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Abstract. We consider the problem of online learning in settings in
which we want to compete not simply with the rewards of the best ex-
pert or stock, but with the best trade-off between rewards and risk.
Motivated by finance applications, we consider two common measures
balancing returns and risk: the Sharpe ratio [7] and the mean-variance
criterion of Markowitz [6]. We first provide negative results establishing
the impossibility of no-regret algorithms under these measures, thus pro-
viding a stark contrast with the returns-only setting. We then show that
the recent algorithm of Cesa-Bianchi et al. [3] achieves nontrivial perfor-
mance under a modified bicriteria risk-return measure, and also give a
no-regret algorithm for a “localized” version of the mean-variance crite-
rion. To our knowledge this paper initiates the investigation of explicit
risk considerations in the standard models of worst-case online learning.

1 Introduction

Despite the large literature on online learning, and the rich collection of al-
gorithms with guaranteed worst-case regret bounds, virtually no attention has
been given to the risk incurred by such algorithms!. Especially in finance-related
applications [4], where consideration of various measures of the volatility of a
portfolio are often given equal footing with the returns themselves, this omission
is particularly glaring.

The finance literature on balancing risk and return, and the proposed met-
rics for doing so, are far too large to survey here (see [1], chapter 4 for a nice
overview). But among the two most common methods are the Sharpe ratio [7],
and the mean-variance (MV) criterion of which Markowitz was the first pro-
ponent [6]. Let 7, € [—1,00] be the return of any given financial instrument (a
stock, bond, portfolio, trading strategy, etc.) during time period ¢. Thus, if v,
represents the dollar value of the instrument immediately after period t, we have
vy = (1 4 r¢)ve—1. Negative values of r; (down to -1, representing the limiting
case of the instrument losing all of its value) are losses, and positive values are
gains. For a sequence of returns v = (r1,...,77) we use u(r) to denote the
(arithmetic) mean or average value, and o(r) to denote the standard deviation.
Then the Sharpe ratio of the instrument on the sequence is simply pu(r)/o(r),

! A partial exception is the recent work of [3], which we analyze in our framework.



while the MV is u(r) — o(r). (Note that the term mean-variance is slightly mis-
leading since the risk is actually measured by the standard deviation, but we use
this term to adhere to convention.) A common alternative is to use the mean
and standard deviation not of the r; but of the log(1+ ), which corresponds to
geometric rather than arithmetic averaging of returns (see Section 2); we shall
refer to the resulting measures the geometric Sharpe ratio and MV.

Both the Sharpe ratio and the MV are natural, if somewhat different, meth-
ods for specifying a trade-off between the risk and returns of a financial instru-
ment. Note that if we have an algorithm (like EG) that maintains a dynamically
weighted and rebalanced portfolio over K constituent stocks, this algorithm it-
self has a sequence of returns and thus its own Sharpe ratio and MV. A natural
hope for online learning would be to replicate the kind of no-regret results to
which we have become accustomed, but for regret in these risk-return measures.
Thus (for example) we would like an algorithm whose Sharpe ratio or MV at
sufficiently long time scales is arbitrarily close to the best Sharpe ratio or MV
of any of the K stocks. The prospects for these and similar results are the topic
of this paper.

Our first results are negative, and show that the specific hope articulated
in the last paragraph is unattainable. More precisely, we show that for either
the (arithmetic or geometric) Sharpe ratio or MV, any online learning algorithm
must suffer constant regret, even when K = 2. This is in sharp contrast to the
literature on returns alone, where it is known that zero regret can be approached
rapidly with increasing 7'. Furthermore, and perhaps surprisingly, for the case
of the Sharpe ratio the proof shows that constant regret is inevitable even for
an offline algorithm (which knows in advance the specific sequence of returns
for the two stocks, but still must compete with the best Sharpe ratio on all time
scales).

The fundamental insight in these impossibility results is that the risk term
in the different risk-return metrics introduces a “switching cost” not present
in the standard return-only settings. Intuitively, in the return-only setting, no
matter what decisions an algorithm has made up to time ¢, it can choose (for
instance) to move all of its capital to one stock at time ¢, and immediately begin
enjoying the same returns as that stock from that time forward. However, under
the risk-return metrics, if the returns of the algorithm up to time ¢ have been
quite different (either higher or lower) than those of the stock, the algorithm
pays a “volatility penalty” not suffered by the stock itself.

