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Abstract

We numerically solve a model with endogenous information acquisition in a limit
order market.. The asset has a common value; in addition, each trader has a private
value for it. Traders randomly arrive at the market, after choosing whether to purchase
information about the common value. They may either post prices or accept posted
prices. If a trader’s order has not executed, he randomly reenters the market, and
may change his previous order. The model is thus a dynamic stochastic game with
asymmetric information. Agents with the lowest intrinsic benefit from trade have the
highest value for information and also tend to supply liquidity. Agents’ incentives to
acquire information and subsequent equilibrium trading behavior changes systematically
with the underlying volatility of the asset. This has two asset pricing implications.
First, in equilibrium, asymmetric information creates a “volatility multiplier” (prices
are more volatile than the fundamental value of the asset) that is higher, the higher the
fundamental volatility. This is due to a change in the composition of trader types in the
market at any given time. Second, changes in the difference between any transaction
price and the fundamental value are negatively correlated with the fundamental returns.
This correlation is more negative, the more volatile the asset. This is due to a change
in trading strategies. We conclude that estimates of any factor model systematically
underestimate the true coefficient, and this effect is more severe the higher the exposure.
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1 Introduction

Financial markets are inherently dynamic: traders choose when to trade. As a result, the
set of potential traders in the market, and hence transaction prices, can vary across time.
Explicitly modeling this is important because, in a dynamic market, the price of the asset
at any instant is determined by the last transaction. More precisely, as there are two sides
to any transaction, prices depend on the valuations of the most desperate buyer and seller
at that time (the “marginal traders”), and how they split the difference in their valuations.
If two assets differ in the distribution of agents who are ready to trade at any point in time,
the characteristics of the price process generated by each asset, including price level and
volatility, must differ. We develop a model of trading in a financial market and characterize
how agents’ trading strategies and therefore observed transaction prices vary systematically
with the underlying cashflows. We relate volatility in the underlying cash flows to an
underlying factor model and show how equilibrium trading behavior can affect estimation.

We analyse dynamic trading in a limit order market. Many financial markets around the
world, including the Paris, Stockholm, Shanghai, Tokyo, and Toronto stock exchanges, are
organized in this fashion. Aspects of a limit order book are also incorporated into markets
such as Nasdaq and the NYSE. A pure limit order market has no intermediary or market
maker. Instead, traders must trade directly with each other. The device that enables this
is a limit order book, which contains prices and quantities of unfilled orders. A trader can
either post an order to the limit order book (i.e., submit a limit order) or choose to trade
against a previously posted order (i.e., submit a market order).

Limit order markets have at least three important frictions, including two sources of
asymmetric information which could affect the distribution of traders. Typically, the ben-
efits obtained from trade are privately known by traders. In addition, some traders may
also have private information about the fundamental value (or common value) of the asset.
Finally, the sequential arrival of traders is a friction since it creates local monopoly power
and may also result in delayed trade. A further consequence is that the timing of trade is
endogenous, since an agent may prefer to wait for a better offer. An analytic model that
incorporates these frictions is prohibitively difficult at best, and intractable at worst. As a
result, we use numerical methods to solve for equilibrium.

Our model has risk neutral agents who arrive randomly at the market for an asset that
has both common and private components to its value. Agents have different information
about the expected cash flows accruing to the owners of the asset (i.e., the common value).
Each agent chooses either to buy or sell one share. If his order does not execute, he revisits
the market and can revise his order. Thus, agents face a dynamic problem: the actions they
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take at any point in time incorporate the possibility of future reentry. In addition, there
is adverse selection: prior to his first entry into the market, each agent chooses whether to
buy information about the fundamental value of the asset. An informed agent views the
current expected value of the cash flows on each entry, whereas an uninformed agent forms
an estimate of this value based on market observables.

Conditional on agents’ information acquisition strategies, we determine the equilibrium
of the trading game. The trading game is a dynamic stochastic game with a multidi-
mensional state space. Since it is analytically intractable, we numerically solve for an
equilibrium.

We find that traders with a low intrinsic motive for trade are willing to pay the most
for information. These traders also submit a significant proportion of limit orders to the
market. That is, in our model, many limit orders come from informed agents. Further,
asymmetric information leads to a change in the composition of agent types in the market
at any point of time. On average, when the fundamental value is more volatile, there are
more agents with extreme private valuations in the market. That is, the potential marginal
traders for the next trade have higher valuations. This creates a “volatility multiplier”:
assets with high fundamental volatility also exhibit greater excess volatility (i.e. volatility
in excess of that implied by the fundamental value).

The informational efficiency of the market unambiguously improves when there are a
greater number of informed agents. There are two reasons for this. First agents with a low
intrinsic motive for trade, who have the largest incentive to acquire information, tend to
be liquidity suppliers. Hence, market observables beyond transaction prices, such as bid
and ask quotes, are also informative about the common value. If there are many informed
agents (so that the probability of trading against one is high) market observables lead to
better estimates of the common value of the asset. By contrast, if there are few informed
agents observables are less informative about the common value. Second, an uninformed
agent who faces a price she does not like has the flexibility of either waiting for a better
price or posting her own order. Thus, a trader sometimes prefers to incur the cost of waiting
rather than trade at an unfavorable price. Competition among the informed agents, and
the ability of all agents to undercut previously posted orders, ensures that prices eventually
become close to the common value.

More broadly, the set of agents in the market changes across time, leading to transaction
prices departing from the fundamental value of the asset. Prices are high (relative to
fundamental value) when there are more agents with high positive private values in the
market, and low (relative to fundamental value) when there are more agents with large
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negative private values.1 Thus, agents’ response to market frictions naturally creates a
time variance in transaction prices. This suggests that one explanation for time-varying
expected returns or betas may be changes in the composition of the types of agents wishing
to trade at any particular point of time.

We also document a negative correlation between returns to the fundamental asset value
and changes in the “microstructure noise,” — deviations of the transaction price from the
fundamental value. These become larger as the asset value is more volatile, potentially
leading to a systematic misestimation of any factor model. Further, this suggests that
other variables (such as transaction cost measures) may explain returns in part because
of this correlation. The intuition for this effect is simple. Consider a change in an asset’s
fundamental value: informed agents will execute against any mispriced limit orders. This
is the “picking off” or adverse selection risk inherent in posting a limit order. There is thus
a difference between the transaction price and the true value. In equilibrium, assets which
are more volatile induce traders to place more conservative orders. Or, higher adverse
selection risk and higher asset volatility lead to smaller changes in microstructure noise.
Any econometric specification that ignores this affect systematically underestimates the
true factor loading.

A distinctive feature of our approach is that our traders are risk neutral, and the poten-
tial gains from trade are fixed across different information acquisition regimes. We model
the market in this way because we are interested in trade on information about each firm’s
cash flows. Such information should not affect the gains to trade if agents already hold
well-diversified portfolios; that is agents are locally risk neutral. Adjustments to an agent’s
holdings of a particular asset are then primarily motivated by liquidity needs, as opposed
to risk-sharing ones. Thus, the size of the potential gains to trade does not depend on the
degree of adverse selection.

Asset pricing theory typically assumes competitive financial markets. In reality, most
financial markets are imperfectly competitive. Blume and Easley (1990) show that generi-
cally there is no game with the competitive rational expectations equilibrium as an outcome.
Perry and Reny (2004) provide a model of a double auction that, under stringent regularity
conditions, converges to the fully-revealing rational expectations equilibrium as the number
of traders becomes large. The limit order market we model is a continuous time variant of
a double auction with discrete prices.

In contrast, in much of the rational expectations literature, the gains to trade are tied to
adverse selection. Hirshleifer (1971) observes that, in an exchange economy with risk-averse

1Admati and Pfleiderer (1988) consider a model with market makers, and show that traders benefit from
co-ordinating the time at which they trade.
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traders, information has no social value: if all agents are informed, risk-sharing opportunities
are eliminated and the market breaks down.2 Grossman and Stiglitz (1980) note that
if costly information is immediately impounded into price, agents should not acquire it.
Clearly, the argument depends on how agents profit from their information, so the results
are specific to a price formation mechanism.3 Thus, a model with endogenous information
acquisition should include stylized representations of the most important trading frictions.
Previous general equilibrium work with endogenous information acquisition considers noise
in the aggregate asset supply (e.g., Verrecchia, 1982; Admati and Pfleiderer, 1987) or “noise”
traders with exogenous demands (Barlevy and Veronesi, 2001) to ensure that prices are only
partially revealing. Our market is inherently dynamic, with the common value of the asset
changing over time. In a temporal sense, informed traders are local monopolists. Hence,
there can at best be partial revelation.

The canonical strategic rational expectations model is Kyle (1985), which has an in-
formed trader and many “noise” or “liquidity” traders. An equilibrium condition in this
model is that the market maker’s price is the expected value of the asset conditional on all
public information, including the direction and magnitude of contemporaneous order flow.4

As all trades are consummated at the market maker’s quoted prices, there is no distinction
between quotes and transaction prices.

Spiegel and Subrahmanyam (1992) demonstrate that introducing rational uninformed
traders with risk-sharing motives into the Kyle framework generates different comparative
statics. In particular, the welfare of liquidity traders monotonically decreases in the number
of informed traders. This is because risk-averse liquidity traders reduce the amount they
trade in the presence of adverse selection. In contrast, we find that aggregate welfare
is almost invariant to changes in the degree of asymmetric information. Our agents can
postpone trade and return to the market, and thus do not have to accept the prices offered
at any particular time.

Endogenous information acquisition is examined by Mendelson and Tunca (2004) in a
model with strategic risk-averse noise traders. Since market prices are partially revealing, an
informed insider reduces uncertainty. However, this also reduces the gains to risk sharing.
The insider takes into account the effect of his actions on uninformed traders, and may

2Hakansson, Kunkel, and Ohlson (1982) demonstrate that information can have social value if the market
is not allocationally efficient. Bernardo and Judd (1997) find that information acquisition reduces welfare
both because uncertainty is resolved before trade (the Hirshleifer effect) and because rent-seeking trades by
informed agents reduce optimal risk-sharing.

3For example, Jackson (1991) demonstrates that the price-taking assumption is critical in order to sustain
the Grossman–Stiglitz paradox.

