
Algorithms for Portfolio Management based on the Newton Method

Amit Agarwal aagarwal@cs.princeton.edu

Elad Hazan ehazan@cs.princeton.edu

Satyen Kale satyen@cs.princeton.edu

Robert E. Schapire schapire@cs.princeton.edu

Princeton University, Department of Computer Science, 35 Olden Street, Princeton, NJ 08540

Abstract

We experimentally study on-line investment
algorithms first proposed by Agarwal and
Hazan and extended by Hazan et al. which
achieve almost the same wealth as the best
constant-rebalanced portfolio determined in
hindsight. These algorithms are the first to
combine optimal logarithmic regret bounds
with efficient deterministic computability.
They are based on the Newton method for of-
fline optimization which, unlike previous ap-
proaches, exploits second order information.

After analyzing the algorithm using the po-
tential function introduced by Agarwal and
Hazan, we present extensive experiments on
actual financial data. These experiments
confirm the theoretical advantage of our al-
gorithms, which yield higher returns and run
considerably faster than previous algorithms
with optimal regret. Additionally, we per-
form financial analysis using mean-variance
calculations and the Sharpe ratio.

1. Introduction

In the universal portfolio management problem, we
seek online wealth investment strategies which enable
an investor to maximize his wealth by distributing
it on a set of available financial instruments without
knowing the market outcome in advance. The under-
lying model of the problem makes no statistical as-
sumptions on the behavior of the market (such as ran-
dom walks or Brownian motion of stock prices (Lu-
enberger, 1998)). In fact, the market is even allowed
to be adversarial. The simplicity of the model per-
mits the formulation of the centuries-old problem of
wealth maximization as an online learning problem,

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

and the application of machine learning algorithms.
The study of such a model was started in the 1950s by
Kelly (1956) followed by Bell and Cover (1980; 1988),
Algoet and Cover (1988).

Absolute wealth maximization in an adversarial mar-
ket is of course a hopeless task; we therefore aim
to maximize our wealth relative to that achieved by
a reasonably sophisticated investment strategy, the
constant-rebalanced portfolio (Cover, 1991), abbrevi-
ated CRP. A CRP strategy rebalances the wealth each
trading period to have a fixed proportion in every stock
in the portfolio. We measure the performance of an
online investment strategy by its regret, which is the
relative difference between the logarithmic growth ra-
tio it achieves over the entire trading period, and that
achieved by a prescient investor — one who knows
all the market outcomes in advance, but who is con-
strained to use a CRP. An investment strategy is said
to be universal if it achieves sublinear regret.

Of equal importance is the computational efficiency
of the online algorithm. So far, universal portfolio
management algorithms were either optimal with re-
spect to regret, but computationally inefficient (Cover,
1991), or efficient but attained sub-optimal regret
(Helmbold et al., 1998). In recent work, Agarwal
and Hazan (2005) introduced a new analysis technique
which serves as the basis of algorithms that are both
efficient and have optimal regret. These techniques
were generalized by Hazan et al. (2006) to yield even
more efficient algorithms.

These new algorithms are based on the well-studied
follow-the-leader method, a natural online strategy
which, simply stated, advocates the use of the best
strategy so far in the game for the next iteration. This
method was first proposed and analyzed by Hannan
(1957) for the case of Lipschitz regret functions, and
later simplified and extended by Kalai and Vempala
(2005) for linear regret functions and also by Merhav
and Feder (1992). Follow-the-leader based portfolio
management schemes were also analyzed by Larson
(1986), when the price relative vectors are restricted to

Newton Method based Portfolio Management

take values in a finite set and by Ordentlich and Cover
(1996). The work in this paper and in Hazan et al.
(2006) bring out the connection of follow-the-leader to
the Newton method for offline optimization. The pre-
vious algorithm of Helmbold et al. (1998) can be seen
as a variant of gradient descent. On the other hand,
the new algorithm Online Newton Step takes ad-
vantage of the second derivative of the functions.