These strong impossibility results force us to revise our expectations for on-
line learning for risk-return settings. In the second part of the paper, we examine
two different approaches to algorithms for MV-like metrics. In the first approach,
we analyze the recent algorithm of [3] and show that it exhibits a trade-off com-
pared to the best stock under an additive measure balancing returns with vari-
ance (as opposed to standard deviation). The notion of approximation is weaker
than competitive ratio or no-regret, but remains nontrivial, especially in light of
the strong negative results mentioned above. In the second approach, we give a
general transformation of the instantaneous rewards given to algorithms (such



as EG) meeting standard returns-only no-regret criteria. This transformation
permits us to incorporate a recent moving window of variance into the instan-
taneous rewards, yielding an algorithm competitive with a “localized” version
of MV in which we are penalized only for volatility on short (compared to ﬁ)
time scales. This measure may be of independent interest.

2 Preliminaries

We denote the set of experts as integers K = {1,..., K} where K = |K|. For
each expert k € K, we denote its reward at time t € {1,...,T} as 2F. At each
time step ¢, an algorithm A assigns a weight wF > 0 to each expert k such that
Zle wF = 1. Based on these weights, the algorithm then receives a reward
i = ZK_ wkak.
t k=1 Wt Tt
There are multiple ways to define the aforementioned rewards. In a financial
setting it is common to define them to be the simple returns of some underlying
investment. Thus if v; represents the dollar value of an investment following
period t, and v; = (1 + r¢)vs—1 where 1, € [—1,00], one choice is to let x; = ry.
Here negative values of 4 represent losses, while positive values represent gains.
One disadvantage of this definition is that since we are simply averaging the
returns, a return of —1 — which corresponds to losing our entire investment —
can be “offset” by a return of 1 — which corresponds to doubling our investment.
Clearly it is odd to view these as balancing events. For this and a variety of
other reasons one often wishes to consider a definition of rewards derived from
geometric rather than arithmetic averaging of simple returns. The geometric
average of returns 7y, is defined as the solution to the equation (1 + Fgeo)T =

Hf:l(l +7). Thus, 74 represents the fized rate of return yielding the equivalent
T-step growth or loss of the individually varying r;. If each time step is a year,
this is often also called the annualized rate of return.

By taking logarithms of both sides of the above equation, it is easy to see
that maximizing the geometric average of returns is equivalent to maximizing
the (standard) average of the values log(1 + ;). This suggests a second natural
definition of the reward z; as log(1 + r¢), which we call the geometric returns.
Clearly the geometric returns are not vulnerable to the disadvantage cited above,
since r; = —1 gives log(1 + r) = —oc.

All the results presented in this paper hold for both the interpretation of
rewards x; as simple returns 7, and for the interpretation of rewards as geometric
returns log(1+ 7). From this point on, we refer only to “rewards” and leave the
choice of interpretation to the reader. We assume that daily rewards lie in the
range [—M, M| for some constant M. Some of our bounds may depend on M.

There is no single correct measure of volatility of rewards either. Two well-
known measures that we will refer to often are variance and standard deviation.
Formally, if R!(k,z) is the average reward of expert k on the reward sequence
x at time ¢, then

_ Sy (af — R'(k,x))’

Var'(k,x) = ; , ol(k,x) = /Vart(k,x)




We define R'(k,x) to be the total reward of expert k at time ¢t. We often
abuse notation and write R'(k), R'(k), and o (k) when z is clear from context.

Traditionally in online learning the objective of an algorithm A has been to
achieve an average reward at least as good as the best expert over time, yielding
results of the form

max RT (k,x) = max
keK keK i

An algorithm that achieves this desired goal is often referred as a “no regret”
algorithm.

Now we are ready to define two standard risk-reward balancing criteria, the
Sharpe ratio [7] and the MV of expert k at time t.

RY(k,x _
Sharpe' (k,x) = at((k:w))’ MV'(k,z) = R'(k,x) — o' (k,x)

In the following definitions we use the MV but all definitions are identical
for the Sharpe ratio. We say that an algorithm has no regret with respect to the
MYV if

max MV T (k,x) — Regret(T) < MVT (A, )

keK
where Regret(T) is a function that goes to 0 as T" approaches infinity. Similarly,
we can define several negative concepts. We say that an algorithm A has constant
regret C' for some constant C' (that does not depend on time but may depend
on M) if for any large T there exists a sequence x of expert rewards for which
the following is satisfied:

max MV (k,x) > MVT (A, z) + C.
keK

Finally, the competitive ratio of an algorithm A is defined as

f inf MVY(A x)
inf in
 t max, g MV(k, )

where & can be any reward sequence generated for K experts.
Note that for negative results it is sufficient to consider a single sequence of
expert rewards for which no algorithm can perform well.