4Taub, Bernhardt, and Seiler (2004) consider the case of multiple informed agents and repeated informa-
tion shocks and find that the properties of Kyle (1985) hold in a more complex model.
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choose not to acquire information (even at a zero cost). In our model, traders are risk
neutral, and the gains to trade are invariant to information acquisition. Hence, at a zero
cost all traders will acquire information. When there are multiple informed traders in a Kyle
model, Foster and Viswanathan (1996) show that the correlation between informed traders’
signals is important in determining the speed of information revelation. If this correlation is
low enough, the equilibrium is characterized by waiting in later periods, so less information
is revealed than in the monopolist case. As a result, the market may become illiquid towards
the end of the overall trading period. Their numerical results are confirmed by Back, Cao,
and Willard (2000) in a continuous time model. In our model, informed traders know the
common value on each entry into the market. However, the common value changes over
time. Hence, though signals are imperfectly correlated, agents have an incentive to act on
information before it becomes stale due to an exogenous change in the common value, and
the market remains active.

Our paper links the literature on information acquisition to that on dynamic limit or-
der markets.5 The latter includes Rosu (2004), who presents a continuous time private
value model of a limit order market with continuous prices and instantaneous punishment
strategies. Foucault, Kadan, and Kandel (2004) characterize equilibrium in a dynamic limit
order book with private values and differences in time preferences. Goettler, Parlour, and
Rajan (2004) numerically solve an infinite horizon model of a limit order market with sym-
metric information and exogenous cancellation. None of these models consider information
acquisition, or allow agents to differ in what they observe upon entering (or reentering)
the market. Back and Baruch (2006) consider a continuous time model with asymmetric
information, and demonstrate that, in the absence of frictions, market design is irrelevant
(every equilibrium in a limit order market can be sustained as an equilibrium on a floor
exchange with competitive market-makers, and vice versa), lending some justifiction to our
modelling frictions in a limit order market.

Our work adds to the computational economics literature by showing that the stochas-
tic approximation algorithm of Pakes and McGuire (2001) extends naturally to models of
asymmetric information, where agents have private state variables. Further, we introduce
the notion of “trembles” to the algorithm to ensure accurate beliefs for actions off the
equilibrium path as required by perfection.

In Section 2 we outline the model, and provide an overview of the algorithm. Specific
details of the algorithm appear in Appendix A. As we are interested in the relationship
between asset volatility and trading strategies, we first analyze agents’ order submission

5Parlour (1998) characterizes a limit order market with no common value. Foucault (1999) models a
common value, but truncates the book to one share.
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strategies across different information acquisition structures in Section 3. We consider
aggregate investor surplus across different information regimes in the limit order market in
Section 5, and examine informational efficiency of the market in Section 5.1. In Section ??,
we provide some comparative statics on informational and allocative efficiency. In Section 6
we use the computed payoffs from the trading game to solve for the equilibrium information
structures. The asset pricing implications of our results are developed in Section 7. Section
8 concludes.

2 Model

We model endogenous information acquisition in a dynamic limit order market for a single
asset. We computationally solve for equilibrium in the trading game and then determine
endogenous information acquisition in Section 6. In philosophy the trading game is similar
to that in Goettler, Parlour, and Rajan (2004). There is a common value to the asset,
v, and each trader also has a private benefit to trade, α. On entry into the market, a
trader observes market conditions and decides whether to submit a buy or a sell order. The
equilibrium cannot be determined analytically in closed form, so we solve for it numerically.

This model of the trading game has two important differences with Goettler, Parlour,
and Rajan (2004). First, there may be asymmetric information, so that a trader in the
market may have inferior information about the fundamental value of the asset, compared
to previous traders. Second, traders who have submitted limit orders are allowed to reenter
the market and change or cancel their order. Each trader, therefore, plays a dynamically
optimal strategy on each entry, and cancellations are endogenous.

Time is continuous, although events happen after discrete time intervals. There is a
discrete (but infinite) set of prices, P = {pi}∞i=−∞, at which traders may submit orders.
The distance between any two consecutive prices is normalized to one and we refer to it
as the “tick size.” Associated with each price pi ∈ P at time t is a backlog of outstanding
orders to buy or sell the asset, "i

t. This backlog represents the depth at price pi. We adopt
the convention that a positive quantity denotes buy orders and a negative quantity sell
orders. The limit order book at time t, Lt = {"i

t}∞i=−∞, is the vector of outstanding orders.
We consider an open limit order book, with no hidden orders.6 Given a limit order book L,
the bid price or quote is B(L) = max{i | "i > 0}, the highest price at which there is a limit
buy order on the book, and the ask price or quote is A(L) = min{i | "i < 0}, the lowest
price at which there is a limit sell order on the book. If the corresponding set of prices is
empty, define B(L) = −∞ and A(L) =∞.

6On some exchanges, limit orders may be “hidden” (i.e., not revealed to other traders), by choice of the
order submitter.
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New traders arrive at the market according to a Poisson process with parameter λ. Each
trader has a type denoted by θ = {ρ,α}, where, ρ is a discount rate and α a private value
for the asset. The payoff a trader earns as a result of trading is discounted back to his
first arrival time in the market at the rate ρ. The cost of delaying trade could include an
opportunity cost (e.g., if a trader is executing a trading strategy across different assets and
must delay trades in other assets) and a cost to monitoring the market before execution,
rather than the time value of money. Traders in some financial markets appear to care
about differences in seconds in the time to execution; the discount rate captures this desire
to trade early.7

The private value α represents private benefits of trade, accruing to a trader as a result
of liquidity shocks or private hedging needs. Its presence implies potential gains to trade
among agents. Let Fα denote the distribution of α. The private value α is independently
drawn across traders.

In addition to a private value for each trader, the asset at any instant t has a common
value, denoted vt. The common value is the expectation of the present value of future cash
flows on the stock, and evolves as a random walk. Innovations in the common value occur
according to a Poisson process with parameter µ. If an innovation occurs, the common
value increases or decreases by k ticks, each with probability 1

2 . Changes in the common
value reflect new information about the firm. In Section 7 we show how v can be interpreted
in a factor model.

On his first entry to the market, an agent may choose to buy information by paying a
cost c ≥ 0. Incurring this cost gives an agent access to a service that reports the current
value of v on this and each subsequent entry. The timing of the acquisition decision captures
the idea that agents research an asset before deciding to participate in the market.

Since all investors have a chance to acquire the information, it is publicly available:
for example, information reported in financial statements, SEC filings, or analyst reports,
or prices of related assets such as options.8 Our acquisition cost can be interpreted as
an explicit cost such as subscribing to a news service, or an opportunity cost in terms of
time required to gather and process the information. In equilibrium, traders in our model
consider this cost when they choose whether to acquire information.

Uninformed agents view v with a time lag, ∆t, measured in units of time. That is, an
7The execution speeds for market orders for stocks on the NYSE and Nasdaq are routinely mentioned

in the trade literature. A Google search for “execution speed nyse nasdaq” brings up pages on the NYSE
and Nasdaq (each claiming better execution over the other, albeit for different order sizes), congressional
testimony, and pages at various brokerage houses.

8In as much as privately informed agents trade in such related assets, whose prices are publicly observed,
our model can also be interpreted as a model of how insider information may be incorporated into the price
of an asset.
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uninformed agent in the market at time t knows vt−∆t , whereas an informed agent in the
market at time t knows the current value vt. In addition, all agents observe the history of
the game. Let t denote a time at which an agent has entered the market, and let ht denote
the history up to time t, before the agent takes an action. The history includes all actions
in the game until time t as well as changes in the common value until time t (for informed
traders) and time (t−∆t) (for uninformed traders).

For all agents, the limit order book Lt provides information about current trading op-
portunities. In addition, uninformed agents use their information set to update their ex-
pectation about the common value v. The history offers strategic information to informed
agents as well: using the information available to an uninformed agent allows informed
agents to better predict the actions of uninformed agents, and thus earn a higher payoff
themselves.

Since traders choose whether to acquire information prior to observing market condi-
tions, we can think of these strategies as being chosen at time 0, before the start of the
trading game. Our model is therefore equivalent to a two-stage game. At the first stage
all agents choose whether to acquire information. At the second stage, with information
acquisition strategies held fixed, the continuation “trading game” is played. We consider
symmetric equilibria (i.e., traders of a particular type all play the same strategy at each
stage).

In the remainder of this section, we discuss the trading game in greater detail, holding
information acquisition decisions fixed.

2.1 Continuation Trading Game

Each trader is allowed to trade at most one share of the asset: however, he may choose
to buy or sell that share. A trader who previously entered the market, but whose share
has not yet executed, reenters the market at some random time. On any particular entry
a trader may choose to submit no order. Traders are potentially active until their order
executes, at which time they leave the market forever. Thus, at any point of time, there will
be a random number of agents who have not yet traded. Each unexecuted trader reenters
the market according to a Poisson process with parameter λr. Reentry, therefore, is not
instantaneous, and represents a friction agents must take into account when submitting an
order. The reentry friction captures the idea that agents do not continuously monitor the
market and also provides a way to determine a priority of order arrival among several agents
who all wish to trade at the same time. The reentry times are independent across agents.
At any particular instant there is at most one agent (either a new or returning trader) who
chooses an action.
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When he is in the market at time t, a trader takes an action a = (p, q, x), where p

denotes the price at which he submits an order, q ≥ 0 the priority of his order among all
orders at price p, and

x =






1 if a buy order is submitted,
−1 if a sell order is submitted,

0 if no order is submitted.
(1)

If x = 0, the values of p and q are irrelevant to payoff.9

If there is an existing order at price p on the other side of the market, a submitted order
executes instantaneously and is called a marketable limit order, or a market order for short.
A buy order at a price p ≥ A(L) automatically executes at A(L), and similarly with a sell
order at p ≤ B(L). For such an order, we set q = 0. Alternatively, if there is no order on
the other side of the market at that price, the order joins the existing orders on the same
side at that price.

Limit orders are executed according to time and price priority: that is, orders submitted
earlier are further ahead in the queue. Buy orders at higher prices and sell orders at lower
ones are accorded priority. Therefore, an order executes if no other orders have priority,
and a trader arrives who is willing to be a counterparty.

Upon reentry, a trader may leave an existing order on the book or cancel it and submit a
new order. The benefit of retaining the existing order is that he maintains his time priority
(his place in the queue). The cost is that the asset value may have moved in a manner
that affects the expected payoff from the order. For example, if he submitted a buy order
and the asset value has since fallen, his order may now be priced too high. Conversely, if
the asset value has since risen, his order may be at too low a price, and there may be little
chance of it executing. Further, a trader may also find that the priority of a previous order
has changed by the time he reenters the market.

Traders are risk neutral and submit orders to maximize their expected discounted pay-
off. Utility is earned only if an order executes. For a particular trader θ = (ρ,α), the
instantaneous utility at time t is

ut =






α + vt − pi if he executes a buy order at price pi and time t,
pi − α− vt if he executes a sell order at price pi and time t,
0 if he does not execute an order at time t.

