(ujjwt+1)� DRE(ujjwt). Then

�t = �
X
i

ui log(w
t+1
i =wt

i)

= �
X
i

ui(�x
t
i=w

t � xt � logZt)

= �� u � xt
wt � xt + logZt: (5)

To bound logZt, we use the fact that for all � 2 [0; 1] and x 2 R,

log(1� �(1� ex)) � �x+ x2=8: (6)

This bound was veri�ed by examining the �rst two derivatives of f(x) = �x+x2=8�ln(1��(1�ex))
(see [15]).
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Since xti 2 [0; 1] and since �x � 1� (1� �)x for � > 0 and x 2 [0; 1], we have:

Zt =
X
i

wt
ie
�xt

i
=wt�xt

�
X
i

wt
i(1� (1� e�=w

t�xt

)xti)

= 1� (1� e�=w
t�xt

)wt � xt:
Now, applying inequality 6, we have

logZt � � +
�2

8(wt � xt)2 :

Combining with Equation (5) gives:

�t � �

 
1� u � xt

wt � xt
!
+

�2

8(wt � xt)2

� �� log(u � xt=wt � xt) + �2

8(wt � xt)2
since 1� ex � �x for all x.

Since xti � r, and summing over all t, we have

�DRE(ujjw1) � DRE(ujjwT+1)� DRE(ujjw1)

� �
TX
t=1

(log(wt � xt)� log(u � xt)) + �2T

8r2
;

which implies the �rst bound stated in the theorem. The second bound of the theorem follows
by straightforward algebra, noting that DRE(ujjw1) � logN when w1 is the uniform probability
vector.

Since

LST =
1

T

TX
t=1

log
�
wt � xt

�
;

Theorem 1 immediately gives LS?
T � LST �

p
logN=(2r2T ) (under the conditions of Theorem 1).

Thus, for an appropriate choice of �, when the number of days T becomes large, the di�erence
between the logarithmic wealth achieved by EG(�) is guaranteed to converge to the logarithmic
wealth of the best constant-rebalanced portfolio. However, Theorem 1 is not strong enough to
show that EG(�) is a universal portfolio algorithm. This is because choosing the proper � requires
knowledge of both the number of trading days and the ratio r in advance. We will deal with both
of these di�culties, starting with the dependence of � on r.

When no lower bound r on xti is known, we can use the following portfolio update algorithm
which is parameterized by a real number � 2 [0; 1]. Let

~xt = (1� �=N)xt + (�=N)1

where 1 is the all 1's vector. As before, we maintain a portfolio vector wt which is updated using
~xt rather than xt:

wt+1
i =

wt
i exp(�~x

t
i=w

t � ~xt)P
i w

t
i exp(�~x

t
i=w

t � ~xt) :
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Further, the portfolio vector that we invest with is also slightly modi�ed. Speci�cally, the algorithm
uses the portfolio vector

~wt = (1� �)wt + (�=N)1

and so the logarithmic wealth achieved is log( ~wt � xt).
We call this modi�ed algorithm gEG(�; �).

Theorem 2 Let u 2 RN be a portfolio vector, and let x1; : : : ;xT be a sequence of price relatives

with xti � 0 for all i; t and maxi x
t
i = 1 for all t. For � 2 (0; 1=2] and � > 0, the logarithmic wealth

due to the portfolio vectors produced by the gEG(�; �)-update is bounded from below as follows:

TX
t=1

log( ~wt � xt) �
TX
t=1

log(u � xt)� 2�T � DRE(ujjw1)

�
� �T

8(�=N)2
:

Furthermore, if w1 is chosen to be the uniform proportion vector, T � 2N2 logN , and we set

� =
�
N2 logN=(8T )

�1=4
and � =

p
8�2 logN=(N2T ) then we have

TX
t=1

log( ~wt � xt) �
TX
t=1

log(u � xt)� 2(2N2 logN)1=4 � T 3=4: (7)

Proof From our assumption that maxi xti = 1, we have

~wt � xt
wt � ~xt �

(1� �)wt � xt + �=N

(1� �=N)wt � xt + �=N
:

The right hand side of this inequality is decreasing as a function of wt � xt and so is minimized
when wt � xt = 1. Thus,

~wt � xt
wt � ~xt � (1� �) + �=N;

or equivalently,

log( ~wt � xt) � log(wt � ~xt) + log(1� � + �=N)

� log(wt � ~xt)� 2�: (8)

The last inequality uses log(1� �+ �=N) � log(1� �) � �2� for � 2 (0; 1=2].
From Theorem 1 applied to the price relative instances ~xt, we have that

TX
t=1

log(wt � ~xt) �
TX
t=1

log(u � ~xt)� DRE(ujjw1)

�
� �T

8(�=N)2
(9)

where we used the fact that ~xti � �=N .
Note that u � ~xt = (1� �=N)u � xt + �=N � u � xt. Combined with Equations (8) and (9), and

summing over all t, this gives the �rst bound of the theorem. The second bound of the theorem
follows from the fact that DRE(ujjw1) � logN when w1 is the uniform probability vector.

Dividing inequality (7) of Theorem 2 by the number of trading days T shows that the logarithmic
wealth achieved by the gEG(�; �)-update converges to that of the best constant-rebalanced portfolio
(for an appropriate choice of � dependent on T ). However, we still have the issue that the learning
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rate must be chosen in advance as a function of T . The following algorithm and corollary shows
how a doubling trick can be used to obtain a universal portfolio algorithm.

The staged gEG(�; �)-update runs in stages which are numbered from 0. The number of days
in stage 0 is 2N2 logN , and the number of days in each stage i > 0 is 2iN2 logN . Thus if
T > 2N2 logN is the total number of days, the last stage entered is numbered dlog2( T

2N2 logN
)e. At

the start of each stage the portfolio vector is re-initialized to the uniform proportion vector and �
and � are set as in Theorem 2 using the number of days in the stage as the value for T .

Corollary 3 The staged gEG(�; �)-update is a universal portfolio selection algorithm.

Proof We �rst bound the di�erence
PT

t=1 log(u �xt)�
PT

t=1 log( ~w
t �xt) for any u, any sequence of

price relatives fxtg and the ~wt computed by the staged gEG(�; �)-update. Let b = dlog2( T
2N2 logN )e

be a bound on the last stage number. From Theorem 2 we obtain

TX
t=1

log(u � xt)�
TX
t=1

log( ~wt � xt) � 4N2 logN +
bX

i=1

21=4(2i)3=42N2 logN

� 25=4N2 logN(1 +
bX

i=0

(23=4)i)

= 25=4N2 logN(1 +
(23=4)b+1 � 1

23=4 � 1
)

� 6N2 logN(1 + (23=4)b)

� 6N2 logN(1 + (
T

2N2 logN
)3=4) :

Now, setting u to the best constant-rebalanced portfolio and dividing by T allows us to rewrite the
previous line in terms of the normalized logarithms of the wealth achieved

LS?(fxtg)� LS(f~wtg; fxtg) �
6N2 logN(1 + ( T

2N2 logN
)3=4)

T
:

As T !1, the above bound goes to 0, completing the proof.

In sum, the di�erence between the average daily logarithmic increase in wealth of the gEG(�; �)-
update and the best constant-rebalanced portfolio drops to zero at the rate O(((N2 logN)=T )1=4)
for T � 2N2 logN . When the ratio between the best and worst stock on each day is bounded
and relatively small (as can often be expected in practice), the EG(�)-update can be used instead
giving a convergence rate to zero of O(

p
(logN)=T). In comparison, the bounds proved by Cover

and Ordentlich [11] for their algorithm converge to zero at the rate O((N logT )=T ). In terms of
the number of trading days T , their bounds are much superior, especially compared to our bound
for gEG(�; �). The only case in which our bounds have an advantage is when the number of stocks
N included in the portfolio is relatively large and the market has bounded relative volatility so
that EG(�) can be used. Despite the comparative inferiority of our theoretical bounds, in our
experiments, we found that our algorithm did better, even though the number of trading days T
was large (over 5,000) and the portfolios included only a few stocks.