We note that this paper does not include comparisons
to the recent algorithm of Borodin et al. (2004), de-
spite its excellent experimental results. The reason is
that their heuristic is not a universal algorithm since
it does not theoretically guarantee low regret.

To evaluate our algorithm, we reproduce the previous
experiments of (Cover, 1991) and (Helmbold et al.,
1998). Also, we test the algorithms on some more
datasets, and evaluate their performance on additional
metrics such as Annualized Percentage Yields (APYs),
Sharpe ratio and mean-variance optimality. The new
algorithm outperforms previous algorithms in nearly
all these experiments under all the performance met-
rics we tested.

2. Notation and preliminaries

Let the number of stocks in the portfolio be n. On
every trading period t, for t = 1, . . . , T , the investor
observes a price relative vector rt ∈ R

n, such that rt(j)
is the ratio of the closing price of stock j on day t to the
closing price on day t−1. A portfolio p is a distribution
on the n stocks, so it is a point in the n-dimensional
simplex Sn. If the investor uses a portfolio pt on day
t, his wealth changes by a factor of pt · rt , p>

t rt.
Thus, after T periods, the wealth achieved per dollar
invested is

∏T

t=1(pt · rt). The logarithmic growth ra-

tio is
∑T

t=1 log(pt · rt). An investor using a CRP p

achieves the logarithmic growth ratio
∑T

t=1 log(p · rt).
The best CRP in hindsight p∗ is the one which maxi-
mizes this quantity. The regret of an online algorithm,
Alg, which produces portfolios pt for t = 1, . . . , T , is
defined to be

Regret(Alg) ,

T
∑

t=1

log(p∗ · rt) −
T

∑

t=1

log(pt · rt).

Since scaling rt by a constant affects the logarithmic
growth rations of both the best CRP and Alg by the
same additive factor, the regret does not change. So
we assume without loss of generality that for all t,
rt is scaled so that maxj rt(j) = 1. We also make
the assumption that after this scaling, all the rt(j)
are bounded below by the market variability param-
eter α > 0. This has been called the no-junk-bond

assumption by Agarwal and Hazan, and can be inter-
preted to mean that no stock crashes to zero value over
the trading period.

With this setup, Cover (1991) gave the first univer-
sal portfolio selection algorithm which had the opti-
mal regret O(log T), without dependence on the mar-
ket variability parameter α. His algorithm, however,
needs Ω(tn) time for computing the portfolio pt and
is clearly impractical. Kalai and Vempala (2003)
gave a polynomial implementation of the algorithm us-
ing sampling of logconcave functions from convex do-
mains (Lovász & Vempala, 2003b; Lovász & Vempala,
2003a), and this results in a randomized polynomial
time algorithm, though the polynomial is still quite
large. Helmbold et al. gave an algorithm which needs
just linear (in n) time and space per period but has
O(

√
T) regret, under the no-junk-bonds assumption.

3. Online Newton Step

Our algorithm, Online Newton Step, is presented
below. It takes parameters η, and β which are required
for the theoretical analysis. It also takes a heuristic
tuning parameter, δ, which we set only for the purpose
of experimentation.

ONS(η, β, δ)

• On period 1, use the uniform portfolio p1 = 1
n
1.

• On period t > 1: Play strategy p̃t , (1 − η)pt +
η · 1

n
1, such that:

pt = Π
At−1

Sn

(

δA−1
t−1bt−1

)

where bt−1 = (1 + 1
β
)
∑t−1

τ=1 ∇[logτ (pτ · rτ)],

At−1 =
∑t−1

τ=1 −∇2[log(pτ · rτ)] + In, and Π
At−1

Sn

is the projection in the norm induced by At−1,
viz.,

Π
At−1

Sn
(q) = argmin

p∈Sn

(q − p)>At−1(q − p)

Figure 1. The Online Newton Step algorithm.