(2)

The expected payoffs to different actions depend on a trader’s information set. Each
time a trader is in the market, he chooses a payoff-maximizing action. If a state is defined

9For a newly submitted order, Lt, p, and x determine q. However, q evolves over time for an order on the
books, and may change before the trader reenters the market. It is used in determining the continuation
payoff on reentry.
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to be the history of events in the game observed by the trader, his decision is Markovian. At
each entry into the market, he chooses an action that maximizes his value given the current
state. If a trader chooses to not submit an order, we have x̃ = 0, so π = 0. Since a trader
is never forced to submit an order, and, in this model, there is no cost to reentering the
market, the value of any state is bounded below by zero, given any previous order submitted
by the trader. Hence, the overall value of any state is no lower than zero.

Formally, we have a Bayesian game. Traders have privately known utilities from trade
(since a trader’s α is unknown to other traders). As Maskin and Tirole (2001) point out,
the proper solution concept here is Markov perfect Bayesian equilibrium, which requires
traders to play optimal (state-dependent) strategies at every decision node (i.e., on each
entry into the market), given their current posterior beliefs. In principle, these beliefs could
relate to the current value of v (for an uninformed trader), the likelihood that any order
currently in the book was submitted by an informed trader (who may reenter the market
in the future), the private value α of each trader who had an order in the limit order book,
or even over the number of traders who had entered the market and submitted no order,
and may be submitting orders in the future.

In practice the numerical algorithm bypasses the issue of posterior beliefs by directly
determining the expected utility of different actions in each state, allowing for a direct com-
putation of the optimal state-dependent action. Numerically, we impose specific restrictions
on the state space to make it computationally tractable.10 We solve for a stationary sym-
metric equilibrium given the state space. That is, each type of agent plays the same time-
invariant strategy. The perfection requirement ensures that optimal actions are assigned to
states that are off the equilibrium path of play and are hence never reached in equilibrium.
Given information acquisition strategies, the equilibrium of the trading game appears to be
computationally unique. In Section 6 we show that, despite this, there are cost ranges that
lead to multiple equilibria in the information acquisition game.

2.2 Solving for Equilibrium in the Trading Game

Since the common value evolves as a random walk, the set of prices at which trade can
feasibly occur is, in principle, unbounded (although it is finite in any finite simulation).
However, given the payoff on execution in (2) above, a trader cares only about the relative
price at which trade occurs (i.e., the price relative to the common value). Consider an
informed trader who arrives at the market at time t when vt = 15, and there is only one

10In particular, these restrictions may exclude some payoff-relevant variables, such as the exact time
at which different events happened. In principle, the algorithm can handle any discretization of time; in
practice, the size of the state space is limited by computational constraints.
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order on the limit order book, a buy order at 16. Suppose there has been no change in the
book over a substantial period of time (greater than ∆t). Now consider an identical trader
who arrives at t′, with vt′ = 21, and only one order on the limit order book, a buy order
at 22. Again, suppose there has been no change in the book over a substantial period of
time. Our specification of payoffs implies that these two traders must take the same action
relative to the respective common values they observe. That is, if submitting a sell order
two ticks above v (at a price of 17) is optimal for the first trader, doing so (at a price of 23)
must be optimal for the second trader.

Historical prices and lagged values of v can also be expressed in terms of the current com-
mon value for an informed trader, so the restriction in the previous paragraph to nonempty
histories is for expositional purposes only. In the same manner, historical transaction prices
and current books can be expressed relative to the last observed common value for an un-
informed trader. This significantly reduces the size of the state space, to the point that the
set of recurrent states in our simulations is finite (although still very large).11

As discussed, we fix information acquisition strategies and solve for the equilibrium of
the corresponding trading game. We simulate a market session and update beliefs (about the
payoff of each action in each state) using the simulated outcomes until beliefs converge. Our
algorithm follows Pakes and McGuire (2001) in that it uses simulation to asynchronously
update values only for states in (or near) the recurrent class of states.12 The advantage of
this approach is two-fold. First, the updating of beliefs at a given state is computationally
efficient, using the realized outcome from the simulation as a Monte Carlo estimator of
the originating state’s value. For example, when a limit order is executed in the simulated
market, the value of the state at which the limit order was submitted is updated by averaging
in the discounted payoff from this transaction with the previously held belief of the state’s
value. If a trader returns to the market before his limit order executes, the value of the
state at which the order was submitted is instead updated with the perceived value of the
trader’s revised (or maintained) order, discounted by the elapsed time. As the simulation
progresses, the states are “hit” repeatedly and their values, which are simple averages,

11A recurrent class is a subset of states with the following properties: (i) regardless of the initial state,
the system eventually enters the recurrent class; (ii) once entered, the probability of each state outside the
recurrent class is zero; and (iii) each state in the recurrent class is visited infinitely often as t approaches
infinity.

12Pakes and McGuire (2001) solve for equilibrium in a dynamic oligopoly, obtaining convergence in firms’
value functions. Goettler, Parlour, and Rajan (2004) use a similar algorithm to solve a trading game in
which traders take an action only when they initially enter the market. In that model all traders know
the common value on entry and limit orders are cancelled according to an exogenous cancellation function.
Forming posteriors about the private values of traders currently posting limit orders is unnecessary since
these traders never return to revise their orders. The fixed point is therefore directly obtained for beliefs
about execution probabilities and changes in the common value conditional on execution.
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converge to their true means.
The second advantage of the stochastic algorithm is that values are only updated for

states actually visited: that is, the fixed point is computed only for the recurrent class of
states. Since the full state space of the trading game is huge, this feature of the algorithm
is particularly important.

Perfection requires that agents’ beliefs about payoffs to actions off the equilibrium path
be correct, to rule out the possibility that incorrect beliefs at states outside the recurrent
class may lead players to mistakenly avoid such states. Consider an extreme case in which
all traders believe that limit orders never execute. Suppose the book is empty when the first
trader enters. Given this belief, submitting no order is a best response for this trader and
the book will be empty when the second trader arrives. This trader now faces a decision
problem identical to the one faced by the first trader, and hence submits no order. Therefore,
no orders are ever submitted in this market. Perfection rules out such situations.

Numerically, perfection requires the computation of payoffs to actions that are not
chosen. To obtain these payoffs, we allow for trembles: On each entry, there is a small
probability ε > 0 that an agent takes a suboptimal action. To ensure that strategies along
the equilibrium path are not affected, we take the following steps: (i) the probability of a
tremble is small, declining to 0.5% as the algorithm converges (ii) updates to payoffs always
use the optimal action in any state, even if the trader is randomly selected to tremble,
and (iii) traders never tremble to market orders (such trembles would make limit orders at
ridiculous prices more attractive).13

The algorithm is a natural extension of the stochastic approximation algorithm of Pakes
and McGuire (2001) for complete information games. A transparent difference is that
different agents have different state variables, and some payoff-relevant variables (such as
α and possibly v) are privately known to agents. A substantive difference is the use of
trembles to ensure perfection.14

Details of the algorithm appear in Appendix A, along with the convergence criteria that
we use.

2.3 Implementation of the Numerical Algorithm

In principle, we would like agents to condition their strategies on the entire history of
the game. In practice, of course, this is computationally infeasible. Hence, we impose

13As discussed in Appendix A, payoffs to market orders are updated regardless of actions taken, so
trembling to market orders is unnecessary.

14While checking for convergence, Pakes and McGuire (2001) avoid pessimistic beliefs by directly com-
puting the integral that defines each state’s continuation value. This is not an option in our model because
there are too many future states an agent could be in, given a current state and action.
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some restrictions on the state space. We allow agents to condition their action on a set of
variables related to the book and market. In addition, uninformed agents choose actions that
can vary with vt−∆t , the fundamental value they observe, and informed agents can choose
actions that vary with both vt and vt−∆t . Therefore, the set of conditioning variables for
an informed agent strictly includes all variables used by an uninformed agent.

The set of book-related variables used by agents consists of: (i) the current bid and ask
prices, (Bt, At); (ii) the total depths at these prices, ("B

t , "A
t ); (iii) the cumulative buy and

sell depths in the book, Db
t =

∑N
i=0{"t

i > 0} and Ds
t =

∑N
i=0{"t

i < 0}; and (iv) the price
closest to the bid (ask) at which buy (sell) depth is available, B̂t(Ât). Denote this 8-tuple
of book-related conditioning variables as L̂t = {Bt, At, "B

t , "A
t , Db

t , D
s
t , B̂t, Ât}.

In addition, for a limit buy order at price p̃, agents also condition on {"i
t}Bt

i=p̃, the number
of shares on the buy side of the book at prices least as aggressive as p̃. Similarly, for a limit
sell order at price p̃, agents also condition on {"i

t}
p̃
i=At

, the number of shares on the sell side
of the book at prices at least as aggressive as p̃. Though this implies different conditioning
variables for different actions, in practice, less aggressive orders have a minimal effect on
state values. Hence, including the omitted variables would not affect the equilibrium.

In addition, we allow agents to vary their actions based on the price p̂t of the most
recent transaction, if this transaction occurred in the interval [t −∆t, t], and whether this
transaction involved a market buy or sell. We investigated a model in which agents also
observe the cumulative market buys and sells in the interval [t −∆t, t]. The added condi-
tioning variables are virtually ignored by traders in updating beliefs about v, and do not
affect market outcomes.

2.4 Parameterization of the Trading Game

Time is continuous, with three types of Poisson events—new trader arrivals, returning
traders, and changes in the common value. We normalize the mean time between new
trader arrivals to 1, so that any time interval may also be interpreted in terms of the
expected number of new trader arrivals in that period.

The other parameters that define our base case are as follows:

• The support of the discrete α distribution in ticks is {−8,−4,−0.1, 0.1, 4, 8}. The
probabilities of −8, 8 are each 15%, while that of −4, 4 are 20% and the probabilities
of −0.1, 0.1 are 15% each.

The traders with α ∈ {−0.1, 0.1} constitute traders who may be willing to buy
or sell, depending on the state of the market when they arrive. We refer to these
agents as “speculators,” since they have a very low intrinsic motive to trade. The
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traders with α ∈ {4, 8} are likely to be buyers overall, and those with α ∈ {−4,−8}
are likely to be sellers. These characterizations are borne out in our simulations.

Our private value distribution approximately corresponds to the findings of
Hollifield et al. (2004), who estimate the distributions of private values for three stocks
on the Vancouver exchange. Since they consider a world with symmetric information,
their estimate of the gains to trade represents a likely upper bound (since some trading
will occur for informational reasons). Our parameterization of Fα is based on their
identification of three types of traders within these distributions. They find that, on
average across the three stocks, 44% of traders have private values within 2.5% of the
common value of the stock, 26% have values that differ from the common value by
2.5% to 5%, and 30% have values that differ from the common value by more than
5%. This corresponds approximately to the probabilities of our three kinds of traders.