5 Experiments with NYSE data

We tested our update rules on historical stock market data from the New York Stock Exchange
accumulated over a 22-year period. For each experiment, we restricted our attention to a subset
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of the 36 stocks for which we have data,2 and compared the EG(�)-update with the best single
stock in the subset as well as the best constant-rebalanced portfolio for the subset. We found the
best constant-rebalanced portfolio by applying a batch maximum-likelihood mixture estimation
procedure as described in our earlier paper [15]. After determining the best constant-rebalanced
portfolio, we then computed its performance on the price relative sequence. We also compared
the performance of our update rules to that of Cover's universal portfolio algorithm and to an
update that is based on exact maximization of Equation (2). We term the latter method the
Exact EG(�)-update. We compared the results for all subsets of stocks considered by Cover [9] in
his experiments.

Summarizing our results, we found that, perhaps surprisingly, the wealth achieved by the EG(�)-
update was larger than the wealth achieved by the universal portfolio algorithm. This outcome
is contrary to the superior worst-case bounds proved for the universal portfolio algorithm. The
di�erence in performance was largest for portfolios composed of volatile stocks.

Furthermore, the universal portfolio strategy using the Dirichlet(1; : : : ; 1) prior outperformed
the Dirichlet(1=2; : : : ; 1=2) prior, despite the better bounds proved by Cover and Ordentlich [11] for
the Dirichlet(1=2; : : : ; 1=2) prior. We therefore used the Dirichlet(1; : : : ; 1) prior when generating
all of the universal portfolio results reported in this section.

We did not �nd any signi�cant di�erence in the performance achieved by the EG(�)-update
algorithm and the Exact EG(�) algorithm while the latter was much slower.

We have two possible explanations why those algorithms with better analytical bounds per-
formed worse in our experiments. First, the analytical bounds involve approximations, and a
re�ned analysis might yield better bounds on some (or all) of the algorithms. Second, the analyti-
cal bounds are guarantees that hold for all sequences of price relatives. Therefore, the algorithms
with better bounds might be hedging against unusual sequences of price relatives at the expense of
their performance on the sequences of price relatives occurring in the historical market data.

The �rst example given by Cover is a portfolio based on Iroquois Brands Ltd. and Kin Ark
Corp., two NYSE stocks chosen for their volatility. During the 22-year period ending in 1985,
Iroquois increased in price by a factor of 8.92, while Kin Ark increased in price by a factor of
4.13. The best constant-rebalanced portfolio achieves a factor of 73.70 and the universal portfolio
a wealth of 39.97. Using the EG(�)-update with � = 0:05 yields a factor of 70.85, which is almost
as good as the best constant-rebalanced portfolio. The Exact EG(�)-update yields a similar factor
of 70:91.

The results of the wealth achieved over the 22 years are given for this pair of stocks, as well
as other pairs, in Table 1. We observed qualitatively similar results for the di�erent portfolios
considered by Cover [9]: Commercial Metals and Kin Ark (see also Figure 1), Commercial Metals
and Meicco Corp., and IBM and Coca Cola (Figure 2). In all cases, the wealth achieved by EG(�)
and the Exact EG(�) is larger than the wealth of the universal portfolio algorithm. Moreover, in
several cases the wealth of the EG(�)-update is almost as good as the wealth of the best constant-
rebalanced portfolio. In all the experiments we performed, the yields of the EG(�)-update and the
Exact EG(�)-update were very similar, and always within one percent of one another.

