Journal of the Association for Computing Machinery, 44(3):427-485, 1997.

How to Use Expert Advice

Nicolo Cesa-Biancht* Yoav Freund' David Hausslert David P. Helmbold
Robert E. Schapire¥ Manfred K. Warmuthl

Abstract

We analyze algorithms that predict a binary value by combining the predictions of several
prediction strategies, called ezperts. Our analysis is for worst-case situations, i.e., we make
no assumptions about the way the sequence of bits to be predicted is generated. We measure
the performance of the algorithm by the difference between the expected number of mistakes it
makes on the bit sequence and the expected number of mistakes made by the best expert on this
sequence, where the expectation is taken with respect to the randomization in the predictions.
We show that the minimum achievable difference is on the order of the square root of the number
of mistakes of the best expert, and we give efficient algorithms that achieve this. Our upper and
lower bounds have matching leading constants in most cases. We then show how this leads to
certain kinds of pattern recognition/learning algorithms with performance bounds that improve
on the best results currently known in this context. We also compare our analysis to the case
in which log loss is used instead of the expected number of mistakes.

1 Introduction

A central problem in statistics and machine learning is the problem of predicting future events
based on past observations. In computer science literature in particular, special attention has been
given to the case in which the events are simple binary outcomes (e.g. [HLW94]). For example,
in predicting today’s weather, we may choose to consider only the possible outcomes 0 and 1,
where 1 indicates that it rains today, and 0 indicates that it does not. In this paper we show that
some simple prediction algorithms are optimal for this task in a sense that is closely related to
the definitions of universal forecasting, prediction, and data compression which have been explored
in the information theory literature. We then give applications of these results to the theory of
pattern recognition [Vap82] and PAC learning [Val84].

We take the extreme position, as advocated by Dawid and Vovk in the theory of prequential
probability [Daw84, Dawar, Daw91, Vov93], Rissanen in his theory of stochastic complexity [Ris78,
RL81, Ris86, Yam95] and Cover, Lempel and Ziv, Feder and others in the theory of universal
prediction and data compression of individual sequences [FMG92, MF93, Cov65, CS77, Hanb7,

*Universita di Milano (Italy), cesabian@dsi.unimi.it. This research was done while this author was visiting UC
Santa Cruz, partially supported by the “Progetto finalizzato sistemi informatici e calcolo parallelo” of CNR under
grant 91.00884.69.115.09672.

TAT&T Laboratories, yoav@research.att.com

{UC Santa Cruz, haussler@cse.ucsc.edu.

SUC Santa Cruz, dph@cse.ucsc.edu

TAT&T Laboratories, schapire@research.att.com

lUC Santa Cruz, manfred@cse.ucsc.edu. Haussler, Warmuth and Freund were supported by ONR grant N00014-
91-J-1162 and NSF grant IRI-9123692.

Vov92, Chu94], that no assumptions whatsoever can be made about the actual sequence y =
Y,.-., Y of outcomes that is observed; the analysis is done in the worst case over all possible
binary outcome sequences. Of course no method of prediction can do better than random guessing
in the worst case, so a naive worst-case analysis is fruitless. To illustrate an alternative approach
in the vein of universal prediction, consider the following scenario.

Let us suppose that on each morning ¢ you must predict whether or not it will rain that day
(i.e., the value of y;), but before making your prediction you are allowed to hear the predictions of
a (fixed) finite set & = {&1,...,En} of experts. On the morning of day ¢, each expert has access to

the weather outcomes yy,...,y;—1 of the previous ¢t — 1 days, and possibly to the values of other
weather measurements z1,...,2;_1 made on those days, as well as today’s measurements x;. The
measurements zq,...,2; will be called instances. Based on this data, each expert returns a real

number p between 0 and 1 that can be interpreted as his/her estimate of the probability that it
will rain that day. After hearing the predictions of the experts, you also choose a number p € [0, 1]
as your estimate of the probability of rain. Later in the day, nature sets the value of y; to either
1 or 0 by either raining or not raining. In the evening, you and the experts are scored. A person
receives the loss |p — y| for making prediction p € [0, 1] when the actual outcome is y € {0,1}. To
see why this is a reasonable measure of loss,! imagine that instead of returning p € [0, 1] you tossed
a biased coin and predicted outcome 1 with probability p and outcome 0 with probability 1 — p.
Then |p — y| is the probability that your prediction is incorrect when the actual outcome is y.