3 A Lower Bound for the Sharpe Ratio

In this section we show that even an offline policy cannot compete with the best
expert with respect to the Sharpe ratio, even when there are only two experts.
Our precise lower bound is stated in Theorem 1. The remainder of the section
contains a proof of this bound.



Theorem 1. For any T > 30, there exists an expert reward sequence x of length
T such that the optimal offline algorithm has constant regret. Furthermore, on
this sequence there are two points such that no algorithm can attain more than
a 1 — ¢ competitive ratio at both of them, for some positive constant c.

This lower bound can be proved in a setting where there are only two experts.
We start by characterizing the optimal offline algorithm and later construct
a sequence on which the optimal algorithm cannot compete. This, of course,
implies that no algorithm can compete. Although in general sequences can vary
in each time step, the sequences used here will be more limited and will change
only m times.

An m-segment sequence is a sequence described by expert rewards at m
times, ny < ng < ... < Ny, such that for all ¢ € {1,...,m}, every expert reward
in the time segment [n;_; + 1,n;] is constant, i.e. Vt € [n;—1 + 1,n,], af = 2k
for every k € K where ng = 0. We say that an algorithm has a fized policy in
the ith segment if the weights that the algorithm places on each expert remain
constant between times n;_; + 1 and n;.

Before giving the proof of Theorem 1, we provide the following lemma, which
states that the algorithm that achieves the maximal Sharpe ratio at time n; must
use a fixed policy at every segment prior to i.

Lemma 1. Let x be an m-segment reward sequence. Let A7 (for i < m) be the
set of algorithms that have average reward r on x at time n;. Then the algorithm
A € Al with minimal standard deviation has a fized policy in every segment prior
to i. The optimal Sharpe ratio at time n; is thus attained by an algorithm that
has a fized policy in every segment prior to i.

The intuition behind this lemma is that switching weights within a segment
can only result in higher variance without enabling an algorithm to achieve an
average reward any higher than it would have been able to achieve by using a
fixed set of weights in this segment. Details of the proof have been omitted due
to space limitations.

With this lemma, we are ready to prove Theorem 1. We will consider one
specific 3-segment sequence and show that there is no algorithm that can have
competitive ratio bigger than 0.71 at both times no and ns on this sequence.
The intuition behind this construction is that in order for the algorithm to have
a good competitive ratio at time ns it cannot put too much weight on expert
1 and has to put a significant weight on expert 2. However, putting significant
weight on expert 2 prevents the algorithm from being competitive in time ng
where it must have switched completely to expert 1 to maintain a good Sharpe
ratio.

The lower bound Sharpe sequence is a 3-segment sequence composed of two
experts. The three segments are of equal length. The rewards for expert 1 are
.05, .01, and .05 in intervals 1, 2, and 3 respectively. The rewards for expert 2 are
.011, .009, and .05. The Sharpe ratio of the algorithm will be compared to the
Sharpe ratio of the best expert at times ny and n3. Note that since the Sharpe



ratio is a unitless measure, we could scale the rewards in this sequence by any
positive constant factor and the proof would still hold.

Analyzing the sequence we observe that the best expert at time ng is expert
2 with Sharpe ratio 10. The best expert at n3 is expert 1 with Sharpe ratio
approximately 1.95. The remainder of the proof shows that if the average reward
of the algorithm at time ns is “too high,” then the competitive ratio at time no
is bad, while if the average reward at time ns is “too low,” then the competitive
ratio is bad at time ns.

Suppose first that the average reward of the algorithm on the lower bound
Sharpe sequence x at time ny is at least .012. The reward in the second segment
can be at most .01, so if the average reward at time no is .012 + z where z is
positive constant smaller than .018, then the standard deviation of the algorithm
at ngy is at least .002+ 2. This implies that the algorithm’s Sharpe ratio is at most
:gégiz, which is at most 6. Comparing this to the Sharpe ratio of 10 obtained
by expert 2, we see that the algorithm can have a competitive ratio no higher
than 0.6, or equivalently the algorithm’s regret is at least 4.