Three examples comparing the daily wealth achieved by EG(�)-update and the best constant
rebalanced portfolio are depicted in Figures 1{3. Note that when the stocks considered are not
volatile and show a lock-step performance, as in the case of IBM and Coca Cola (see the volatility

2The set of stocks from which we built the various portfolios consisted of the following stocks: AHP, Alcoa,

American Brands, Arco, Coca Cola, Commercial Metals, Dow Chemicals, Dupont, Espey Manufacturing, Exxon,

Fischbach, Ford, GE, GM, GTE, Gulf, HP, IBM, Ingersoll, Iroquois, JNJ, Kimberly-Clark, Kin Ark, Kodak, Lukens,

Meicco, Merck, MMM, Mobil, Morris Mining, P&G, Pillsbury, Schlum, Sears, Sherman Williams, and Texaco.
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Stocks Iroquois Comm. Met. Comm. Met. IBM &
& Kin Ark & Kin Ark & Meicco Coca Cola

Volatility { Stock 1 0.034 0.025 0.025 0.013
Volatility { Stock 2 0.050 0.050 0.031 0.014
Correlation of return 0.041 0.064 0.067 0.388

Best Stock - wealth 8.9 52.0 52.0 13.4
- APY 10.4 19.7 19.7 12.5

BCRP - wealth 73.7 144.0 103.0 15.1
- APY 21.6 25.3 23.4 13.1

EG(�) - wealth 70.9 110.2 97.9 14.9
- APY 21.4 23.8 23.2 13.1
- /BCRP 0.96 0.77 0.95 0.99

Exact EG(�) - wealth 70.4 110.1 98.4 15.0

- APY 21.3 23.8 23.2 13.1
- /BCRP 0.96 0.76 0.95 0.99

Universal - wealth 40.0 78.4 74.0 14.2
- APY 18.3 21.9 21.6 12.8
- /BCRP 0.54 0.56 0.72 0.94

Table 1: Comparison of the wealth achieved by the EG(�)-update, the Exact EG(�)-update, and
the universal portfolio algorithm. For all the portfolios considered, we give both the total wealth
and the average annual percent yield (APY) for each portfolio-selection algorithm as well as for the
best constituent stock in the portfolio and the best constant-rebalanced portfolio (BCRP) computed
in hindsight from the entire price relatives sequence. We also report wealth as a fraction of that
achieved by the BCRP (denoted \/BCRP" in the table). The �rst rows of the table report the
volatility of the constituent stocks and the correlation between their returns.

and correlation information in Table 1), the wealth achieved by the universal portfolios and the
EG(�)-update as well as the best constant-rebalanced portfolio barely outperform the individual
stocks.

The Gulf, HP and Schlum three-stock portfolio plotted in Figure 3 exhibits some interesting
behavior. Schlum skyrockets between days 4000 and 4500, enabling it to outperform the 22-year
BCRP at that point. Schlum later declines in value, and both the 22-year BCRP and the EG(�)-
update outperform Schlum over the entire period. If the experiment ended around day 4500, then
the EG(�)-update would yield less wealth than simply investing in Schlum. Indeed, the BCRP for
4500 trading days is invested wholly in Schlum, while the BRCP for the entire 22-year period invest
44% in Gulf, 34% in HP and 22% in Schlum.

For the Iroquois/Kin Ark portfolio, Figure 4 shows the percentage of the wealth invested in
Iroquois for both the EG(�)-update and the universal portfolio algorithm. Although both algo-
rithms tended to keep similar portfolios, the universal portfolio algorithm changed its investment
proportions more aggressively when Kin Ark rose around days 300{500.
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Figure 1: Comparison of wealths achieved by the best constant-rebalanced portfolio, the EG(�)-
update, the universal portfolio algorithm and the best stock for a portfolio consisting of Commercial
Metals and Kin Ark.

5.1 Margin loans

Following Cover [9], we also tested the case where the portfolio can buy stocks on margin. This case
can be modeled by adding an additional \margin component" for each stock to the vector of price
relatives. We assumed that all margin purchases were made 50% down and with a 50% loan. Thus,
the margin price relative for a stock i on day t is 2xti�1�c where c is the daily interest rate (recall
that xti is the price relative of stock i). We tested this case with c = 0:000233 which corresponds to
an annual interest rate of 6%. The results are given in Table 2. It is clear from the table that the
four-investment portfolio containing the same two stocks plus \buying on the margin" results in a
greater wealth. The e�ciency of our update rule enables us to test our updates on more than two
stocks. Moreover, as shown by the analysis, the wealth \lost" by our algorithms compared to the
best constant-rebalanced portfolio scales like O(

p
N), whereas for the bounds on Cover's universal

portfolio algorithms, the loss in wealth is linear in the number of investment options N . Thus, our
algorithm is more likely to tolerate additional investment options, such as buying on margin.
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Figure 2: Comparison of wealths achieved by the best constant-rebalanced portfolio, the EG(�)-
update and the best stock for a portfolio consisting of IBM and Coca Cola.