Let us fix the instance sequence zq,...,zy, since it plays only a minor role here, and vary only
the outcome sequence y = y1, ..., 4, Imagine that the above prediction game is played for ¢ days,
during which time you accumulate a total loss L(y) = Zle |9: — yi|, where g; € [0,1] is your
prediction at time ¢. Each of the experts also accumulates a total loss based on his/her predictions.
Your goal is to try to predict as well as the best expert, no matter what outcome sequence y is
produced by nature.? Specifically, if we let Lg(y) denote the minimum total loss of any expert on
the particular sequence y, then your goal is to minimize the maximum of the difference L(y)— Ls(y)
over all possible binary sequences y of length £. Since most outcome sequences will look totally
random to you, you still won’t be able to do better than random guessing on most sequences.
However, since most sequences will also look totally random to all the experts (as long as there
aren’t too many experts), you may still hope to do almost as well as the best expert in most cases.
The difficult sequences are the ones that have some structure that is exploited by one of the experts.
To do well on these sequences you must quickly zero in on the fact that one of the experts is doing
well, and match his/her performance, perhaps by mimicking his/her predictions.

Through a game-theoretic analysis, we find that for any finite set of experts, there is a strategy
that minimizes the maximum of the difference L(y) — Le(y) over all possible binary outcome
sequences y. While this min/max strategy can be implemented in some cases, it is not practical in
general. However, we define an algorithm, called P for “Predict”, that is simple and efficient, and
performs essentially as well as the min/max strategy. Actually P is a family of algorithms that is
related to the algorithm studied by Vovk [Vov90] and the Bayesian, Gibbs and “weighted majority”
methods studied by a number of authors [LW94, LLW95, HKS94, STS90, SST92, HB92, HW95], as
well as the method developed by Feder, Merhav and Gutman [FMG92]. We show that P performs
quite well in the sense defined above so that, for example, given any finite set £ of weather forecasting
experts, P is guaranteed not to perform much worse than the best expert in £, no matter what the

! An alternate logarithmic loss function, often considered in the literature, is discussed briefly in Section 8.

2This approach is also related to that taken in recent work on the competitive ratio of on-line algorithms, and in
particular to work on combining on-line algorithms to obtain the best competitive ratio [FKL191, FFKT91, FRR94],
except that we look at the difference in performance rather than the ratio.

actual weather turns out to be. The algorithm P is completely generic in that it makes no use of
the side information provided by the instances z1,...,2,. Thus, it would also do almost as well as
the Wall Street expert with the best inside information when predicting whether the stock market
will rise or fall.

In particular, letting Lp(y) denote the total loss of algorithm P on the sequence y and Le(y)
the loss of the best expert on y as above, we show (Theorem 16) that for all binary® outcome
“n(lgl-l-l) + 10g2(|25|+1)

sequences y of length ¢ , Lp(y) — Le(y) < , and that no algorithm can
improve the multiplicative constant of the square-root term for |£|,{ — oo, where |£| is the number
of experts.

Previous work has shown how to construct an algorithm A such that the ratio L4(y)/Le(y)
approaches 1 in the limit [Vov90, LW94, FMG92]. In fact, Vovk [Vov90] described an algorithm
with the same bound as the one we give in Theorem 10 for the algorithm P. This theorem leaves a
parameter to be tuned. Vovk gives an implicit form of the optimum choice of the parameter. We
arrive at an explicit form that allows us to prove nearly optimal bounds on L4(y)— Le(y). To our
knowledge, our results give the first precise bounds on this difference.

It turns out that these bounds also give a tight lower bound on the expectation of the minimal
L, distance between a random binary string uniformly chosen from {0,1}* and a set of N points
in [0,1]°. This answer to a basic combinatorial question may be of independent interest.