Suppose instead that the average reward of the algorithm on x at time no
is less than .012. Note that the Sharpe ratio of expert 1 at time ng is approx-
imately '98?27 > 1.94. In order to obtain a bound that holds for any algorithm
with average reward at most .012 at time no, we consider the algorithm A which
has reward of .012 in every time step and clearly outperforms any other algo-
rithm.? The average reward of A for the third segment must be .05 as it is the
reward of both experts. Now we can compute its average and standard devia-
tion R"™(A,x) ~ 2.4667 and 0™ (A, x) ~ 1.79. The Sharpe ratio of A is then
approximately 1.38, and we find that A has a competitive ratio at time ng that
is at most 0.71 or equivalently its regret is at least 0.55.

The lower bound sequence that we used here can be further improved to
obtain a competitive ratio of .5. The improved sequence is of the form n, 1, n for
the first expert’s rewards, and 14+1/n,1—1/n,n for the second expert’s rewards.
As n approaches infinity, the competitive ratio of the Sharpe ratio tested on two
checkpoints at ny and ng approaches .5.

4 A Lower Bound for MV

In this section we provide a lower bound for our additive risk-reward measure,
the MV.

Theorem 2. Let A be any online algorithm. There exists a sequence x for which
the regret of A with respect to the metric MV is constant.

Again our proof will be based on specific sequences that will serve as a
counterexample to show that in general it is not possible to compete with the
best expert in terms of the MV. We begin by describing how these sequences
are generated. Again we consider a scenario in which there are only two experts.

2 Of course such an algorithm cannot exist for this sequence



For the first n time steps, the first expert receives at each time step a reward
of 2 with probability 1/2 or a reward of 0 with probability 1/2, while at times
n+ 1,...,2n the reward is always 1. The second expert’s reward is always 1/4
throughout the entire sequence. The algorithm’s performance will be tested only
at times n and 2n, and the algorithm is assumed to know the process by which
these expert rewards are generated.

Note that this lower bound construction is not a single sequence but is a
set of sequences generated according to the distribution over the first expert’s
rewards. Throughout this section, we will refer to the set of all sequences that can
be generated by this distribution as S. We will show by the probabilistic method
that there is no algorithm that can perform well on all sequences in S at both
checkpoints. In contrast to “standard” experts, there are now two randomness
sources: the internal randomness of the algorithm and the randomness of the
rewards.

Before delving more deeply into the details of the proof, we give a high level
overview. First we will consider a “balanced sequence” in S in which expert 1
receives an equal number of rewards that are 2 and rewards that are 0. Assuming
such a sequence, it will be the case that the best expert at time n is expert 2
with reward 1/4 and standard deviation 0, while the best expert at time 2n is
expert 1 with reward 1 and standard deviation 1/v/2. Note that any algorithm
that has average reward 1/4 at time n in this scenario will be unable to overcome
this start and will have a constant regret at time 2n. Yet it might be the case on
such sequences that a sophisticated adaptive algorithm could have an average
reward higher than 1/4 at time n and still suffer no regret at time n. Hence, for
the balanced sequence we add the requirement that the algorithm is “balanced”
as well, i.e. the weight it puts on expert 1 on days with reward 2 is equal to the
weight it puts on expert 1 on days with reward 0.

In our analysis we show that most sequences in S are close to the balanced
sequence. In particular, if the average reward of an algorithm over all sequences
is less than 1/4 + 4, for some constant ¢, then by the probabilistic method there
exists a sequence for which the algorithm will have constant regret at time 2n.
If not, then it can be shown that there exists a sequence for which at time n the
algorithm’s standard deviation will be larger than § by some constant factor,
and thus the algorithm will have regret at time n. This argument will also be
probabilistic, preventing the algorithm from constantly being “lucky.”

In this analysis we use a form of Azuma’s inequality, which we present here
for sake of completeness. Note that we cannot use standard Chernoff bound since
we would like to provide bounds on the behavior of adaptive algorithms.

Lemma 2 (Azuma). Let (o, (i, ..., (n be a martingale sequence such that for
each i, 1 < i <n, we have |(; — (;—1| < ¢; where the constant ¢; may depend on
i. Then forn > 1 and any € > 0

2

2

Pr(|Cn — Col > € <2 *2uim



Now we define two martingale sequences, y:(x) and z;(A, x). The first counts
the difference between the number of times expert 1 receives a reward of 2 and
the number of times expert 1 receives a reward of 0 on a given sequence x € S.
The second counts the difference between the weights that algorithm A places
on expert 1 when expert 1 receives a reward of 2 and the weights placed on
expert 1 when expert 1 receives a reward of 0. We define yo(z) = zo(A4,x) =0
for all  and A.