The Online Newton Step algorithm, shown in Fig-
ure 1, has optimal regret and efficient computability.
It is a Newton-based approach which utilizes the gra-
dient (denoted ∇) and the Hessian (denoted ∇2) of the
log function. It can be implemented very efficiently:
all it needs to do, per iteration, is compute an n×n ma-
trix inverse, a matrix-vector product, and a projection
into the simplex. Aside from the projection, all the

Newton Method based Portfolio Management

other operations can be implemented in O(n2) time
and space using the matrix inversion lemma (Brookes,
2005). The projection itself can be implemented very
efficiently in practice using projected gradient descent
methods.

We now proceed to analyze the algorithm theoretically,
and show that under the no-junk-bond assumption,
the algorithm has O(log T) regret, whereas without
the assumption, the regret becomes O(

√
T).

Theorem 1. The ONS algorithm has the following
performance guarantees:

1. Assume that the market has variability parameter
α. Then setting η = 0, β = α

8
√

n
, and δ = 1, we

have

Regret(ONS) ≤ 10n1.5

α
log

[

nT

α2

]

.

2. With no assumptions on the market variabil-

ity parameter, by setting η = n1.25√
T log(nT)

, β =

1

8n0.25
√

T log(nT)
, and δ = 1, we have

Regret(ONS) ≤ 22n1.25
√

T log(nT).

Being a specialization of the Online Newton Step

algorithm of Hazan et al., the analysis proceeds along
the same lines. First, define ∇t = ∇[log(pt · rt)] =

1
pt·rt

rt. Note that ∇2[log(pt · rt)] = −1
(pt·rt)2

rtr
>
t =

−∇t∇>
t , so At =

∑t
τ=1 ∇τ∇>

τ + In. We will use this
expression for At throughout the analysis.

Now define the functions ft : Sn → R as follows:

ft(p) , log(pt · rt) + ∇>
t (p − pt) − β

2
[∇>

t (p − pt)]
2

where β = α
8
√

n
. Note that ft(pt) = log(pt · rt). Fur-

thermore, by the Taylor expansion applied to the log-
arithm function (see also Lemma (2) in (Hazan et al.,
2006)), we get that, for all p ∈ Sn: log(p · rt) ≤ ft(p).
This implies that

max
p

∑

t

log(p·rt)−log(pt·rt) ≤ max
p

∑

t

ft(p)−ft(pt),

(1)
so it suffices to bound the RHS of (1).

Lemma 2. For all t, we have

pt = arg max
p∈Sn

t−1
∑

τ=1

ft(p) − β

2
‖p‖2.

Proof. For t = 1, the uniform portfolio p1 = 1
n
1 max-

imizes −β
2 ‖p‖2. For t > 1, expanding out the ex-

pressions for fτ (p), multiplying by 2
β

and getting rid
of constants, the problem reduces to maximizing the
following function over p ∈ Sn:

t−1
∑

τ=1

[

−p>∇τ∇>
τ p + 2

(

p>
τ ∇τ∇>

τ +
1

β
∇>

τ

)

p

]

− p>p

= −p>At−1p + 2b>
t−1p.

The solution of this maximization is exactly the

projection Π
At−1

K (A−1
t−1bt−1) as specified by Online

Newton Step.

Proof. (Theorem 1)
Part 1. We need to bound the RHS of (1),
maxp

∑

t ft(p) − ft(pt). A simple induction (see
(Hazan et al., 2006)) shows that for any p,

−β

2
‖p1‖2 +

∑

t

ft(pt+1) ≥
∑

t

ft(p) − β

2
‖p‖2.

In Lemma 4 below, we bound
∑

t ft(pt+1) − ft(pt).

Since β
2 [‖p‖2 − ‖p1‖2] ≤ β

2 , we can bound the regret
as:

Regret(ONS) ≤ 1

β
n log

[

nT

α2

]

+
β

2
.

Now the stated regret bound follows by plugging in
the specified choice of parameters.

Part 2. The following lemma can be deduced from
Theorem 2 in (Helmbold et al., 1998). The stated re-
gret bound follows by using the lemma with the spec-
ified choice of parameters with the regret bound from
part 1.