The remainder of this paper is organized as follows. In Section 3, we characterize exactly the
performance of the best possible prediction strategy using a min/max analysis. Section 4 describes
the algorithm P and shows that it achieves the optimal bound given above. In Section 4.4 we show
that if the loss Le(y) of the best expert is given to the algorithm a priori, then P can be tuned so
that Lp(y)— Le(y) < /Le(y)In €]+ log22$. In Section 4.6 we show that even when no knowledge
of Le(y) is available, one can use a doubling trick to obtain a bound on Lp(y) — Le(y) that is
only a small constant factor larger than the above bound. This algorithm can nearly match the
performance of the best expert on all prefixes of an infinite sequence y.

Finally, in Section 5 we show how the results we have obtained can be applied in another machine
learning context. We describe a pattern recognition problem in which examples (z1,71), ..., (@¢—1, ¥1—1)
are drawn independently at random from some arbitrary distribution on the set of all possible la-
beled instances and the goal is to find a function that will predict the binary label y; of the next
random example (x4, y¢) correctly. Performance is measured relative to the best binary-valued func-
tion in a given class of functions, called the comparison class. This kind of relative performance
measure is called regret in statistics. General solutions to this regret formulation of the pattern
recognition problem have been developed by Vapnik [Vap82], Birge and Massart [BM93], and oth-
ers. This problem can also be described as a special variant of the probably approzimately correct
(PAC) learning model [Val84] in which nothing is assumed about the “target concept” that gener-
ates the examples other than independence between examples (sometimes referred to as agnostic
learning [KSS94]), and in which the learning algorithm is not required to return a hypothesis in
any specific form. Using the prediction strategy P, we develop an algorithm that solves this pat-
tern recognition problem and derive distribution-independent bounds for the performance of this
algorithm. These bounds improve by constant factors some of the (more general) bounds obtained
by Vapnik [Vap82] and Talagrand [Tal94] on the performance of an empirical loss minimization
algorithm.

The results presented in this paper contribute to an ongoing program in information theory and

*The algorithm has recently been extended to the case when the outcomes are in the interval [0,1] with the
performance bounds as in the binary case [HKW95].

statistics to minimize the number of assumptions placed on the actual mechanism generating the
observations through the development of robust procedures and strengthened worst-case analysis.
In investigating this area, we have been struck by the fact that many of the standard-style statistical
results that we have found most useful, such as the bounds given by Vapnik, have worst-case
counterparts which are much stronger than we had expected would be possible. We believe that if
these results can be extended to more general loss functions and learning/prediction scenarios, with
corresponding optimal estimation of constants and rates, this worst-case viewpoint may ultimately
provide a fruitful alternative foundation for the statistical theory of learning and prediction.

2 An overview of the prediction problem

In this section, we define the problem of predicting binary sequences and give an overview of our
results on this problem.

We refer to the binary sequence to be predicted as the outcome sequence, and we denote it by
Y = YlyeesYts--.,Ys, where t is the index of a typical time step or trial, y; € {0,1}, and ¢ is the
length of the sequence. We denote by y, the prefix of length ¢ of y, i.e., ¥y, = v1,..., ¥

We denote the set of experts by & = {&;,...,En}, where N is the number of experts. The
prediction of expert & at time ¢ is denoted by &+ € [0,1] and the prediction of the algorithm at
time ¢ is denoted by g € [0, 1].

A prediction algorithm is an algorithm that at time ¢ = 1,...,{, receives as input a vector
of expert predictions (&1 4,...,&n4), as well as the predictions made by the experts in the past
(iee, (E105-2EN1)s s (E10215- -, ENt=1)), the sequence of past outcomes (i.e., y,_;), and the
predictions made by the algorithm in the past (i.e., §1...9—1). The prediction algorithm maps
these inputs into its current prediction ;.

The loss of prediction algorithm A on a sequence of trials with respect to a sequence of outcomes
y (and set of experts) is defined to be the sum S ¢ i — y¢| which is denoted La(y). Note that the
set of experts will always be understood from context so we can suppress the dependence of L 4(y)
on &. Similarly, the loss of expert &; with respect to y is defined to be Zle |& + — y¢| and is denoted
Le,(y). Finally, the loss of the best expert is denoted by Le(y); thus, Le(y) = min—, n Le,(y).