_ yt(m) +1, xtl-i-l =2 A _ Zt(Avm) + wtl-i-lv xtl-i-l =2
v () {yt(m) -1 5”t1+1 =0’ (4, 2) z(A ) — wt1+17 xt1+1 =0

In order to simplify notation throughout the rest of this section, we will often
drop the parameters and write y; and z; when A and x are clear from context.

Recall that R"(A,x) is the average reward of an algorithm A on sequence
x at time n. We denote the ezpected average reward at time n as R"(A, D) =
Egyop [R"(A,x)], where D is the distribution over rewards.

Next we define a set of sequences that are close to the balanced sequence on
which the algorithm A will have a high reward, and subsequently show that for
algorithms with high expected average reward this set is not empty.

Definition 1. Let A be any algorithm and 0 any positive constant. Then the
set S is the set of sequences x € S that satisfy (1) |lyn(x)| < \/2nIn(2n),

(2) |z (A, x)| < \/2nIn(2n), (8) R*(A,x) > 1/4+ 6 — O(1/n).

Lemma 3. Let § be any positive constant and A be an algorithm such that
R"(A,D) > 1/4+ 6. Then S is not empty.

Proof: Since y, and z, are martingale sequences, we can apply Azuma’s in-
equality to show that Pr[y, > /2nIn(2n)] < 1/n and Prlz, > /2n1n(2n)] <
1/n. Thus, since rewards are bounded by a constant value in our construction
(namely 2), the contribution of sequences for which y, or z, are larger than
v/2n1n(2n) to the expected average reward is bounded by O(1/n). This implies
that if there exists an algorithm A such that R"(A, D) > 1/4 + 4, then there
exists a sequence x for which the R"(A,x) > 1/4+ 6 — O(1/n) and both y,, and
zn, are bounded by +/2nIn(2n). O

Now we would like to analyze the performance of an algorithm for some
sequence x in Sf‘. We first analyze the balanced sequence where 3, = 0 with a
balanced algorithm (so z, = 0), and then show how the analysis easily extends
to sequences in the set S4. In particular, we will first show that for the balanced
sequence the optimal policy in terms of the objective function achieved has one
fixed policy in times [1,n] and another fixed policy in times [n + 1,2n]. Due to
lack of space the proof, which is similar but slightly more complicated than the
proof of Lemma 1, is omitted.

Lemma 4. Let * € S be a sequence with y, = 0 and let A be the set of
algorithms for which z, = 0 on x. Then the optimal algorithm in AF with respect
to the objective function MV (A, x) has a fized policy in times [1,n] and a fized
policy in times [n+ 1,2n].



Now that we have characterized the optimal algorithm for the balanced set-
ting, we will analyze its performance. The next lemma connects the average
reward to the standard deviation on balanced sequences by using the fact that
on balanced sequences algorithms behave as they are “expected.” The proof is
again omitted due to lack of space.

Lemma 5. Let x € S be a sequence with y, = 0, and let AF be the set of
algorithms with z, = 0 on x. For any positive constant 0, if A € Af and
R"(A,x) =1/44 6, then o™ (A, x) > %5.

We now provide a bound on the objective function at time 2n given its
average reward at time n. The proof uses the simple fact the added standard
deviation is at least as large as the added average reward and thus cancels it.
Once again, the proof is omitted due to lack of space.

Lemma 6. Let x be any sequence and A any algorithm. If R*(A,x) = 1/4+ 6,
then MV?"(A,x) < 1/4+§ for any positive constant J.

Recall that the best expert at time n is expert 2 with reward 1/4 and standard
deviation 0, and the best expert at time 2n is expert 1 with average reward 1
and standard deviation 1/v/2. Using this knowledge in addition to Lemmas 5
and 6, we obtain the following proposition for the balanced sequence:

Proposition 1. Let © € S be a sequence with y, = 0, and let A be the set of
algorithms with z, = 0 for s. If A € AF, then A has a constant regret at either
time n or time 2n or at both.

We are now ready to return to the non-balanced setting in which v, and
zn, may take on values other than 0. Here we use the fact that there exists a
sequence in S for which the average reward is at least 1/4+ 6 — O(1/n) and for
which y,, and z,, are small. The next lemma shows that standard deviation of an
algorithm A on sequences in Sf‘ is high at time n. The proof uses the fact that
such sequences and algorithm can be changed with almost no effect on average
reward and standard deviation to balanced sequence, for which we know the
standard deviation of any algorithm must be high. The proof is omitted due to
lack of space.