Lemma 3. For an online algorithm Alg, let the de-
rived algorithm SmoothAlg use the smoothened portfo-
lio p̃t = (1 − η)pt + η · 1

n
1 where pt is the portfolio

computed by Alg on day t. Then the regret can be
bounded as:

Regret(SmoothAlg) ≤ Regret(Alg) + 2ηT

where Regret(Alg) is computed assuming the variabil-
ity parameter α is at least η

n
.

Lemma 4.

T
∑

t=1

[ft(pt+1) − ft(pt)] ≤ 1

β
n log

[

nT

α2

]

.

Newton Method based Portfolio Management

Lemma 4. For the sake of readability, we introduce
some notation. Define the function Ft ,

∑t−1
τ=1 fτ .

Note that ∇ft(pt) = ∇t by the definition of ft.
Finally, let ∆ be the forward difference operator,
for example, ∆pt = (pt+1 − pt) and ∆∇Ft(pt) =
(∇Ft+1(pt+1) − ∇Ft(pt)).

We use the gradient bound, which follows from the
concavity of ft:

ft(pt+1) − ft(pt) ≤ ∇ft(pt)
>(pt+1 − pt) = ∇>

t ∆pt.

(2)
The gradient of Ft+1 can be written as:

∇Ft+1(p) =

t
∑

τ=1

[∇τ − β∇τ∇>
τ (p − pτ)]. (3)

Therefore,

∇Ft+1(pt+1) − ∇Ft+1(pt) = −βAt∆pt. (4)

The LHS of (4) is

∇Ft+1(pt+1) − ∇Ft+1(pt) = ∆∇Ft(pt) − ∇t. (5)

Putting (4) and (5) together we get

−βAt∆pt = ∆∇Ft(pt) − ∇t. (6)

Pre-multiplying by − 1
β
∇>

t A−1
t , we get an expression

for the gradient bound (2):

∇>
t ∆pt =

1

β
∇>

t A−1
t [∆∇Ft(pt) − ∇t]

= − 1

β
∇>

t A−1
t [∆∇Ft(pt)] +

1

β
∇>

t A−1
t ∇t.

(7)

Claim 1. The first term of (7) is bounded as follows:

− 1

β
∇>

t A−1
t [∆∇Ft(pt)] ≤ 0.

Proof. Since pτ maximizes Fτ over Sn, we have

∇Fτ (pτ)>(p − pτ) ≤ 0. (8)

for any point p ∈ Sn. Using (8) for τ = t and τ = t+1,
we get

0 ≥ ∇Ft+1(pt+1)
>(pt − pt+1) + ∇Ft(pt)

>(pt+1 − pt)

= −[∆∇Ft(pt)]
>∆pt

=
1

β
[∆∇Ft(pt)]

>A−1
t [∆∇Ft(pt) − ∇t]

(by solving for ∆pt in (6))

=
1

β
[∆∇Ft(pt)]

>A−1
t [∆∇Ft(pt)]

− 1

β
[∆∇Ft(pt)]

>A−1
t ∇t

≥ − 1

β
[∆∇Ft(pt)]

>A−1
t ∇t.

(since A−1
t � 0 ⇒ ∀p : p>A−1

t p ≥ 0)

as required.

Now we bound the second term of (7). Sum up from
t = 1 to T , and apply Lemma 5 (see Lemma 6 from
(Hazan et al., 2006)) below with A0 = In and vt = ∇t.

1

β

T
∑

t=1

∇>
t A−1

t ∇t ≤ 1

β
log

[|AT |
|A0|

]

≤ 1

β
n log

[

nT

α2

]

.

The second inequality follows since AT =
∑T

t=1 ∇t∇>
t

and ‖∇t‖ ≤
√

n

α
, and so |AT | ≤ (nT

α2)n.

Lemma 5. For t = 1, 2, . . . , T , let At = A0 +
∑t

τ=1 vτv>
τ for a positive definite matrix A0 and vec-

tors v1, v2, . . . , vT . Then the following inequality holds:

T
∑

t=1

v>
t A−1

t vt ≤ log

[|AT |
|A0|

]

.