In terms of ticks, on average across the three stocks, 2.5% of the common value
translates to approximately 3.45 ticks, and 5% of the common value to approximately
6.9 ticks. Since 30% of our traders have private values within ±0.1 ticks of the common
value, we choose 4 ticks as the private value for our second kind of trader, and 8 ticks
for our third kind.

• Changes in v, the fundamental value of the asset, occur at times drawn from a Poisson
distribution, so that the inter-arrival time of innovations is exponential. The expected
time between changes in v is 8 units of real time. We consider two sets of models:
(i) Low volatility: whenever v changes, it increases or decreases by one tick, each with
probability 1

2 .
(ii) High volatility: whenever v changes, it increases or decreases by 8 ticks, each with
probability 1

2 .

Our low volatility parameterization roughly corresponds to the findings of Holli-
field et al. (2004). For the three stocks they consider, they report the average number
of transactions during each ten-minute period and the volatility of the midpoint of
the bid and ask quotes. Using these transaction frequencies, we infer the volatility
of the midpoint of the quotes per transaction to be 0.20, 0.34, and 0.42 for the three
stocks.

The midpoint of the bid and ask quotes is a rough proxy for the common value.
In our model, new traders arrive at the rate of one per unit time. Since we consider
stationary equilibria, and it takes two traders to make a transaction, transactions
occur approximately every two units of time. Thus, we parameterize the volatility of
the asset at 0.125 per new trader arrival, or 0.25 per transaction. This translates to
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an innovation occurring on average every 8 units of time.15

• We let ∆t = 16: this represents the average number of new trader arrivals that occur
between the time an uninformed trader observes v and the time he takes an action.

Note that we use ∆t = 16 only for our base case. Since we have no empirical
basis for this selection, we varied ∆t in our simulations and found no significant
differences for much larger values.

• ρ, the continuous discount rate, is the same for all agents and is set to 0.05. Recall that
this is not the time value of money, but rather a preference parameter that reflects
the cost of not executing immediately.16

• Agents reenter the market at an average rate of 4 units of time per reentry. Reentries
are independent across traders and entries.

Numerically, the algorithm can trivially handle reentry rates that differ across
types and trader information. In this paper, however, we are primarily interested
in isolating the effects of differential information on market outcomes, so we keep
the reentry rate the same across informed and uninformed traders. Conceptually, we
think of reentry rates as depending on the cost of monitoring the market, with a lower
monitoring cost implying a higher rate of reentry.

• Limit orders may be submitted at any feasible price that lies in a range between
2.5 ticks above and below an agent’s expectation of v. For an informed trader, this
expectation is just the current value of v. For traders who observe v with a lag ∆t,
this expectation is their best estimate given the lagged common value, the current
book, and the observed market history.17

Market orders, of course, may be submitted at the current bid (market sells) or
ask (market buys) regardless of an agent’s expectation of v.

• Initially, we set the probability that an agent trembles to a suboptimal order at 0.05.
As the algorithm converges, we reduce this probability, to a final value of 0.005.

15The variance of the innovation in an interval of time t is the expected number of innovations in the
interval.

16We experimented with lower values of ρ, and found the results to be qualitatively similar. However,
traders took longer to execute on average, and the state space was considerably larger.

17We simulated versions of the models in which limit orders could be submitted further away from the
common value. Although orders were occasionally submitted at such ticks, these orders rarely executed,
appearing to substitute for not submitting an order at all. There was no appreciable effect on market
outcomes, either in the aggregate or for any particular type of trader.
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3 Trading Behavior

We are interested in how agents’ optimal trading behavior determines the relationship
between the observed transaction price and the consensus value, vt. We do this by comparing
how each trader type changes actions when faced with assets with different fundamental
volatility and how each trader type reacts to different asymmetric information regimes. For
brevity, we report two information settings: all agents are informed and only speculators
are informed.

There are three elements to an agent’s payoff: his private value, the discount (or pre-
mium) that he obtains over the common value of the asset, and the length of time it takes
him to execute. The overall discounted payoff to an agent with private value α who buys
a share at price p when the common value is v and executes with a time delay (from first
entry to the market) t is e−ρt (α− (p− v)).

3.1 Time to execution and terms of trade

We first consider the time to execution for each type of agent. Changes in the execution
time across agent types imply changes in the set of agents who are available to trade at any
given point of time. In Table 1, we report for each trader type the average time from entry
to the market until trade is consummated.

Volatility Regime Information Regime Absolute value of α
0.1 4 8

Low All informed 19.64 2.09 0.59
Speculators informed 17.22 2.19 0.62

High All informed 8.87 3.19 1.07
Speculators informed 12.34 5.44 2.33

Table 1: Average time to execution

Table 1 shows that the speculators take significantly longer to execute than any other
traders: since they have a low intrinsic motive for trade, they are willing to wait longer
for a better price. When the fundamental volatility is low, they execute fastest when they
are the only ones informed. If they compete with another group of informed agents, it
takes them longer to execute: competition among informed agents makes profitable trades
more difficult to find. Although the extreme α agents always execute quickly, they take the
longest when only the speculators are informed.
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Conversely, when fundamental volatility is high, asymmetric information leads to an
unambiguous increase in time to execution for each type of trader. Comparing the last
two rows of Table 1, each trader type takes longer to execute when only speculators are
informed, compared to the situation in which all agents are informed.

In Table 2, we report (p − v) for all executed buy orders (i.e., market and limit). Two
comparisons are useful from the table. First, comparing across information regimes (i.e.,
comparing the first and second rows of numbers or the third and fourth rows), speculators
experience an improvement in the terms of trade when only they are informed. When the
volatility is low, buy orders of speculators with a positive α execute 1.21 ticks below the
common value when only they are informed, as compared to 1.14 ticks below the common
value when all agents are informed.18 The effects of adverse selection are exhibited by the
increased cost (in terms of amount paid in excess of the common value) paid by agents with
higher private values (α = 4 or 8) in the case in which only the speculators are informed.

Volatility Regime Information Regime Value of α
−0.1 0.1 4 8

Low All informed −1.07 −1.14 0.10 0.48
Speculators informed −1.30 −1.21 0.21 0.57

High All informed −2.38 −3.12 −0.21 0.45
Speculators informed −4.78 −4.01 0.25 0.75

Table 2: Average of (price − fundamental value) for buy orders

Second, comparing across volatility regimes, speculators see a substantial improvement
in their terms of trade when the fundamental volatility is high. For example, comparing
the first row with the third row, speculators with a positive α improve their terms of trade
by almost two ticks per share when the volatility is high. On the other hand, when only
speculators are informed, extreme private value agents (i.e. those with α = 8) on average
execute at worse prices when the volatility is high.

A limit order market may broadly be seen as a dynamic bargaining mechanism. If
agents do not like the posted prices, they can make their own offers. In the presence of
adverse selection, the optimal posted orders are more conservative, since uninformed agents
are concerned about being picked off by informed agents. The greater conservatism leads
to greater time to execution.

18The notion that limit order submitters execute at favorable prices is consistent with the empirical work
of Biais, Bisiere and Spatt (2003), who fail to reject the hypothesis that competing limit order submitters
on Island (an electronic limit order book) make positive profits.
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Absolute value of α
0.1 4 8

% Lim % Mkt % Lim % Mkt % Lim % Mkt
% of trader type 30 40 30

Low volatility, all informed 68.1 13.7 23.8 40.4 8.1 45.8
Low volatility, speculators informed 66.6 12.7 25.1 41.0 8.3 46.4

High volatility, all informed 42.1 48.8 35.1 31.3 22.8 19.9
High volatility, speculators informed 53.8 39.2 26.9 36.1 19.3 24.7

Note: “% Lim” denotes the percentage of all limit orders submitted by a trader type. “%
Mkt” denotes the percentage of all market orders submitted by a trader type.

Table 3: Proportion of limit and market orders submitted by each type

In Table 3, we report the proportion of limit and market orders that are submitted by
each trader type.19

We find that speculators are the traders with the highest value for information, and
also the agents who supply liquidity. That is, informed traders in our market tend to
submit limit orders, a finding that corresponds to the experimental results of Bloomfield,
O’Hara, and Saar (2004) and the empirical observations of Kaniel and Liu (2004) on the
TORQ database of NYSE stocks. When the fundamental volatility is low, asymmetric
information does not affect the distribution of orders across trader types. However, when
the fundamental volatility is high, two effects are noticed. First, traders with more extreme
private values tend to submit an increased proportion of limit orders, since the books are
thinner on average. Second, asymmetric information leads speculators to increase their
supply of liquidity. The book is slightly thicker on average, and, at the margin, uninformed
traders substitute away from limit orders towards market orders.

4 Excess Volatility and Trading Pool Composition

In a frictionless market with all agents informed, all trades should execute at the funda-
mental value, vt. Thus, the dispersion of prices around the fundamental value represents
a measure of excess volatility generated by the frictions in the market. As Table 4 shows,
excess volatility is higher when only speculators are informed, and higher yet when the
volatility in the fundamental value is high. Thus, even with symmetric information, the
market represents a volatility multiplier, exacerbating the effects of an uncertain fundamen-

19Note that agents who take longer to execute submit more orders than agents who trade more quickly,
since the former are in the market more often on average.
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tal value. This effect is further enhanced when there is asymmetric information.

Regime Std. Dev. Average number of
of (p− v) traders in market

α = 0.1 α = 4 α = 8

Low volatility, all informed 0.8 2.65 0.66 0.24
Low volatility, speculators informed 1.11 2.38 0.69 0.23

High volatility, all informed 2.59 1.42 1.17 0.69
High volatility, speculators informed 4.32 1.96 1.66 0.94

Table 4: Excess volatility and trading pool composition

Notes: (i) “Low” and “high” volatility under “Regime” refer to volatility in the funda-
mental asset value. (ii) “Average number of traders in market” is the average number of
traders who have entered the market, but not traded, at any given instant. (iii) Since the
model is symmetric, the number of traders in the market with negative α corresponds to
the number with positive α.

As noted from the table, when the fundamental value is volatile, and there is asymmetric
information (i.e., only speculators are informed), there is a shift in the distribution of traders
in the market at any instant (or the “trading pool”), from low private values (i.e., closer to
zero) to more extreme ones. Since, for any given trade, at least one of the two sides must
constitute a trader who entered the market previously, this represents a shift in the marginal
trader across regimes. When there is a greater number of extreme value traders, we expect
to see prices that depart from the common value. Thus, excess volatility increases.