Lemma 7. Let § be any positive constant, A be any algorithm, and x be a
sequence in S%. Then o™ (A, x) > %‘5 -0 (\/ln(n)/n),

We are ready to prove the main theorem of the section.
Proof: [Theorem 2] Let § be any positive constant. If R"(A, D) < 1/4+6, then
there must be a sequence @ € S with y,, < \/2nIn(2n) and R"(A,x) < 1/4+4.
Then the regret of A at time 2n will be at least 1 — 1/v/2 —1/4 —§ — O(1/n).

If, on the other hand, E”(A, D) > 1/4+ 6, then by Lemma 3 there exists a
sequence x € S such that R"(A,x) > 1/4+6—0(1/n). By Lemma 7, 0" (A, x) >

4/30 — O ( ln(n)/n), and thus the algorithm has regret at time n of at least

6/3—0 ( ln(n)/n) This shows that for any ¢ we have that either the regret
at time n is constant or the regret at time 2n is constant. a
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In fact we can extend this theorem to the broader class of objective functions
of the form R"(k,x) — ac™(A,x), where a > 0 is constant. The proof is similar
to the proof of Theorem 2 and the sequences used are built similarly. Both the
constant and the length of the sequence will depend on a. The proof is omitted
due to limits on space.

Theorem 3. Let A be any online algorithm and « be a nonnegative constant.
There exists a sequence T for which the regret of A with respect to the metric
R"(k,x) — ac™(A, @) is constant for some positive constant that depends on .

5 A Bicriteria Upper Bound

In this section we show that the recent algorithm of Cesa-Bianchi et al. [3] can
yield a risk-reward balancing bound. Their original result expressed a no-regret
bound with respect to rewards only, but the regret itself involved a variance term.
Here we give an alternate analysis demonstrating that the algorithm actually
respects a risk-reward trade-off. The quality of the results here depends on the
bound M on the absolute value of expert rewards as we will show.

We first describe the Cesa-Bianchi et al. algorithm, prod(n). The algorithm
has a parameter 7 and it maintains a set of K weights. The (unnormalized)
weights wF are initialized to @} = 1 for every expert k and updated according
to @ «— wF_ (14 nat_,), where W; = Zf:l w!. The normalized weights at

each time step are then defined as wf = ﬁ)f/Wt

Theorem 4. For any expert k € K, for any L > 2, for the algorithm prod(n)
with n > 1/(LM) we have at time t

L+1 6L

L-1 6L

(LRt(k‘, xz) nBL+2)Vart(k,x) ) K _ (LRt(A, z) nBL—-2)Var'(A, x)

n

for any reward sequence x in which the absolute value of each reward is bounded
by M.

The two expressions in parentheses in Theorem 4 both additively balance
rewards and variance of rewards, but with differing coefficients. It is tempting
but apparently not possible to convert this inequality into a competitive ratio.
Nevertheless, as we now show, certain natural settings of the parameters cause
the two expressions to give quantitatively similar trade-offs.

Let @ be any sequence of rewards which are bounded in [—1,1], and let A be
prod(n) for n = 1/9. Then for any time ¢ and expert k we have

(0.9R'(k,x) — 0.06Var'(k,z))—(9In K)/t < (1.125R" (A, z) — 0.051Var' (A, x))

While the two trade-offs in this setting of the parameters are quite similar, the
rewards coefficient is an order of magnitude larger than the variance coefficient

)
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in both. Now suppose @ contains rewards bounded by a narrower bound [—.1, .1]
Let A be prod(n) for n = 1. Then for any time ¢ and expert k we have

(0.91R"(k, ) — 0.533Var' (k,x))—(10In K)/t < (L.11R'(A, ) — 0.466Var' (A, x))

This gives a much more even balance between rewards and variance on both sides.
We note that the choice of a “reasonable” bound on the rewards magnitudes
should be related to the time scale of the process — for instance, returns on the
order of +10% might be entirely reasonable annually but not daily.

The following facts about the behavior of In(1 + z) for small values of z will
be useful in the proof of Theorem 4.