3.1. Internal regret

Stoltz and Lugosi (2005) extend the game-theoretic
notion of internal regret to the case of online portfolio
selection problems. The notion captures the follow-
ing cause of regret to an online investor: in hindsight,
how much more money could she have made, had she
transferred all the money she invested in stock i, to
stock j on all the trading days?

Formally, for a portfolio p, define pi→j as follows:
pi→j

i = 0, pi→j
j = pi + pj , and pi→j

k = pk if k 6= i, j.
The internal regret is defined to be

max
ij

∑

t=1

log(pi→j
t · rt) −

T
∑

t=1

log(pt · rt).

A straightforward application of the technique of
Stoltz and Lugosi (2005) results in an algorithm, called
IR-ONS, that achieves logarithmic internal regret. In
the full version of the paper, we prove:

Theorem 6. Assume that the market has variability
parameter α. Then setting η = 0, β = α

8
√

n
, and δ = 1,

we have

InternalRegret(IR-ONS) ≤ 20n3

α
log

[

nT

α2

]

.

Newton Method based Portfolio Management

4. Experimental Results

We implemented the algorithms presented in (Agar-
wal & Hazan, 2005) and (Hazan et al., 2006) as well
as the algorithms of Cover (1991)1, the Multiplicative
Weights algorithm of Helmbold et al. (1998), and the
uniform CRP. We also applied the technique of Stoltz
and Lugosi (2005) to the algorithms of Helmbold et al.
(1998) and this paper to get variants which minimize
internal regret. We implemented Online Newton

Step with parameters η = 0, β = 1, and δ = 1
8 . Un-

less otherwise noted, we omit the results for IR-ONS
because it was inferior to ONS.

We performed tests on the historical stock market data
from the New York Stock Exchange (NYSE) used by
Cover and Helmbold et al. In addition we randomly
selected portfolios of various sizes from a set of 50 ran-
domly chosen S&P 500 stocks2 and performed experi-
ments over the past 4 years data from 12th December,
2001 to 30th November, 2005 obtained from Yahoo!
Finance.

Table 1. Abbreviations used in the experiments.

BCRP Best CRP
UCRP Uniform CRP

Universal (Cover, 1991)
MW (Helmbold et al., 1998)

IR-MW Internal regret variant of MW
ONS Online Newton Step

IR-ONS Internal regret variant of ONS

Performance Measures. The performance mea-
sures we used were Annualized Percentage Yields
(APYs), Sharpe ratio and mean-variance optimality.

4.1. Performance vs. Portfolio Size

To measure the dependence of the performance of var-
ious algorithms on portfolio size we picked 50 sets of n

random stocks from the data set, for values of n rang-
ing from 5 to 40. All algorithms were run on the data,
trading once every two weeks. The choice of trading
period was to permit completion of the Universal al-

1Since we implemented Cover’s algorithm by random
sampling, there is a small degree of variability in the mea-
surements recorded here. We used 1000 samples, which as
suggested by (Stoltz & Lugosi, 2005), is sufficient to get a
good estimate of the behavior of that algorithm.

2The set of stocks used was RTN, SLB, ABK, PEG,
KMG, FITB, CL, PSA, DOV, NKE, AT, NEM, VMC, D,
CPWR, NVDA, SRE, HPQ, CMX, LXK, GPC, ABI, PGL,
QLGC, OMX, QCOM, KO, PMTC, SWK, CTXS, FSH,
HON, COF, LH, KMG, BLL, WB, OMX, K, LUV, DIS,
SFA, APOL, HUM, CVH, IR, SPG, WY, TYC, NKE.

gorithm in reasonable time. The trading period did
not seem to affect the relative performance of the al-
gorithms. The results are shown in Figure 4.