A further implication of the shift in the composition of the trader pool across regimes
is that any attempt at aggregation across traders will lead to results that vary by market
or asset. Suppose all else is equal, and consider two assets with different fundamental
volatilities. On average across time, these assets will exhibit different marginal traders, and
hence different “representative agents.” This is surprising in our context, given that all
agents are risk-neutral (so wealth effects are absent). Our results here complement those
of Schlee (2001), who shows that, in an economy with some risk-averse agents, if there is
a representative agent, then all agents are worse off when greater information is acquired.
Thus, in such an economy, there is no incentive to acquire information. In our model, by
comparison, agents have an incentive to acquire information, and aggregation fails.
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5 Aggregate Allocative and Informational Efficiency

5.1 Informational Efficiency

As prices in markets can influence decisions regarding the allocation of real resources, the
prices and outcomes in a particular market provide an important externality to agents
outside the market as well. In this section, we consider the informational efficiency of the
limit order market.

In our limit order market, information about the common value can be conveyed by
several variables other than the transaction price, including bid and ask quotes and order
depth in the book at various prices. Consider an uninformed agent in the market. This agent
observes market conditions (in particular, the book and the price and direction of the most
recent transaction) and forms an estimate about the common value. One measure of the
informational efficiency of the market is the average absolute error in his estimate of v. In
Table 5, we report the mean absolute difference between an uninformed agent’s expectation
about the fundamental value and the true value.20 As the table shows, the greater the
number of informed agents in the market, the better the estimates of the current common
value. However, even when all agents are informed, market observables are only partially
revealing.

Regime Mean absolute error in uninformed
agents’ belief about v

Low volatility, all informed 0.31
Low volatility, speculators informed 0.49

High volatility, speculators informed 2.59

Table 5: Errors in beliefs across different regimes

Notice from Table 5 that the market has a certain resilience. If the proportion of
informed traders is low, an uninformed agent forms less precise estimates about the common
value. However, in this case, adverse selection is less of an issue, since the probability of
trading with an informed agent is low. Conversely, if there are a large number of informed
agents, market observables are more revealing, mitigating the adverse selection problem.

20In the model in which all agents are informed, we use the beliefs of agents who deviate at the information
acquisition stage to determine an uninformed agent’s expectation about the fundamental value.
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When the fundamental value has high volatility, uninformed agents’ beliefs are less precise,
and the mean absolute error in estimating the common value increases to 2.59 ticks.

Recall that our traders observe both a snapshot of market history and a subset of the
current book on each arrival to the market. The history consists of the price and sign of the
previous transaction.21 To determine which conditioning variables are most important to
uninformed traders in updating their beliefs about the common value, we regress an unin-
formed agent’s expectation of the common value on these variables. Nothing in the model
suggests that this functional relationship should be linear: our goal with these regressions
is merely to illustrate broad rules of thumb that explain how market observables influence
beliefs about the common value. We find that linear regressions perform surprisingly well
in this context.

We generated data for the regressions in the following way: for each set of parameters,
after the algorithm has converged to an equilibrium, we hold values fixed and run a new
simulation. Each time an uninformed agent enters the market in the new simulation we
determine his estimate of the current common value, given market observables and given
the common value at the lag ∆t. We restrict attention to books that are nonempty on
both sides of the market. In the low volatility case with only speculators informed, these
represent 84.4% of all books encountered in the simulation.

Details of the regressions are omitted for brevity. The constant is insignificantly zero
(as expected), and the bid, ask, and last transaction prices contribute almost equally to the
estimate of v. All else equal, every increase of a tick in any one of these prices increases
the expectation of v by approximately 0.25 ticks.22 Depths at and away from the quotes
are statistically significant, but have close to zero correlation with the dependent variable.
An extra limit order at the bid (ask) price increases (decreases) the estimate of v by 0.13
ticks, and an extra limit order away from the bid (ask) increases (decreases) the estimate
of v by 0.04 ticks. The R2 of the regression is 0.81.

Similar regressions were run the other information structures with all agents informed
and agents with |α| ∈ {0.1, 4} informed. The results were qualitatively similar, though the
coefficients vary somewhat with information structure.

5.2 Allocative Efficiency

We now consider aggregate welfare generated by the limit order market, which we measure
by the mean surplus per trader. The surplus of a particular trader is defined as his instan-

21In our simulations, at least one transaction occurs in each [t−∆t, t] interval.
22Note, however, that in the simulation the transaction price, bid, and ask are all correlated, so all else is

rarely equal.
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taneous utility at execution, given by equation (2), discounted back to his first arrival at
the market.

Eventual allocations in this market are approximately invariant to the information struc-
ture. Agents with α = 4 or 8 buy a share, and those with α = −4 or −8 sell a share. Among
speculators, roughly 2

3 of agents with α = 0.1 buy a share, with the remainder (roughly 1
3)

selling a share. These fractions are reversed for the α = −0.1 agents. Any effects of adverse
selection on mean surplus, therefore, do not occur via a difference in allocations.23 Further,
as Table 1 indicates, execution times do not vary systematically across information regimes:
when speculators take longer to execute, agents with |α| ∈ {4, 8} trade more quickly. What
is the overall effect of adverse selection on mean surplus?

Recall that there are three key frictions present in our model. First, traders arrive
over time and waiting is costly. Second, prices are discrete. Finally, traders have private
information about type and the common value. As a first-best benchmark, we consider a
frictionless world with all agents present in the market at the same time. Then, a price p∗ =
v represents a competitive equilibrium, and the resulting allocation is Pareto-optimal.24 If
each agent trades instantaneously at v, he obtains a gross payoff |α|. Thus, given the
probability distribution of types, the aggregate frictionless surplus is 4.03.

Regime Gross surplus Net Surplus

Low volatility, all informed 3.73 3.73− c
Low volatility, speculators informed 3.72 3.72− 0.3c

High volatility, all informed 3.61 3.61− c
High volatility, speculators informed 3.42 3.42− 0.3c

Table 6: Mean surplus per trader, in ticks

The mean surplus per trader in each regime is shown in Table 6. For ease of comparison,
we report both the gross and net (after deducting information acquisition costs) surplus
numbers from the four regimes under consideration.

As expected, in all cases the gross surplus in the market is less than the frictionless
benchmark 4.03. When the asset has low volatility, the gross surplus is relatively invariant
to asymmetric information. Even when only speculators are informed, the market recovers

23Our results on allocations complement those of Blouin (2003), who considers a large decentralized
economy in which a good with two different qualities is traded via bilateral bargaining. In his model, all
units of the good are traded in equilibrium, so that adverse selection does not affect the eventual allocations,
but does affect prices and the time taken to trade. This contrasts with the equilibrium when trading is
centralized (so that all trades must occur at the same price and same point of time).

24All prices between −0.1 and 0.1 represent Walrasian equilibria given our parameters; allocations are
invariant across these equilibria.
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92.1% of the surplus generated in the frictionless case. This is very close to the calculations
of Hollifield et al. (2004), who estimate that, for the stocks they study, the consummated
gains from trade are approximately 90% of the maximum gains from trade.

As mentioned earlier, their methodology may over-estimate the gains from trade, since
they do not consider asymmetric information. In a model with asymmetric information
(or equivalently, one in which the gains to trade are small relative to the degree of adverse
selection), the limit order book performs worse.

When the asset has high volatility, adverse selection is an important trading friction.
The increase in fundamental volatility, even when all agents acquire information, leads to a
reduction in aggregate gross surplus of approximately 3% (from 3.73 with low volatility to
3.61 with high volatility). Asymmetric information leads to a further fall in gross surplus
of 0.19 ticks per trader, or approximately 5.25%.

6 Endogenous Information Acquisition

To understand how agents trading behavior changes with asset volatility, we characterize
agents’ willingness to pay for information. To do so, we fix agents’ information acquisition
strategies and solve for equilibrium in the trading game. We consider regimes in which all
agents with a given α take the same action in the information acquisition game: all acquire
information, or choose not to (i.e., for each θ, σI(θ) = 0 or 1). As we show below, the amount
agents are willing to pay for information declines in |α|. Hence, we report results from four
information acquisition regimes: all agents are informed, only agents with |α| ∈ {0.1, 4} are
informed, only agents with |α| = 0.1 are informed, and no agents are informed. That is,
we ignore information structures in which the speculators are uninformed, but some other
type is informed.

For each of the four information structures we consider, once the algorithm has con-
verged, we simulate a further 100 million trader decisions and obtain the expected consumer
surplus (i.e., the equilibrium payoff or expected utility) for each trader type. We use the
equilibrium values and strategies of the corresponding trading game to determine the payoff
to an agent who deviates in information acquisition. We allow a small mass of each type
(2%) to deviate in information acquisition and then trade optimally. All other agents in the
simulation play the equilibrium of the original trading game. The equilibrium strategies and
payoffs for the deviators (and only the deviators) are determined afresh by the algorithm.
We ensure that at most one deviator is present in the market at any given time, to preserve
the spirit of unilateral deviation.

Consider the low volatility case. The gross payoff (i.e., ignoring the cost of acquiring
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information) of each type in each of the four information structures is reported in Table 7.
All payoffs are quoted in ticks. We exhibit the mean payoffs both to agents playing according
to equilibrium and to deviators. The value of information to each agent is represented by
the difference in payoffs between being informed and remaining uninformed. This value
immediately translates to a maximum cost agents with a given α are willing to pay for
information.

Information Structure Value of |α|
0.1 4 8

None Informed Equilibrium 0.403 3.515 7.333
Deviation 1.178 3.652 7.353

Value of Information 0.776 0.138 0.020
Speculators Informed Equilibrium 0.628 3.413 7.204

Deviation 0.413 3.499 7.228

Value of Information 0.215 0.086 0.024
α ∈ {.1, 4} Informed Equilibrium 0.495 3.508 7.234

Deviation 0.287 3.414 7.279

Value of Information 0.207 0.094 0.044
All Informed Equilibrium 0.447 3.510 7.311

Deviation 0.244 3.430 7.251

Value of Information 0.203 0.080 0.060

Notes
(i) Reported means and standard deviations are averages and sample standard deviations
from market simulations over 100 million arrivals (new and returning traders).
(ii) Reported numbers exclude agents who trembled to suboptimal actions.
(iii) Standard errors on means are less than .0005 for equilibrium strategies and less than
.0020 for deviator strategies (for which only 2% of traders deviate).
(iv) Payoffs in italics indicate informed agents.