Lemma 8. For any L > 2 and any v, y, and z such that v, |y|, |[v + y|, and
|z| are all bounded by 1/L we have the following

(3L + 2)22 (3L — 2)22
z— oL <In(l+z2)<z-— oL
Ly Ly
In(1 2 < In(1 In(1 —
n( —|—v)+L+1< n(l+v+y) <In( +v)+L_1

Similar to the analysis in [3], we bound In WV%“ from above and below to

1
prove Theorem 4. We start by bounding it from above.

Lemma 9. For the algorithm prod(n) with n=1/LM < 1/4 we have,

W1 - nLR"(A,x) n?(3L — 2)nVar™(A, x)
W, = L1 6L

at any time n for sequence x with the absolute value of rewards bounded by M.

In

Proof: Similarly to [3] we obtain,

n

i~ n = n K -

Wit Wit wf k A
In — zgln = zgln E — (1 +nx zglnl—i—x

i - W, (k—1 Wt( nwy) ( nwy)

t=1 t=1

=Y (L (e B (A.x) + B'(A))

Now using Lemma 8 twice we obtain the proof. a

Next we bound In in[‘/l L from below. The proof is based on similar arguments

p ~k
to the previous lemma and the observation made in [3] that In W‘;{/Irl >In (w}b(“ ) ,
and is thus omitted.

Lemma 10. For the algorithm prod(n) with n = 1/LM where L > 2, for any
expert k € K the following is satisfied

LR"™ 2 L 2 n
In WZL_H > ks R"(k,x) n°(L+2)nVar"(k,x)
Wy L+1 6L

at any time n for any sequence x with rewards absolute values bounded by M .

Combining the two lemmas we obtain Theorem 4.
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6 No-Regret Results for Localized Risk

In this section we show a no-regret result for an algorithm optimizing an alter-
native objective function that incorporates both risk and reward. The primary
leverage of this alternative objective is that risk is now measured only “locally”
— thus, the goal is to balance immediate rewards on the one hand with how far
these immediate rewards deviate from the average rewards over some “recent”
past on the other hand. In addition to allowing us to skirt the strong impossi-
bility results for no-regret in the standard Sharpe and MV measures, we note
that our new objective may be of independent interest, as it incorporates certain
other notions of risk that are commonly considered in finance, where short-term
volatility is usually of greater concern than long-term. For example, our new
objective has the flavor of what is sometimes called “maximum draw-down”,
which is the largest decline in the price of a stock over a given, usually short,
time period.

Consider the following measure of risk for an expert k£ € K on a sequence of
expert rewards «:

P(k,x) =Y (af — AVGj(a}, .., z}))?

t=2

where AVGj(z},..,2k) = f;é(xﬁ_t/é) is the fixed window size average for

some window size ¢ > 0.
The new risk-sensitive criterion will be G™(A,x) = R"(A, x)

Our first observation is that the measure of risk defined here can be very

similar to variance. In particular, if we let for every expert k € K | pf = (mf -

AVG] (2}, .., 25))2, then

- P(A,x)

n

Pk _ Y, ph
n

- ; Var™(k,x) =

Note that our measure differs from the variance in two aspects. The first is
that in standard measures like variance, the variance of the sequence will be
affected by rewards in the past and the future, whereas our measure depends
only on rewards in the past. The second is the window size where the current
reward is compared only to the rewards in the recent past, and not to all past
rewards. While both of these differences are exploited in the proof, the fixed
window size plays the more central role.

The main obstacle of the adaptive algorithms in the previous sections was the
“memory” of the variance, which prevented them switching between the experts.
The memory of the penalty now is £ and indeed our results will be meaningful

when ¢ = o(\/T).

3 Instead of taking fixed window size we could have taken the moving average,
Le AVG* (21, ., zn) = (1 =) >0, A" g, all results would apply for it (for an
appropriate choice of 7)
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The algorithm we discuss will work by feeding modified instantaneous gains to
any best experts algorithm that satisfies the assumption below. This assumption
is met by algorithms such as the weighted majority [5,2] and EG [4].

Definition 2. An optimized best expert algorithm is an algorithm that guaran-
tees that for any sequence of reward vectors x over experts K = {1,... K},
the algorithm selects a distribution wy over K (using only the previous reward
functions) such that

T K T
ZZU} Ty Zfo—\/TMlogK,

t=1 k=1 t=1

where |z¥| < M and k is any expert. Furthermore, we also assume that decision
distributions do not change quickly: ||we — wey1|1 < /log(K)/t.