5 10 15 20 25 30 35 40
12

14

16

18

20

22

24

Number of Stocks

m
ea

n
A

P
Y

UCRP

Universal

MW

IR−MW

ONS

Figure 2. Performance vs. Portfolio Size

The improvement in the performance of ONS with
increasing number of stocks is quite stark. The rea-
son for this seems to be that ONS does an extremely
good job of tracking the best stock in a given port-
folio. Adding more stocks causes some good stock to
get added, which ONS proceeds to track. Other al-
gorithms behave more like the uniform CRP and so
average out the increase in wealth due to the addition
of a good stock. Figure 3 shows how ONS tracks CMC,
which out-performs Kin-Ark for the test period, in a
dataset composed of Kin-Ark and CMC (also used by
Cover) while other algorithms have a nearly uniform
distribution on both the stocks. This is the reason
ONS outperforms all other algorithms on this dataset,
as can be seen in Figure 5.

0 1000 2000 3000 4000 5000 6000

0.4

0.5

0.6

0.7

0.8

0.9

1

Trading days

F
ra

ct
io

n
of

 C
M

C
 in

 p
or

tfo
lio

BCRP
MW
UCRP
IR−MW
ONS

Figure 3. How ONS tracks CMC.

Newton Method based Portfolio Management

4.2. Random stocks from S&P 500

We tested the average APYs (over 50 trials of 10 ran-
dom stocks from the S&P 500 list mentioned before)
of the algorithms, for different frequencies of rebalanc-
ing, namely daily, weekly, fortnightly and monthly. As
can be seen in figure 4 the performance of the ONS al-
gorithm is superior to all other algorithms in all the
4 cases. As is expected the performance of all algo-
rithms degrades as trading frequency decreases, but
not very significantly. The simple strategy of main-
taining a uniform constant-rebalanced portfolio seems
to outperform all previous algorithms. This rather sur-
prising fact has been observed by Borodin et al. (2004)
also.

daily weekly fortnightly monthly
0

5

10

15

20

25

Trading frequency

M
ea

n
A

P
Y

UCRP
Universal
MW
IR−MW
ONS

Figure 4. Performance vs. Trading Period.

4.3. Cover’s Experiments

We replicated the experiments of Cover and Helmbold
et al. on Iroquios Brands Ltd. and Kin Ark Corp.,
Commercial Metals (CMC) and Kin Ark, CMC and
Meicco Corp., IBM and Coca Cola for the same 22 year
period from 3rd July, 1962 to 31st December, 1984. As
can be seen from Figure 5, ONS outperforms all other
algorithms except on the Iroquios Brands Ltd. and
Kin Ark Corp. dataset.

Figure 6 shows how the total wealth (per dollar in-
vested) varies over the entire period using the different
algorithms for a portfolio of IBM and Coke. The ONS
algorithm, and its internal regret variant IR-ONS, out-
perform even the best constant-rebalanced portfolio.

4.4. Stock volatility

We took the 50 stock data set used in previous ex-
periments which had a history for 1000 days traded
fortnightly and sorted them according to volatility and
created two sets: the 10 stocks with largest and small-

Iroq.&Kin−Ark CMC&Kin−Ark CMC&MEI IBM&KO
0

5

10

15

20

25

30

A
P

Y

UCRP
Universal
MW
IR−MW
ONS

Figure 5. Four pairs of stocks tested by Cover (1991) and
Helmbold et al. (1998).

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

Trading days

W
ea

lth
 a

ch
ie

ve
d

pe
r

do
lla

r

BCRP
ONS
IR−ONS

Figure 6. Wealth achieved by various algorithms on a port-
folio consisting of IBM and Coke.

est price variance. Then we applied the different algo-
rithms on the two different sets.

Figure 7 shows that the performance of ONS increases
with market volatility whereas the performance of
other algorithms decreases.

4.5. Margins loans

In line with Cover (1991) and Helmbold et al. (1998),
we also tested the case where the portfolio can buy
stocks on margin. The data set we tested on was the
22 year IBM and Coca Cola data mentioned earlier.
Results for this case are given in Table 4. The margin
purchases we incorporate are 50% down and 50% loan.
The ONS algorithm in fact enhances its performance
edge over other algorithms if margin loans are allowed.