Table 7: Average gross payoffs (in ticks) in low volatility case

As seen from the table, the value of information decreases in the absolute value of α.
Information is most valuable to the speculators (i.e., agents with |α| = 0.1), who have
little intrinsic benefit to trade. These agents are willing to take either side of the market,
depending on the available payoff. Conversely, agents with α = 8 are unlikely to switch
from buyers to sellers, so information is less valuable to these agents.25

25Radner and Stiglitz (1984) demonstrate that information is valuable to a single Bayesian decision-maker
only if it induces a change in action.
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The value of information to an agent, of course, equals her willingness to pay for infor-
mation. Thus, speculators have the highest willingness to pay for information. Verrecchia
(1982) shows a similar result in a general equilibrium rational expectations framework—the
least risk-averse agents (i.e., those with the lowest intrinsic motive to trade) acquire costly
information.

Observation 1 In any information regime, agents’ willingness to pay for information is
decreasing in |α|.

Since information is most valuable to speculators, in any equilibrium in which some
agents are informed, the speculators (or a subset of them) must be informed. That is,
there will not exist any equilibria in which, for example, only the agents with |α| = 8 are
informed.

We also consider how agents’ willingness to pay for information, changes as asset volatil-
ity changes. Specifically, if the underlying asset is more volatile, all agents are willing to
pay more for information.

7 Cross–sectional Asset Pricing Implications

In our model, all our prices are relative to vt, the fundamental value of the asset. If all
agents were informed then they would all agree on this as the value. Our transaction price
can be decomposed as

pt = vt + ut,

where pt is the price at time t and ut is the deviation from the fundamental value. Typically,
in econometric studies, uit is assumed to be white noise.26

Further, uit is uncorrelated with vt, the level of the fundamental value. However, changes
in ut are correlated with changes in the fundamental value at both short and long horizons.
Let ∆(xt) = xt− xt−1. Table ?? exhibits the correlations between ∆(ut) and ∆(vt) at high
and low frequencies. The correlations are negative and they are larger absolute numbers
when the asset has high volatility. Further, they have a higher absolute value if there is
asymmetric information: i.e., if the speculators are informed. As we have observed, in any
regime the speculators are willing to pay the highest cost to become informed, therefore for
any cost of acquiring information, they are most likely to be informed.

To see the cross-sectional implications of these correlations, consider a world in which
the CAPM is true. To emphasize differences across securities, we adopt a subscript i to

26Habrouck (2002) provides a comprehensive discussion of these decompositions.
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identify each asset. Therefore, if the CAPM is true, in the absence of frictions, the return
process for asset i is

r∗i,t = rf + βirm,t + εi,t. (3)

Here, we use the obvious notation, in which rf is the risk free rate and εi is a firm specific
idiosyncratic shock.

This relationship could be uncovered from transaction data. Such an estimate would be
based on the observed price process, or ri,t = pi,t−pi,t−1

pi,t−1
. The estimated beta, β̂ is determined

as

β̂ =
cov(ri, rm)

σ2
m

.

As the CAPM is true,

rm,t =
r∗i,t
β
− rf + εi,t

β
. (4)

Using the properties of covariance, β̂ is

β̂ =
1
β

cov(ri,t, r∗i,t − εi,t)
σ2

m
. (5)

This implies that if the observed price process was the true one, so that r∗i,t = ri,t, then
equation 5 simplifies to

β̂ =
1
β

cov(r∗i,t, r∗i,t − εi,t)
σ2

m
(6)

=
var(r∗i,t)− σ2

ε

βσ2
m

(7)

=
β2σ2

m

βσ2
m

(8)

= β, (9)

where E(rm − Erm)εi,t = 0.
However, the observed price process is not the “true one.” In the context of our model,

the “true,” price of the asset is vit. Therefore,

r∗i,t =
vi,t − vi,t−1

vi,t−1
. (10)

High fundamental volatility correspond to stocks with either high CAPM β’s, or with high
idiosyncratic shocks.
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Substituting in for r∗i,t and ri,t into equation 5 yields

β̂ =
1

βσ2
m

cov

(
vi,t − vi,t−1

vi,t−1
,
pi,t − pi,t−1

pi,t−1

)

=
1

βσ2
m

cov

(
∆(vit)
vi,t−1

,
∆(vi,t) + ∆(ui,t)

pi,t−1

)

Notice, that this implies that anything else that appears to be correlated with mi-
crostructure noise, such as bid/ask spreads should also be informative about returns as
these variables will pick up the misestimation in the asset pricing model. We explore the
implications of this in a companion paper. To get a sense of the economic magnitude of
the missetimation, in Table ??, we demonstrate the amount by which β is overestimated in
simple cross–sectional regressions.

To understand the intuition behind these effects consider two assets, one with a high
volatility and one with a low volatility. There are two effects that work in the same direction.

First, the adverse selection risk (including both the likelihood and size of the jump) is
larger when asset volatility is higher. All classes of agents change their behaviour. Specifi-
cally, speculators with little intrinsic value for trade supply less liquidity and prefer to submit
market orders (against mispriced limit orders) or leave the market and return. Therefore,
conservative investors (those with a high absolute value to trade) submit a higher propor-
tion of limit orders. This means that when transactions do occur, they are most likely after
a limit order has been “picked off.” This will generate a time series in which changes in the
common value are correlated with changes in the microstructure noise. The misestimation
of β is therefore systematically related to the underlying risk.

Second, holding fixed the set of agents who have acquired information, the more volatile
an asset the more valuable (the greater the willingness to pay for) information. Further,
holding fixed the set of agents who have acquired information, information is always more
valuable to the speculators. This effect exacerbates the adverse selection risk, as informed
agents are more likely to pick off ex post mispriced limit orders and therefore not to supply
liquidity but to demand it.

Our results are robust to different time horizons, and to different estimates of the “true,”
price process. For example, sometimes the midpoint of the bid ask spread is taken as a proxy
for the true price process. In Table ?? we demonstrate that this measure, too introduces
bias in the estimation of systematic risk.

27



8 Conclusion

We model how agents change their trading behavior in the fact of greater adverse selection.
This can come about either because asset volatility is higher ore because of asymmetric
information. Agents with low intrinsic benefits from trade have the highest value for infor-
mation and are most likely to be informed.

The informational efficiency of market observables is directly related to the number of
informed agents in the market—an uninformed agent forms more precise estimates of the
common value when there are a greater number of informed agents. Transparency of the
book somewhat mitigates adverse selection, since market observables are more informative
when an uninformed trader faces greater adverse selection. Since liquidity suppliers in our
market (i.e., agents with low private values) have the highest value for information, bid and
ask quotes are as informative as transaction prices.

Conversely, when the asset volatility is high, sequential trade and asymmetric informa-
tion are both important market frictions. Each of these leads to an increase in the excess
volatility of prices over the fundamental value. The composition of potential traders at
any given point of time changes, with more extreme value traders in the market. Intrigu-
ingly, with high fundamental volatility, the book is a little deeper on average when there is
asymmetric information, since informed traders submit the bulk of the limit orders in the
market.

The change in the marginal trader across regimes also suggests a problem with aggre-
gating up to a representative agent. If two assets have different fundamental volatilities,
they will have different pools of potential traders in the market at any time. Hence, the ag-
gregate “representative agent” inferred from these two markets will be different. Although
we have risk-neutral traders (and therefore no wealth effects in the utility function), the
representative agent remains an elusive concept.

Finally, we have shown that because agents’ trading strategies change in the presence
of adverse selection, changes in microstructure noise are negatively correlated with fun-
damental volatility. Therefore, any econometric specification that assumes such noise is
uncorrelated with fundamental volatility underestimates factor exposure. This leaves open
the possibility that other variables that are correlated with microstructure noise (such as
many transaction costs or liquidity measures), should be priced.
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A Appendix

A.1 Model Description: Trading Game

In this section, we describe the trading game more formally. Recall that the trading game
assumes that traders’ information acquisition decisions are fixed. Let I ∈ {0, 1} denote the
action an agent takes with respect to information acquisition, where I = 1 if the agent
chooses to become informed. Let σI(θ) ∈ [0, 1] denote the information acquisition strategy
of an agent of type θ: this is the probability that type θ acquires information.

Let G denote the distribution over a trader’s reentry time, with g being the associated
density. With a slight abuse of notation, let "p denote the outstanding limit orders at price
p before the agent submits an order. Then, for a new order, priority q̂(p, x) is:

q̂(p, x) =
{

0 if (i) x = 0, or (ii) x = 1, p ≥ A(L), or (iii) x = −1, p ≤ B(L)
|"p + x| otherwise. (11)

Let s(θ, I) be the state observed on a particular entry to the market at time t by a
trader with type θ who has taken the information acquisition action I. Here, s(·) includes:
(i) the history of play in the game, and the history of changes in v up to time t − ∆t (if
I = 0; i..e, the agent is uninformed) or time t (if I = 1; i.e., the agent is informed). If
the trader had previously entered the market and taken an action, s(·) includes the status
of the previous action, a = (p, q, x), where p is the price at which the previous order was
submitted, q its current priority at price p, and x, which is defined in equation (1) of the
text to take on the value +1 for a buy order, −1 for a sell order, and 0 if no action was
taken.
(ii) a variable z ∈ {0, 1} that denotes the number of shares the agent has available to trade.
Each trader enters with z = 1. Once he has traded, z is set to zero. As we comment after
the Bellman equation (14) below, this variable is used to conveniently set an agent’s future
payoff to zero once he has traded.

Consider the problem faced by a trader in the market at time t. Suppose this trader
is reentering the market (the problem faced by a new trader is identical to the problem
faced by a reentering trader who did not submit an order on his previous entry), and, on
his previous entry (at some t′ < t), he had submitted an order at price p that is still active.
This order may have improved in priority at price p between times t′ and t. The trader has
the option of leaving the order unchanged and taking no further action.

Let A(s) denote the feasible action set of a trader in state s. Recall that s depends on
type θ and information acquisition strategy I, and includes information on the status of
the trader’s previous action, a = (p, q, x). If the trader has arrived at the market for the
first time, we set x = 0. For computational tractability, we restrict limit order submission
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to a finite set of prices within k ticks of an agent’s expectation of the common value. We
choose k to be sufficiently large that it does not affect the equilibrium. Denote the agent’s
expectation of common value as v̂(s) = E(v | s), where s denotes the state observed by the
agent. The feasible action set is then defined as

A(s) = { (p, q, x) | (i) x ∈ {−1, 0, 1}, (ii) q = q̂(p, x),

(iii) q '= 0 =⇒ p ∈ [v̂(s)− k, v̂(s) + k] ∩ P }. (12)

In the trading game, the information acquisition strategy for each trader type θ is fixed as
σI(θ), so we define the type of a trader as (θ, I). Let σI = {σI(θ)}θ∈Θ denote the information
acquisition strategy across all types. Let ΘI(σI) = {(θ, I) ∈ Θ × {0, 1} | Prob((θ, I) |
σI(θ)) > 0} be the set of feasible types in the trading game. In what follows, we suppress
the dependence of this set on σI .