5.2 Learning rate

We found that learning rates around � = 0:05 are good choices for the EG(�)-update. If the starting
portfolio is far from the best constant-rebalanced portfolio and EG uses a very low learning rate,
then it will perform poorly because it does not move away from the original portfolio fast enough.
On the other hand, a high learning rate can also be bad as it causes EG to be misled by day-to-day

uctuations. For the 2-stock example given in the introduction, the EG(�)-update actually loses
money when the learning rate is above one.

Within some middle range, it turns out that the performance of EG is not overly sensitive
to the particular choice of learning rate �. Learning rates from 0.01 to 0.15 all achieved great
wealth, greater than the wealth achieved by the universal portfolio algorithm and in many cases
comparable to the wealth achieved by the constant-rebalanced portfolio. The wealth achieved for
di�erent learning rates for the four-investment portfolio discussed above (two stocks plus margin)
are given in Table 3.
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Figure 3: Comparison of wealths achieved by the best constant-rebalanced portfolio, the EG(�)-
update, and the best stock for a portfolio consisting of Gulf, HP and Schlum.

5.3 Side information

We also tested the performance of our portfolio update algorithm when side information is pre-
sented. For these experiments, the side information was utilized using the method described in
Section 2.4 of partitioning the sequence into subsequences based on the value of the side informa-
tion. There are many possible forms of side information on which these algorithms might be tested.
In our experiments, we chose to de�ne the side information value to be the index of the stock
with the best growth of wealth on the last 100 trading days | information that would certainly
be available to a investor in a real trading situation. Thus, the possible set of values for the side
information is f1; : : : ; Kg where K = N .

The results are summarized in Table 4. It is evident from the examples given in the table that
using the side information (i.e., keeping N portfolio vectors) results in a signi�cant improvement in
the wealth achieved, even when using such simple and readily available side information. However,
the gap between the best side information dependent constant-rebalanced portfolio and the wealth
achieved by the EG(�)-update with side information is now much larger. One of the reasons is
that we used the same learning rate regardless of the side information value. Large learning rates
cause the update algorithms to quickly approach the best constant-rebalanced portfolio, but make
it di�cult for the algorithm to reach this portfolio exactly. On the other hand, small learning
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Figure 4: The fraction of the wealth invested in Iroquois over time by the universal portfolio
algorithm and the EG(�)-update for a portfolio consisting of Iroquois and Kin Ark.

rates aid convergence to the best constant-rebalanced portfolio, but may cause the algorithm to
spend a long time far away from this value. Therefore, when the side information splits the number
of trading days unevenly, di�erent learning rates for the di�erent side information values may be
required.

5.4 Portfolios with more than two stocks

The theoretical bound on the wealth achieved by the EG(�)-update suggests that the EG(�)-update
algorithm would scale better than Cover's universal portfolio algorithm as the number of stocks or
assets in the portfolio grows. Furthermore, the time required by the EG(�)-update to modify the
portfolio after each trading day is constant per stock while the time complexity of the universal
portfolio algorithm grows exponentially fast with the number of stocks in the portfolio. These two
key factors suggest that the EG(�)-update might be a viable alternative as a provably competitive
portfolio selection algorithm.

To empirically verify that the above advantages hold in practice, we performed experiments
with portfolios of size N = 2 to N = 24 from the New York Stock Exchange. We compared the
wealth and the total time required to update the portfolios through the entire 22-year period.
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Without loans With margin loans

Commercial Metals 52:0 19:7
Kin Ark 4:1 0:0
BCRP 144:0 262:4
Universal portfolio 78:5 98:4
EG(�) 110:2 121:9
Exact EG(�) 110:1 122:0

Table 2: Comparison of the portfolio selection algorithms when margin loans for each stock are
available.