Our goal is to find algorithms whose loss L 4(y) is not much larger than Le(y). Moreover,
our ultimate goal is to prove bounds that hold uniformly for all outcome sequences and expert
predictions, and that assume little or no prior knowledge on the part of the prediction algorithm.

This problem can be viewed as a game in which the predictor plays against an adversary who
generates both the experts’ predictions and the outcomes. We assume that both players can observe
all of the actions made by the other player up to the current point of time, as well as its own past
actions. The game consists of { time steps, and both sides know £ before the game begins. We now
describe the binary sequence prediction game. At each time step, t = 1...{, the game proceeds as
follows:

o The adversary chooses the experts’ predictions, & ; € [0,1], for 1 <: < N.
e The predictor generates its prediction g; € [0, 1].

e The adversary chooses the outcome y; € {0,1}.

The goal of the predictor in this game is to minimize its net loss: La(y) — Le(y). The goal of the
adversary is to maximize this value.* The min/max value for this game, is the worst case net loss
of the optimal prediction strategy. We will denote this min/max value by Vi 4.

Formally, an expert in this context is a function of the form & : ([0,1] x {0,1}) — [0,1]. The interpretation here

In the following section we give the optimal min/max strategy for the predictor and for the
adversary in this game. This analysis gives a simple recursive equation for V. Unfortunately, we
don’t have a closed form expression that solves this equation. However, using results obtained in
Sections 3 and 4, we can show that

{In N

Ve = (1+0(1)) 5

where o(1) — 0 as N,{ — oc.

In Section 3.1 we analyze the optimal prediction algorithm for a case in which the adversary is
somewhat restricted. Using this restriction of the game we find an explicit closed form expression
that lower bounds Vy,. The adversary is restricted in that the predictions of the experts are
functions only of the trial number. In other words, each expert is a fixed sequence of £ numbers
in [0,1]. We call these static experts. We also assume that these sequences are known to the
predictor in advance. We derive the exact min/max solution for this restricted game for any choice
of the sequences. We obtain our explicit lower bound by analyzing the case in which the N expert
sequences are chosen using independent coin flips.

In Section 4 we present a family of prediction algorithms for the general prediction game.
The basic algorithm, which we call P has a real-valued parameter, 3, which controls its behavior.
This parameter plays a similar role to the “learning rate” parameter used in gradient based learning
algorithms [Hay94]. Different choices of 3 guarantee different performance bounds for the algorithm.
The optimal choice of 3 is of critical importance and occupies much of the discussion in Sections 4.4—
4.6 and also later in Section 5.4.

We analyze three variants of the algorithm, each of which chooses 3 in a different way, according
to the type of knowledge available to the predictor. The first variant chooses 3 when the predictor
knows only an upper bound on the loss of the best expert. The second variant chooses § in a
situation where the predictor knows only the length ¢ of the game. The third variant handles the
case where the predictor knows nothing at all in advance. Using the analysis of the second case,
we get an upper bound for Viy, that asymptotically matches the lower bound from Section 3.1.

3 An optimal prediction strategy

We now give the optimal prediction algorithm for the binary sequence prediction problem. This
algorithm is based on the optimal min/max solution of the binary sequence prediction game de-
scribed in the previous section, guaranteeing that it has the best possible worst-case performance.
However, the algorithm is computationally expensive.

The following function plays a major role in the construction and analysis of the optimal pre-
diction strategy. Let Bt denote the nonnegative reals, and N denote the nonnegative integers. We
define the function v : (RT)N x If — B* inductively as follows:

M, 0) = in (M, 1
v(M,0) = min (M) (1)
M+ Zr—1 M+1-Zr—-1
o(M,r) = min oM+ Zyr= 1)+ o(M+ r—1) (2)
Zelo,1]Y 2
is that & maps a finite sequence ((§1,¥1),...,(§it—1,y¢—1)) of prediction/outcome pairs to a new expert prediction

&i¢v. (Note that each & function can compute the value of the other &£; functions, and thus the experts’ predictions
can depend on the predictions made by experts in the past, as well as the current time ¢.)

where the 1 in the expression M + 1 — Z denotes the vector of N 1’s, and M; is the ¢th component
of vector M. Clearly, this function is well defined and can, in principle, be calculated for any given
M and r. We will discuss the complexity of this computation after the proof of Theorem 2.