Let S(θ,I) denote the set of feasible states a trader with type θ and information I may
encounter. A mixed strategy for such a trader in the trading game is then a map σ(θ,I) :
S(θ,I) →

∏
s∈S(θ,I)

∆(A(s)), where ∆(A(s)) is the set of probability distributions over A(s).
Let S =

⋃
(θ,I)∈ΘI Sθ,I be the entire set of states for the game, and let σ = {σ(θ,I)}(θ,I)∈ΘI

denote a strategy in the trading game.
Consider a trader in the market at time t. Suppose he enters in a state s, and the status

of his previous action is given by a. When the trader submits an order, he must consider
the distribution over execution times for that order, as well as the distribution of his own
reentry time into the market. Upon reentry, if his order is unexecuted, he has the option
to cancel it and submit a new order. The trader, therefore, solves a dynamic program to
determine the optimal order.

Consider the value to trader type θ, with information acquisition strategy σI(θ), of being
in the state s, given that his previous order is a. On entry into the market, the trader has
a finite action set, A(s). Each action ã in this set gives rise to an expected payoff that
consists of two components: first, a payoff conditional on the order executing before the
trader reenters the market, and second, the value associated with reentering the market
(without having executed in the interim) in some new state s.

The likelihood of a limit order executing clearly depends on the strategies of other
players in the game. Since we consider only symmetric equilibria, consider a trader in the
market, and let σ = {σ(θ,I)}θ∈ΘI denote the strategy adopted by every other player. For
convenience, normalize the trader’s entry time to 0. Let φ(τ, v; s, ã,σ) be the probability
that an action ã = (p̃, q̃, x̃) taken in state s at time 0 leads to execution at time τ > 0 when
the common value is v, given that all other agents are playing σ, and let f(v | s, t) denote
the density function over v at time τ , given state s. For an informed trader, f(·) is purely
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exogenous (recall that the fundamental ; for an uninformed one, it incorporates the trader’s
beliefs over v0.

Suppose the trader reenters the market at some time w > 0. His expected payoff due to
execution prior to reentry is

π(s, ã, w,σ) =
∫ w

0

∫ ∞

−∞

(
e−ρtx̃ (β + vt − p̃) φ(·)

)
f(v | s, t) dv dt. (13)

This equation is derived as follows. Suppose the agent’s order executes at a time t ∈
[0, w]. The payoff to the order depends on the common value at time t, which we denote
vt. As noted, the instantaneous payoff of this order at time t is x̃(β + vt − p̃). This payoff
must then be discounted back to time 0, at the rate ρ. The innermost integral of the first
term is over the different common values that can obtain at time t. We expect φ(·) to be
higher when v has moved in an adverse direction (for example, v has decreased after a limit
buy was submitted)—this is another manifestation of adverse selection in this model. For
a market order, we have φ(0, ·) = 1, since the order executes immediately. The outermost
integral is over the possible times at which execution could occur.

Recall that the reentry time is random and exogenous, with probability distribution G(·).
Let ν(s′ | s, ã, w,σ) denote the probability that the trader observes state s′ on reentry, given
action ã, previous state s, elapsed time w since entry into the market, and strategy of other
players σ. Finally, let J(s) denote the value to an agent of being in state s. The Bellman
equation for the agent’s problem is

J(s,σ) = max
ã∈A(s)

∫ ∞

0

{
π(s, ã, w,σ) + e−ρw

∫

s′∈Sθ

J(s′,σ) ν(s′ | s, ã, w,σ)ds′
}

dG(w). (14)

The first term on the right-hand side (defined in (13) above) indicates the payoff from
execution before reentry at the random time w. The second term captures the continuation
payoff to the trader on reentry to the market at time w. If his order executes before he
reenters, we have z′ = 0 (i.e., he cannot trade any more shares). Define J(s′,σ) = 0 for all
s′ such that z′ = 0, to ensure that the continuation payoff is set to zero if an order executes
before the trader reenters the market.

The agent reenters the market at the random time w in some state s′ different from s.
If his previous order is still unexecuted, he can choose instead to submit a new order at
a price p̃ '= p, and possibly in a direction x̃ '= x. A new order implies cancellation of the
previous order. Alternatively, he can choose to leave his previous order on the books by
setting p̃ = p and x̃ = x. Of course, market conditions may have changed since he first
submitted the order, either due to exogenous reasons (e.g., a change in the common value)
or due to actions taken by other agents. The latter could enhance the priority of this agent’s
order at the price p, or it could reduce the overall priority if other agents submitted limit
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orders at prices more aggressive than p. Hence, the action a taken at time 0 evolves to a′ by
the time the trader reenters at time w. The outermost integral is over the random reentry
time.

Since the action set is finite on any entry, the maximum over all feasible actions exists
and is well-defined. The value of a state and previous action pair is just the maximal
expected payoff over all feasible actions the trader can take.

Fixing the strategies of all other agents, a given pure strategy y∗(θ,I) for a trader with
type (θ, I) ∈ ΘI is a best response if (and only if), for every s ∈ S(θ,I),

y∗(θ,I)(s) ∈ arg max
ã∈A(s)

∫ ∞

w=0

{
π(s, ã, w,σ) + e−ρw

∫

s′∈Sθ

J(s′,σ) ν(s′ | s, ã, w,σ)ds′
}

dG(w).(15)

Note that some of these states may not be attained in equilibrium. Nevertheless, we require
the trader to act optimally in these states as well. Also, the trader’s optimal action in any
state must take into account the possibility of future reentry (and that the trader will play
optimally in the new state).

Finally, a strategy for each player is defined as y = {yθ,I}θ∈ΘI . A strategy y∗ =
{y∗(θ,I)}θ∈ΘI represents a stationary Markov-perfect equilibrium of the trading game if, for
each pair (θ, I) ∈ ΘI , y∗(θ,I) is a best response in every feasible state s ∈ S(θ,I), given that
all other agents are using the strategy y∗.

A.2 Details of the Numerical Algorithm

We fix information acquisition strategies σI(θ), and solve for the equilibrium of the cor-
responding trading game.27 We use an asynchronous value function iteration procedure,
similar to Pakes and McGuire (2001), to find a J(s,σ) that satisfies the Bellman equation
in (14).

For the numerical implementation of the model, we restrict the state space as follows.
Let mt(I) denote the market conditions observed by an agent at time t (recall that informed
agents, with I = 1, observe the current common value; uninformed agents, with I = 0,
observe it with a lag). We use

mt(0) = {L̂t, v(t−∆t), p̂t, bt},

mt(1) = mt(0) ∪ {vt}.

where L̂t is a set of variables that depend Lt, on the book at time t, p̂t is the price of the
most recent transaction, and bt is a variable indicating whether the most recent transaction

27The overview of the algorithm appears in section 2.2.
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was a buy (bt = 1) or sell (bt = −1).28

Ideally, we would like agents to condition on the entire book; in practice, this becomes
computationally intractable. Instead, the variables in L̂t consist of: (i) the current bid and
ask prices, (Bt, At); (ii) the total depths at these prices, ("B

t , "A
t ); and (iii) the cumulative

buy and sell depths in the book, Db
t =

∑N
i=0{"t

i > 0} and Ds
t =

∑N
i=0{"t

i < 0}.29

Given the market observables used, in the numerical algorithm, the state at time t for
an agent of type θ who makes the information acquisition decision I is defined by s =
{θ, mt(I), a, z}, where a = (p, q, x) denotes the status of his previous order, and z ∈ {0, 1}
denotes how many shares he can trade (z is set to zero once he has traded).

In the algorithm, at each time t, each action ã in each state s encountered by the
simulation has an associated payoff Ut (ã | s). This payoff is a real number, and is the
expected discounted payoff from taking action ã in state s. Hence, it may be interpreted as
the current belief of an agent about the payoff from this action.30

At any point of time, current beliefs Ut(·) imply an optimal strategy profile yt, which
assigns the payoff-maximizing action in each state. Let ã∗(s) ∈ arg maxã∈A(s) Ut (ã | s)
denote the optimal action in state s. Then, given beliefs Ut(·), the value of state s is
determined as J(s, yt) = Ut (ã∗(s) | s).

Each action and state pair, (ã, s) has an initial belief U0(ã | s). These initial beliefs
are set as follows. Consider a limit buy order at price p when the last observed common
value is v. The initial belief for such an order is the payoff β + v − p discounted by the
expected time until the arrival of a new trader for whom being a counterparty yields a non-
negative payoff. This initial value is optimistic since (i) limit orders tend to execute when
the common value moves in an adverse direction, and (ii) counterparties usually hold-out for
a strictly positive payoff. The initial belief for market orders also assumes the common value
is unchanged from its last observed value, but of course involves no discounting. Given that
we allow traders to tremble, any U0(·) can eventually lead to an equilibrium. The choice of
initial beliefs is driven more by computational considerations (in particular, converging to

28We investigated a model in which agents also observe the cumulative market buys and sells in the interval
[t − ∆t, t]. The added conditioning variables are virtually ignored by traders in updating beliefs about v,
and do not affect market outcomes. In our model, only recent history is relevant to traders, for two reasons.
First, traders leave the market forever after execution. Therefore, any knowledge about traders who have
already executed does not affect agents’ beliefs about future play in the game. Second, for uninformed
agents, events prior to t − ∆t offer no information about changes in v since it was last observed (at time
t −∆t). Nevertheless, any particular snapshot of history is potentially restrictive. Computational reasons
require us to impose such a restriction; without it, the state space is too large.

29Of these variables, the current bid and ask prices are the most important in influencing agents’ actions.
In some simulations, we restrict the book-related variables further to just the current quotes.

30Our U(·) corresponds to the Q function in the Q-learning literature begun by Watkins (1989). Q-
learning and other neuro-dynamic programming techniques related to our simulation algorithm are described
in Bertsekas and Tsitsiklis (1996).
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equilibrium more quickly) than by a theoretical need.
Additional details of the algorithm are as follows.

1. Three types of exogenous events drive the simulation—changes in the common value,
the arrival of new traders, and the reentry of old traders who have not yet executed. At
each point in time, let tv denote the additional time until v changes, tn the additional
time until a new trader arrives, and tr a vector of additional times until each old
trader returns to the market to possibly revise his order. Let tr = min{tr} denote the
earliest reentry time across all old traders.

Whenever an event occurs, we redraw the time until its next occurrence ac-
cordingly (recall that the time interval between events for a Poisson process has an
exponential distribution). We also subtract the elapsed time from the other “time
until” variables.

At time 0, we start with an empty book, new draws for tv and tn, and no
existing traders (i.e., tr is an empty vector).