EG
BCRP Universal � = 0:01 � = 0:02 � = 0:05 � = 0:10 � = 0:15 � = 0:20

262.4 98.4 119.9 121.4 121.9 113.3 103.1 91.3

Table 3: Comparison of the wealth achieved by the EG(�)-update and for various learning rates
and the universal portfolio algorithm, for the stocks considered in Table 2.

To compute updates for the universal portfolio algorithm, we used a sampling technique as
described by Cover [9]. For portfolios of size N � 9, we approximated Equation (1) by a �nite
sum taken over all possible portfolio vectors w of the form (i1=r; i2=r; : : : ; iN=r) where each ij is
a nonnegative integer and i1 + � � �+ iN = r. In our experiments, we used r = 10. This sampling
technique quickly becomes infeasible: for a portfolio consisting of 9 stocks, it takes about 9:5 hours
to calculate the universal portfolio updates over the 22-year trading period. The rapid infeasibility
of the universal portfolio algorithm can also be seen in Figure 5 which shows the time required to
compute the universal algorithm compared to EG(�).

To handle this di�culty, for portfolios consisting of more than 9 stocks, we instead approximated
Equation (1) using a large number (108) of randomly chosen vectorsw, each selected independently
and uniformly from the space of all probability vectors. Because this is only an approximate method,
the yields of the universal portfolio might be underestimated due to sparse sampling artifacts which
are unavoidable given the time complexity of the algorithm.

Figure 5 also gives computation times for the Exact EG(�)-update. Clearly, as noted earlier,
this method is signi�cantly slower than EG(�) while achieving almost identical returns.

To test performance of the portfolio selection algorithm on larger portfolios, we �rst created
�ve portfolios consisting of 12 or 24 stocks each which were chosen according to volatility. To be
speci�c, we ranked the 36 stocks based on their volatility as measured by the standard deviation
of the logarithm of the price relatives (see, for instance, Hull [17]). We then divided the 36 stocks
into three portfolios: the �rst consisted of the 12 stocks with lowest volatility; the next consisted of
the 12 stocks with highest volatility; and the third consisted of the remaining 12 stocks of medium
volatility. We also tested on two larger portfolios consisting of the 24 stocks of lowest volatility and
the 24 stocks of highest volatility.

The results for these �ve portfolios are given in Table 5. This table also shows the volatility of
each of the portfolio selection algorithms. These results indicate that these methods produce more
wealth when more volatile stocks are used. At the same time, EG(�) and the universal portfolio
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Without Side Information With Side Information
Stocks BCRP EG(�) Univ. BCRP EG(�) Univ.

Iroq. & Kin Ark 73.7 70.9 40.0 307.9 99.4 86.6
Com. & Kin Ark 144.0 110.2 80.5 451.3 257.2 115.7
Com. & Meicco 103.0 97.9 74.1 436.2 186.1 110.9
IBM & Coke 15.1 14.9 14.2 118.5 89.9 21.1

Table 4: Comparison of the wealth achieved by the best constant-rebalanced portfolio (BCRP) and
the EG(�)-update when no side information is provided and when side information about the best
stock in the last 100 trading days is presented. We have used the same learning rate (� = 0:05) for
both cases.
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Figure 5: The running times of the universal, EG(�), and Exact EG(�) portfolio selection algo-
rithms as a function of the number of stocks in the portfolio. All experiments were conducted on
an SGI MIPS R10000 running at 195 MHz.

algorithms are less volatile than any of the constituent stocks.
Next, we tested the performance of the algorithms as a function of the number of stocks in a

portfolio consisting of randomly selected stocks. For each portfolio size N , we randomly picked 100
di�erent subsets (out of the

�36
N

�
possible subsets) and ran the universal portfolio algorithm and

the EG(�) update. We then calculated the geometric mean of the wealths obtained over the 100
di�erent subsets of size N and plotted the results in Figure 6 in annual percent yields. Also, for
each subset of stocks, we calculated the wealth achieved by the portfolio selection algorithms as a
fraction of the wealth attained by the best constant rebalanced portfolio. The geometric average
of these wealth ratios is plotted in Figure 7.