Newton Method based Portfolio Management

Table 2. Sharpe ratios for various algorithms on different datasets.

Universal UCRP MW IR-MW ONS
Iro.&Kin-Ark 0.4986 0.5497 0.5390 0.5078 0.4578

CMC & Kin-Ark 0.5740 0.6020 0.5980 0.5812 0.7466
CMC & Meicco 0.3885 0.3834 0.3856 0.3854 0.5177
IBM & Coke 0.5246 0.5376 0.5356 0.5295 0.5824

Table 3. Minimum variance CRPs for various algorithms on different datasets. The number to the left of the slash is the
volatility of the minimum variance CRP and the number to the right is the volatility of the algorithm on the dataset.

Universal UCRP MW IR-MW ONS
Iro. & Kin-Ark 0.4598/0.4948 0.4929/0.4929 0.4803/0.4928 0.4606/0.4930 0.4603/0.5451
CMC & Meicco 0.1911/0.2728 0.1909/0.2723 0.1909/0.2717 0.1909/0.2718 0.2070/0.3510

low high
0

5

10

15

20

25

volatility

m
ea

n
A

P
Y

UCRP
Universal
MW
IR−MW
ONS

Figure 7. Performance of algorithms on high and low
volatility datasets.

Table 4. Incorporating margin loans.

Algorithm APY, no margin APY with margin
UCRP 12.73 14.84

Universal 12.46 14.40
MW 12.57 14.39

IR-MW 12.57 14.62
ONS 13.68 16.15

4.6. Sharpe Ratio and Mean-Variance Optimal
CRPs

It is a well-known fact that one can achieve higher re-
turns by investing in riskier assets (Luenberger, 1998).
So it is important to rule out the possibility of the ONS
algorithm achieving higher returns compared to other
algorithms by trading more riskily. Parameters like the
Sharpe ratio and the optimal mean-variance portfolio
are used to measure this risk versus reward tradeoff.
Sharpe ratio is defined as

Rp−Rf

σp
where Rp is the av-

erage yearly return of the algorithm, which indicates

reward, Rf is the risk-free rate (typically the average
rate of return of Treasury bills), and σp is the stan-
dard deviation of the returns of the algorithm, which
indicates its volatility risk. Higher the Sharpe Ratio
the better is the algorithm at balancing high rewards
with low risk.

The mean-variance optimal CRP for an algorithm is
the CRP which achieves the same return as the al-
gorithm but has minimum variance. This is the least
risky CRP one could have used in hindsight to produce
the same returns. The closer the volatility of the CRP
to that of the algorithm, the better the algorithm is
avoiding risk.

Table 2 shows that ONS has either the best or slightly
smaller Sharpe ratio among all algorithms. In Table 3,
it can be seen that ONS has comparable volatility to
the minimum variance CRP, implying that ONS does
not take excessive risk in its portfolio selection. In the
case of IBM & Coke and Kin-Ark & CMC, ONS beats
the Best CRP in hindsight. Hence the concept of the
optimal mean-variance CRP does not apply and the
results for this case are omitted.

4.7. Running times

As expected, ONS runs slightly slower than MW, but
both are much faster than Universal. We measured
the running time (in seconds) of these algorithms on
the 22 year data sets mentioned earlier. The machine
used was a dual Intel 933MHz PIII processor with 1GB
operated with Linux Fedora Core 3 operating system.
The average running time, on the four data sets we
considered, was 4882 seconds for the Universal algo-
rithm3, whereas MW and ONS took 3.7 and 26.7 sec-
onds, respectively. This clearly shows the significant
advantage of ONS over Universal and that it is compa-
rable with MW in terms of computational efficiency.

3With 1000 samples.

Newton Method based Portfolio Management

5. Conclusions

We experimentally tested the recently proposed algo-
rithms of (Agarwal & Hazan, 2005; Hazan et al., 2006)
for the universal portfolio selection problem. The On-

line Newton Step algorithm is extremely fast in
practice as expected from the theoretical guarantees.
Moreover, it seems to be better than previous algo-
rithms at tracking the best stock.