The parameters of the function v are interpreted as follows. The integer r denotes the number
of remaining trials, i.e., the number of sequence bits that remain to be predicted. The past loss
incurred by the expert & when there are r remaining trials will be denoted M/, and M" will denote
the vector (M7,..., M}%). It is the quantity »(M",r) that will be important in our analysis. In
some sense, v(M",r) is measuring the anticipated loss of the best expert on the entire sequence of
trials.

In order to show that our prediction strategy generates predictions that are in the range [0, 1] we
will need the following lemma, which shows that the function v(M,r) obeys a Lipschitz condition.

Lemma 1 For any r € N and any X,Y € (RT)V
[o(X,) —o(Y,)] < [[X =Yl ,
where || X — Y||oo = max; | X; — Y;].

Proof: The proof is by induction on r:
If r =0, let ip be an index that minimizes {X;} and jo be an index that minimizes {Y;}. Then

?J(X,O)—?J(Y,O) =X _on < on _on < ||X_Y||OO

Now suppose 7 > 0 and let us assume that the lemma holds for » — 1. Let Zy € [0,1]" be a
vector that minimizes

v Y4+ Zr—1)4+o(Y+1—-Z,r—-1)

o(Y,r)= min .
Zelo,1]N 2
We get:
U(er) - ?J(Y,T)
v X+ Zr—-1)+v(X+1-Z,r—-1)
= min
Zelo]V 2
. v Y4+ Z,r—1)+oY +1-Z,r—1)
— min
Zelo,1]N 2
< o(X+ Zo,r—D)+o(X+1-Zpg,r=1) oY +Zo,r—1)+0o(Y +1—-Zp,7—1)
- 2 2
(X + Zo,r = 1) —o(Y + Zo,r — 1) n (X +1-Zpg,r—=1)—v(Y +1—Zp,7r—1)
B 2 2
X4+7Z0)— Y+ Z0)|lee ||(X+1=270)— (Y +1—Zp)||eo
< ||(+ 0) (+ 0)|| + ||(+ 0) (+ 0)|| :||X_Y||oo
2 2
where the last inequality follows from our inductive hypothesis. |

We now define the prediction strategy MM and then prove a theorem showing that this is the
optimal prediction strategy. The prediction strategy (see Figure 1) works as follows: On trial ¢, let
r = £ —1t+ 1 be the number of bits that remain to be predicted, M" be the vector representing
the loss of each of the experts on the sequence seen so far, and Z” be the vector of current expert
predictions, i.e., Z" = (&4, ..., €nt). The prediction strategy sets its prediction to be

oM+ 7" r—=1)—o(M"+1-2",r—1)+1
5 .

(3)

Y =

Algorithm MM

1. Initialize:

o 1:=1 { current trial number }
o r:=1{({ number of remaining trials }
o« M':=0 { current cumulative loss vector }

2. While t < £, repeat:

o Receive the predictions of the N experts, Z" = (&14,...,&EN).

e Compute and output prediction

oM+ 2T =)= o(MT+1 -7 r—1)+ 1
Yt =
2

where v is defined by equations (1) and (2).

Receive the correct outcome y;.
M7 = M 4y — &y fori=1,...,N.
o t:=1t+1

o ri=r—1

Figure 1: Description of algorithm MM.

As||((M"+72")=(M"4+1—-7")|| <1, we get from Lemma 1 that 0 < g, < 1; thus this prediction
formula always generates legitimate predictions.

The following theorem, the main result of this section, characterizes the loss of this strategy
exactly in terms of the function v, and shows moreover that this strategy is the best possible.

Theorem 2 Let MM be the prediction strategy described above and in Figure 1. Then for any set
of experts £ and for any oultcome sequence y, the loss of MM is bounded by

Lanas(y) — Lely) < § = v(0,0)

where £ is the number of prediction trials, N is the number of experts, and 0 is a vector of N zeros.
Moreover, MM is optimal in the sense that for every prediction strateqy A there exists a set of
experts £ and an outcome sequence 'y for which

La(y)— Le(y) > g —v(0,0) .