In theory, the initial common value can be chosen arbitrarily. However, since v

follows a random walk, the price grid would need to be infinite. To avoid this problem,
the algorithm records all prices relative to the current v, and appropriately shifts all
orders on the book whenever v changes.31 The number of ticks around v for which
orders are tracked is chosen sufficiently high that orders never “fall off” the grid. That
is, orders get revised by returning traders before becoming too unaggressive for the
grid, or get picked-off before becoming too aggressive for the grid. We use an odd
number of ticks, with vt itself lying on a tick at all times.

2. At time t = min{tv, tn, tr}, an exogenous event occurs. Suppose tv < tn and tv < tr.
Then, the common value changes at time tv; with probability 1

2 it increases by one
tick, and with probability 1

2 it decreases by a tick. As specified in 1. above, we adjust
the times for the three events as follows. We set tn = tn − tv and tr = tr − tv, and
then draw a new time tv for the next change in v.

Suppose, instead, tn < tv and tv < tr. A new trader arrives to the market. His
type is denoted as θ = {ρ,β}. The discount factor ρ is the same for all traders, and β

is drawn independently from the distribution Fβ . The times for the three events are
adjusted as specified in 1.

31Importantly, uninformed traders observe the prices of orders on the book relative to vt−∆t , else they
could directly infer vt as the mid-tick in the book. That is, the algorithm tracks the book relative to vt but
presents it to traders relative to their last observed v.
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A given trading game is used to obtain payoffs to either equilibrium strate-
gies or to deviator strategies in the information acquisition game. When obtaining
equilibrium payoffs, we set I = σI(θ) for the new trader. When obtaining payoffs to
deviating, we classify a trader as a deviator with probability 0.01, as long as no other
deviators are currently in the market (to preserve the notion of unilateral deviation).
If the new trader is a regular trader, we set I = σI(θ). If he is a deviator, we set I = 1
when σI(θ) = 0 and I = 0 when σI(θ) = 1 (i.e., a deviator acquires information only
when regular traders of his type do not). Importantly, beliefs and trading strategies
of non-deviators are held fixed throughout the algorithm when obtaining payoffs to
deviating in the information acquisition game.

Since the trader is new, we set z to 1 and his previous action x to 0. The trader
observes the state s = {θ, m(I), a, z} and takes an action ã. If he submits a market
order, he executes and leaves the market for ever. If he takes any other action, we
draw his random return time and include it in the vector tr. We also draw a new
random time tn before the arrival of the next new trader.

Finally, suppose tr < tv and tr < tn. An old trader returns to the market.
He observes the current state s = {θ, m(I), a, z} which includes the current status a

of his previous action. He then takes some action (which could include retaining his
previous order). If he submits a market order, he executes and leaves the market for
ever. If he takes any other action, we draw his new return time in tr, and adjust the
times tn and tv as specified.

3. Suppose a trader of type θ is in the market at time t. The trader observes the current
state s = {θ, m(I), a, z} and chooses a payoff-maximal action ã∗(s) ∈ arg maxã∈A(s) Ut (ã |
s). If the trader is informed, he knows vt, which determines A(s). If he is uninformed,
his belief about vt is used to determine A(s). Denote this belief as E(vt | mt(0)).

Beliefs about the current common value are updated in the following manner.32

Let αt(mt(0)) = E(v | mt(0))−vt−∆t denote the extent by which an uninformed agent
at time t revises his belief about vt, given a lagged value vt−∆t . Since we consider
stationary equilibria, we drop the time subscript on market conditions. Start with an
initial belief α0 = 0 for each market m(0). Let r(m(0)) be an integer denoting the
number of times market conditions m(0) are encountered in the simulation. We drop
the argument of r for notational convenience. Each time a trader observes market

32Note that these beliefs do not depend on an agent’s type. Hence, this updating can be (and is) performed
even when the trader in the market is informed about the current value of v.

35



conditions m(0), we increment r by 1, and set

αr(m(0)) =
r − 1

r
αr−1(m(0)) +

1
r

(vt − vt−∆t). (16)

Recall that v̂(m) = E(v | m) denotes a trader’s estimate of the common value.
For an uninformed trader who enters in market m(0), this estimate is v̂(m(0)) =
vt−∆t + αr−1(m(0)).

Using this estimate v̂, the action set for each trader is defined as in equation
(12) of the text. Now, suppose the optimal action ã∗ does not represent a market
order; that is, it is either a limit order or no order. Suppose further that, at some
future point of time, t′, the trader reenters the market. He finds that his action has
evolved to ã′, and the new market is m′. Denote s′ = {θ, m′(I), ã′, z}.

The action ã∗ thus generates a realized continuation value J(s′, yt′) on this visit,
which is “averaged in” to the belief Ut (ã∗ | s) in the following manner. We define

Ut′ (ã∗ | s) =
n

n + 1
Ut (ã∗ | s) +

1
n + 1

e−ρ(t′−t)J(s′, yt′). (17)

Here, n(ã∗, s) is a positive integer that is incremented by one each time action ã∗ is
chosen in state s (for notational brevity, the dependence of n on ã∗ and s is suppressed
in equation (17)). We start with an initial positive integer n0 for each action and state
pair (ã, s). This integer affects the speed at which the algorithm converges, with larger
values implying slower convergence. Periodically, during the simulation, we reset n to
n0 for some action and state pairs to obtain quicker convergence.

Similarly, suppose a trader submits a limit order (denoted by action ã∗) at time
t, and this order executes against a market order submitted by another trader at time
t′. The actual payoff to that limit order in the simulation is x̃(β + vt′ − p̃∗), where β

denotes the private value of the trader. In this case, we update

Ut′ (ã∗ | s) =
n

n + 1
Ut (ã∗ | s) +

1
n + 1

e−ρ(t′−t) x̃(β + vt′ − p̃∗), (18)

4. Whenever a trader takes an action, his belief about the payoff to a market order is
updated in similar fashion. For example, let ãb denote the action that involves sub-
mitting a market buy order, given market m and previous action a. In the simulation,
we (as modelers) know the payoff to a market order in every state, whether a trader
is informed about the current value of v or not. Hence, these payoffs can be averaged
in for market orders even when such orders are suboptimal for the trader. For this
updating, we use equation (18), with t′ = t and vt′ = vt.
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In determining the payoff to agents who deviate at the information acquisition
stage, we update beliefs for deviators along the same lines as in items 2 and 3. This
allows us to determine the payoff to a deviator who plays optimally in the stage game,
while holding strategies of other agents fixed at the equilibrium of the trading game
that has no deviators.

5. In the simulation, most traders take the optimal action given current beliefs. If all
traders did this, there is the possibility that the algorithm would be “stuck” at a non-
equilibrium state—every trader of a given type would take the same action in that
state, so these traders would never learn the payoffs to other actions in that state. If
there is an error in beliefs, all traders of that type may play suboptimally.

To ensure that beliefs are updated for all actions in every state, we introduce
trembles. Specifically, with probability ε a trader trembles over all suboptimal limit
orders available to him. He chooses among suboptimal limit orders with equal prob-
ability. The algorithm will then naturally update the beliefs about payoffs to this
action.33

Convergence Criteria

We run the model for a few billion events until we check for convergence. Along the way, we
evaluate the change in value functions every 100 million new trader arrivals, by computing
|Uk2

t2 (ã | s) − Uk1
t1 (ã | s)| for each pair (ã, s) that occurs along the path of play in the

simulation. Here, k1 is the number of times the action ã has been chosen in state s at the
start of the current 100 million new trader arrivals, and k2 ≥ k1 the number of times it has
been chosen at the end of the current 100 million new trader arrivals. Further, t1 and t2

represent the actual time at the start and end of the 100 million arrivals.
Essentially, if this weighted absolute difference (weighted by k2 − k1) is small, that

suggests the value functions have converged. When this weighted difference is below 0.01,
we apply other convergence tests. At this point, we hold the beliefs U(·) fixed and simulate
the model for a total 100 million more new trader arrivals (new and returning). Let U∗(ã | s)
be the fixed beliefs. These imply an optimal strategy profile y∗. For each (ã, s), define
J(s, y∗) = maxã∈A(s) U∗(ã | s).

We compare the empirical payoffs from different actions in the simulation to the fixed
beliefs. This comparison is done at two levels. The first is a “one-step ahead” check based
on the trader’s next entry time or execution time, whichever is sooner. Suppose a trader

33When a player trembles at t′ > t, the payoff of the optimal action at t′ is used to update Uk
t (·) to

Uk+1
t′ (·). Thus, traders do not anticipate behaving suboptimally in the future.
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takes an action ã at time t, and reenters at t′ > t with a new state s′. His one-step ahead
empirical payoff is taken to be J̃1(s, y∗) = e−ρ(t′−t)J∗(s′, y∗). If the trader takes an action
ã at t and executes at t′ > t before he can reenter, his one-step ahead empirical payoff is
J̃1(s, y∗) = e−ρ(t′−t) x̃(β + vt′ − p̃).

Second, eventually every trader in this model executes, and leaves the market. At the
time he executes, he obtains a realized payoff. Suppose the trader enters at t, and eventually
executes at t′. Let ã denote his most recent action before execution. His realized payoff is
then J̃(s, y∗) = e−ρ(t′−t) x̃(β + vt′ − p̃).

We use three convergence criteria for each of the two comparisons above. The most
stringent of these is a χ2 test similar to that in Goettler, Parlour and Rajan (2004).34

Suppose J∗(·) indeed represents equilibrium values. Since the computed values Jk(·) are
averages, the central limit theorem implies that the empirical distribution of payoffs for
each action in each state is approximately normal with mean J∗ and a variance that is
empirically determined from the simulation. Let η(s) = J̃(s,y∗)−J∗(s,y∗)

σs
, where σs denotes

the empirical standard deviation of payoff in state s (a similar variable is constructed for
the one-step ahead payoffs). The variables η(s) then have the standard normal distribution.

Let S be a set including all states encountered at least 100 times during the convergence
check (this ensures that the central limit approximation is accurate). The test statistic
γ =

∑
s∈S η2(s) sums the squares of the standard normal variables, and is distributed as a

χ2 with degrees of freedom equal to the number of states used in the summation, |S|. The
algorithm has converged if the test statistic is less than the 1% critical value.

The other two tests are similar to those proposed by Pakes and McGuire (2001). First,
we consider the correlation between beliefs J∗(·) and realized outcomes J̃ or J̃1. This
correlation exceeds 0.999. Second, we consider the mean absolute error in beliefs, weighted
by the number of times the state and action are observed. This mean absolute error is less
than 0.01.

34The theoretical properties of this test were derived by den Haan and Marcet (1994).
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