It is clear from the �gures that the wealth achieved by the EG(�)-update is consistently higher
than that of the universal portfolio algorithm, and the discrepancy grows as the size of the portfolio
increases. However, as noted earlier, the signi�cant degradation in performance of the universal
portfolio algorithm when N gets larger might be in
uenced by the sampling-based approximation
technique which was used for N > 9; in fact, this e�ect seemed so great for N > 12, that we did
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Stock volatility BCRP EG(�) Universal
Portfolio min avg max wealth wealth vol. wealth vol.

Low 12 0.0115 0.0132 0.0141 16.6 15.6 0.0049 12.4 0.0083
Med 12 0.0142 0.0153 0.0170 54.1 31.6 0.0061 16.9 0.0088
High 12 0.0171 0.0260 0.0498 174.3 150.2 0.0103 81.2 0.0117

Low 24 0.0115 0.0143 0.0170 54.1 17.1 0.0051
High 24 0.0142 0.0206 0.0498 250.6 156.1 0.0090

Table 5: Comparison of the wealth achieved by the best constant-rebalanced portfolio (BCRP), the
universal portfolio and the EG(�)-update for portfolios of varying volatilities consisting of 12 or 24
stocks each. Minimum, average and maximum volatilities are given for the stocks in each portfolio,
as well as the volatilities of universal and EG(�) portfolios.
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Figure 6: The average annual percent yield of BCRP, the universal portfolio algorithm and the
EG(�)-update for random subsets of stocks from size 2 to 24.

not plot any results in this higher range. On this data, it seems clear that the good performance
and very low computation time required by the EG(�)-update provides a viable alternative to the
universal portfolio algorithm with provable competitiveness bounds.

As theoretical analysis implies, the gap between the average yield of the EG(�)-update and the
BCRP increases with the size of the portfolio. However, it is interesting to note that the average
annual return of the EG(�)-update also increases as the portfolio includes more stocks.

6 Discussion and future research

Although the experimental results presented in this paper are encouraging, we have ignored one
important aspect of a real market: trading costs. Typically, there are two types of commissions
imposed in a real market. In the �rst case, the investor needs to pay a percentage of the transaction
to a broker. In this case, we can still write down a closed form expression for the wealth achieved
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Figure 7: Comparison of the average wealth of the universal portfolio algorithm and the EG(�)-
update for random subsets of stocks from size 2 to 24. The results are given as fractions of the
wealth of the BCRP.

at each time step while taking the trading costs into account. However, the wealth function we
are trying to maximize becomes highly non-linear, and it is hard to derive an update rule. Cover's
universal portfolio algorithm was recently extended and analyzed in this manner by Blum and
Kalai [7].

The second type of commission is to pay a �xed amount per transaction, that is, per purchase
or sale of a stock. Therefore, there might be days for which the wealth will be larger if no trading is
performed, especially if the portfolio vector after the new trading day is close to the desired portfolio
vector. We can de�ne a semi-constant-rebalanced portfolio which is rebalanced only on a subset
of the possible trading days. Now, in addition to the best constant-rebalanced portfolio, we need
also to �nd the best subset of the sequence that results in the maximal wealth. We suspect that
�nding the best subset is computationally hard. Still, it is not clear whether �nding a competitive
approximation is hard as well.

This paper and most other work on investment strategies employ a tacit assumption that
the market is stationary and seek a strategy that successfully competes against the best single

constant-rebalanced portfolio. However, this assumption is far from being realistic. This suggests
applying techniques developed for tracking a drifting concept [3, 16] to on-line portfolio selection
in a changing market. This approach was recently explored by Singer [22].

There is also more theoretical work to be done in order to understand why EG(�) seems to
perform better than Cover's algorithm despite the clear theoretical superiority of his algorithm.
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