Hence Vv, = £ — v(0,0).

Proof: The first part of the theorem is proved using induction on the number r of remaining trials.
As above, let M” be an N dimensional vector that describes the losses of each of the N experts on
the first ¢ — r trials (so r trials remain) and let A, denote the loss incurred by MM on these first
{ — r trials. Then our inductive hypothesis is a bound on the net loss of MM at the end of the
game, namely,

Lan(y) = Le(y) € A + 5 — o(M".7) . (4)

It is clear that if we choose 7 = (we get the statement of the theorem, since M* = 0. We now
present the inductive proof of the claim.

For r = 0, the claim follows directly from the definitions since v(M?,0) is equal to the loss of
the best expert at the end of the game, /2 = 0, and Ay is the loss of MM.

Forr > 0,let Z" = (&4, . .., En) denote the predictions given by the experts at trial ¢t = (—r+41
(i.e., when there are r future outcomes to predict). Using the inductive assumption for » — 1 and
Equation (3) we can calculate the loss of MM at the end of the game; for the two possible values
of the next outcome y; we get that the net loss is bounded by the same quantity which agrees with
the claim for r remaining trials.

If y; = 0 then the loss of MM up to the next step is A,_1 = A, 4+ 7, and the loss of the experts
is M"Y = M" 4+ Z". Using the inductive assumption we get that the net loss at the end of the
game will be at most

-1

/\7,_1—|—T2 — (Mt r—1)

_ /\T_I_U(M —I—Z,r—l)—v(é\/l +1_Z’T_l)—l_l—l—T;l—v(MT—l—ZT,r—l)
rooo(MT+ 27 r=1)+o(M"+1-2"r—1)

= Mtg- 2 '

Similarly, if y; = 1, then the loss of MM at the next step is A,_1 = A, + 1 — ¢, and the loss of the
experts is M"~' = M” + 1 — Z7, and we get that the net loss at the end of the game will be at
most

-1
/\7,_1—|—T2 — (Mt r = 1)
M +7Z"r—1)—ov(M"+1-72",r—1)+1 -1
= /\r-l-l—v(+2r-l) U(Q * A ‘|‘T2 —o(M"4+1-2",r—1)
rooo(MT+ 27 r=1)+o(M"+1-2"r—1)
= Mtg- 2 '

Thus, for either value of y; € {0,1}, we have that

U(MT—I—ZT,T—l)—I—v(MT—I—1—ZT,7‘—1))

Lym(y) = Le(y) < (AT + g _ .

< max (AT+5—”(M +Zr—1)+o(M +1—Z,r—1))
Ze[o,1]N 2 5
C ol o MM Zrm DA oM 41— 2)
2 ze[oaN 5
= et = e(M), (5)

This completes the induction, and the proof of the first part of the theorem.

The proof of the lower bound proceeds similarly. Let A be any prediction strategy, let r be
the number of trials remaining, let M" be the vector describing the loss of each expert up to
the current trial when r trials remain, and let A, be the loss incurred by A up to this current
trial. The natural adversarial choice for the experts’ predictions on the current trial ¢ is any vector
Z" = (&1 4, .. .,€EN) which minimizes the right hand side of Equation (2) (the definition of v(M7, r)).
If 4; is A’s prediction then the adversary chooses the outcome y; that maximizes A’s loss on the
trial, | — yel.

We prove by induction on r that this adversary forces the net loss of any algorithm to be at
least

La(y) = Le(y) > A + % — (M) .

As above, equality holds when r = 0.

For the inductive step, let ¢ be the trial number when r trials remain. Recall that A._q is either
A + 3¢ or A, + 1 — g and that M7 is either M" + Z" or M" 41— Z" depending on the value of
y:. Thus, by the inductive hypothesis and the definition of the adversary

La(y) = Le(y)
-1 -1
> max{/\T—l—g}t—l—TT—U(MT—I—ZT,T—l),/\T—I—l—g}t—I—TT—U(MT—I—l—ZT,T—l)}
1
2

v

(x\T—I—g)t—I—T;—l—v(MT—I—ZT,T—1)—|—/\T—|—1—3}t—l—%—v(MT—|—1—ZT,T—1))

oM™+ Z"r—1)+o(M"+1—-2",r—1)
2

,
S W
3

= /\T—I—%—U(MT,T).