It would be interesting to combine the anti-correlated
heuristic of Borodin et al. (2004) with the best stock
tracking ability of our algorithm. Another open prob-
lem is to incorporate transaction costs into the algo-
rithm, as done by Blum and Kalai (1999) for Cover’s
algorithm.

Acknowledgements

We would like to thank Sanjeev Arora and Moses
Charikar for helpful suggestions. Elad Hazan and
Satyen Kale were supported by Sanjeev Arora’s NSF
grants MSPA-MCS 0528414, CCF 0514993, ITR
0205594. We would also like to thank Gilles Stoltz
for providing us with the data sets for experiments
and helpful suggestions.

References

Agarwal, A., & Hazan, E. (2005). New algorithms for
repeated play and universal portfolio management.
Princeton University Technical Report TR-740-05.

Algoet, P., & Cover, T. (1988). Asymptotic optimal-
ity and asymptotic equipartition properties of log-
optimum investment. Annals of Probability, 2, 876–
898.

Bell, R., & Cover, T. (1980). Competitive optimality of
logarithmic investment. Mathematics of Operations
Research, 2, 161–166.

Bell, R., & Cover, T. (1988). Game-theoretic optimal
portfolios. Management Science, 6, 724–733.

Blum, A., & Kalai, A. (1999). Universal portfolios with
and without transaction costs. Machine Learning,
35, 193–205.

Borodin, A., El-Yaniv, R., & Gogan, V. (2004). Can
we learn to beat the best stock. Journal of Artificial
Intelligence Research, 21, 579–594.

Brookes, M. (2005). The ma-
trix reference manual. [online]
www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html.

Cover, T. (1991). Universal portfolios. Mathematical
Finance, 1, 1–19.

Hannan, J. (1957). Approximation to bayes risk in
repeated play. In M. Dresher, A. W. Tucker and
P. Wolfe, editors, Contributions to the Theory of
Games, III, 97–139.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006).
Logarithmic regret algorithms for online convex op-
timization. To appear in the 19th Annual Confer-
ence on Learning Theory (COLT).

Helmbold, D., Schapire, R., Singer, Y., & Warmuth.,
M. (1998). On-line portfolio selection using multi-
plicative updates. Mathematical Finance, 8, 325–
347.

Kalai, A., & Vempala, S. (2003). Efficient algorithms
for universal portfolios. Journal Machine Learning
Research, 3, 423–440.

Kalai, A., & Vempala, S. (2005). Efficient algorithms
for on-line optimization. Journal of Computer and
System Sciences, 71(3), 291–307.

Kelly, J. (1956). A new interpretation of information
rate. Bell Systems Technical Journal, 917–926.

Larson, D. C. (1986). Growth optimal trading strate-
gies. Ph.D. dissertation, Stanford Univ., Stanford,
CA.

Lovász, L., & Vempala, S. (2003a). The geometry
of logconcave functions and an O∗(n3) sampling al-
gorithm (Technical Report MSR-TR-2003-04). Mi-
crosoft Research.

Lovász, L., & Vempala, S. (2003b). Simulated anneal-
ing in convex bodies and an O∗(n4) volume algo-
rithm. Proceedings of the 44th Symposium on Foun-
dations of Computer Science (FOCS) (pp. 650–659).

Luenberger, D. G. (1998). Investment science. Oxford:
Oxford University Press.

Merhav, N., & Feder, M. (1992). Universal sequen-
tial learning and decision from individual data se-
quences. 5th COLT (pp. 413–427). Pittsburgh,
Pennsylvania, United States.

Ordentlich, E., & Cover, T. M. (1996). On-line port-
folio selection. 9th COLT (pp. 310–313). Desenzano
del Garda, Italy.

Stoltz, G., & Lugosi, G. (2005). Internal regret in
on-line portfolio selection. Machine Learning, 59,
125–159.