Since the risk function now has shorter memory, there is hope that a standard
best expert algorithms will work. Therefore, we would like to incorporate this
risk term into the instantaneous rewards fed to the best experts algorithm. We
will define this instantaneous quantity, the gain of eXpert k at time t to be
gF =k —(aF - AV G (2}, ..., 2 |))? = 2F —pk, where pt is the penalty for expert
k at time ¢. It is natural to wonder whether p* = Zk:l wlFpk: unfortunately,
this is not the case. Fortunately, we can show that they are similar. To formalize
the connection between the measures, we let P(A, ) = E;‘F:l 2521 wlpk be the
weighted penalty function of the experts, and P(A, x) = Zthl pi! be the penalty
function observed by the algorithm. The next lemma relates these quantities.

Lemma 11. Let x be any reward sequence such that all rewards are bounded by
M. Then PT(A,x) > PT(A,z) — O( TM20 logK).

Proof:

K K 6k
- > et Ty
PT A _ k(i .k _ A w0k B k\\2 > k k )= J+
(A, x) ZZwt (zy VG (xf, .. xf))° > Z (Z wy <xt 7

t=1 k=1 t=1 k=1
T K K 4 k k k k 2
ko ket 2 (Wf —wi g g )T
=D | D wiek - ;
t=1 \k=1

)

g =
T K L k
e |Mm
>PT(Ax) =) <2M2k_1 Zfl el )
t=1

[log K [log K
< pT _ 2 > pT 2
> P (A x) —2M=11 .y P' (A x) — O(ZM 14 _€>

l

T K K A k k 2
72 Zwkzk— Zk:l Zj:lwt—j—i-lxt—j—i-l Zk 1Zj 1 7% —j+1
et 14 !
K k
Zk 12; 1 th j+1 kK Zk 12 1wt G+1Tt—j+1
—2 Zwt T, —
k=1

)
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where ef = wk — wf_ j+1- The first inequality is an application of Jensen’s in-

equality using the convexity of z2. The third inequality follows from the fact

that Zk 1 \6k| is bounded by j4/ lOgK using our best expert assumption. O

Next we we state the main result of this section which is a no-regret algorithm
with the risk-sensitive function G.

Theorem 5. Let A be a best expert algorithm that satisﬁes Definition 2 with
instantaneous gain function gf = z¥ — (zF — AVG*(2h, ..., 2F 1))? for expert k
at time t. Then for large enough T for any reward sequence x and any expert k
we have for window size {

Gk, x)— O (M% / 1;g_ i) < G(A, )

Proof:

[M]= \TMﬂ
Mw

T
TG(kvw Z _AVGZ 1 7yf))2

IA

wf ¥’ ZZwtl o AV af )+ /TMlog K

1k t=1k'=1

~
I

log K
T/

<T-G(4A, )+O<TM2 >+ TMlog K

The first inequality is due to the best expert algorithm, and the last inequality
is due to Lemma 11. ad

Corollary 1. Let A be a best expert algorithm that satisfies Deﬁnition 2 with
instantaneous reward function gf = xf — (a2 — AVG*(2¥,...,2F_1))2. Then for

large enough T we have for any expert k and fized window size £ = O(logT)

G(k,x) — O (M%/logTK> < G(A,x)

7 Simulations

We conclude by briefly showing the results of some preliminary simulations on
the algorithms and measures discussed. Despite the fact that neither of the
algorithms given are provably competitive with the Sharpe and MV measures,
we examine their performance on these standards in comparison to EG. The left
panel of Figure 1 shows the price time series for K = 2 simulated stocks. These
time series were generated from a stochastic model that divides 10000 steps into
blocks of size 100. Within each block one of the two stocks is generally trending
up, while the other is trending down, with the choice of which stock is trending
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Fig. 1. Left: The price time series of two experts. Center: The geometric Sharpe value
achieved by each algorithm. Right: The geometric MV achieved by each algorithm.

up made randomly (details omitted). This is one particular model that generates
data for which standard algorithms like EG with small 1 outperform uniform
constant rebalanced (7 = 0), so the learning helps®.

The center and right panels compare the three algorithms — standard (risk-
insensitive) EG, our modified version of EG with window size £ = /T = 100,
and prod(n) as a function of 7 on both Sharpe ratio (center panel) and MV
(right panel). The performance of the best expert with respect to each measure is
also shown. Note that both of the algorithms that take risk into account perform
noticeably better than standard EG on both risk-reward measures. In particular,
our modified version of the EG actually beats the best expert in MV when run
with moderately small values of 7.

These simulations are still preliminary; we expect to expand them in upcom-
ing work.
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