This completes the induction. Choosing r = { gives the stated lower bound. |

We have thus proven that the prediction strategy MM, described above, achieves the optimal
bounds on the net-loss of any prediction strategy. However, in order to use this strategy as a pre-
diction algorithm we need to describe how to calculate the values v(M, r). At first, this calculation
might seem forbiddingly complex, as it involves minimizing a recursively defined function over all
choices of Z in the continuous domain [0,1]". Fortunately, as we now show, the minimal value
is always achieved at one of the corner points of the cube Z € {0,1}", so that the minimization
search space is finite, albeit exponential. We prove this claim using the following lemma.

Lemma 3 For any fized 0 < r < {, the function v(M,r) is concave, i.e., for any 0 < o < 1, and
for any X,Y € (RT)N:

vaX +(1—-a)Y,r)>av(X,r)+ (1 —a)(Y,r).

Proof: As usual, we prove the lemma by induction on r.
For r = 0, suppose i is the index that minimizes

v(aX +(1-a)Y,0)= lglan(axi +(1-a)y) .

Then the convex combination of »(X,0) and v(Y,0) can be bounded as follows:

3 . _ 3 A< . _ — _ .
o min (@) + (1= a) min (5) < azs, + (1= @)y, = v(aX +(1=)¥.0)

For 7 > 0, let Zy € [0,1]" be a choice of the argument that minimizes

_ X4(l-a)W+Zr—D4vaX+(1-a)V +1—Z,r—1
v(aX—l—(l—a)Y,r):Zé%Ill]Nv(a (1-a) r—1) 2(04 (1-a) r—1)

Then we get

v(aX +(1—-a)Y,r)
vaX+(1-a)Y +Zg,r—1)+v(aX+(1-a)Y +1—Zy,r—1)
2
v X+ Z0)+(1—a)Y+Zp),r—1)+v(a(X+1—-Zo)+ (1 —a)(Y +1-Zy),r—1)

2

Using the induction assumption we can bound each of the two terms and get that

saX +(1=a),r) > av(X + Zg,r = 1)+ (1 —a)o(Y + Zg,r— 1)

2
_I_ow(X—l-l—Zo,r—l)—l-(l—a)v(Y-l-l—Zoﬂ‘—l)
2
o(X + Zo,r = 1) +0(X +1 - Zg,r— 1)
= (8%
2
Y + Zo,r — 1 Y+1-Zg,r—1
(1=) F Zor)+;(+1—Zo,r—1)
—- o X+Z,r—1)+ov(X+1-2Z,r—1)
ze[o,1]N 2
Y+ Z,r—1 Y+1-—2Z,r—1
+(1 —a) min oY + 2,)oY + il)
Zelo 1]V 2

= av(X,r)+ (1 -a)(Y,r).

If we fix M and view the function (v(M + Z,r — 1)+ v(M +1 - Z,r —1))/2 as a function of
Z, we see that it is simply a positive constant times the sum of two concave functions and thus it
also is concave. Therefore the minimal value of this function over the closed cube Z € [0,1]"V is
achieved in one of the corners of the cube.

This means that the function v(M,r) can be computed recursively by minimizing over the 2V
(boolean) choices of the experts’ predictions. Each of these choices involves two recursive calls and
the recursion has to be done to depth r. Therefore a total of 27(N+1) recursive calls are made,
requiring time O(N27(NV+1)),

Dynamic programming leads to a better algorithm for calculating v(M,r). However, it is still
exponential in N. An interesting question is whether v(M,r) can be computed efficiently.

To summarize this section, we have described an optimal prediction algorithm and given a
recursive formula which defines its worst case loss, and thereby obtained a recursive formula for
Vn,e. We do not have a closed form equation for Viy ,. However, we can always calculate it exactly
in finite time (see Figure 5 for the values of Viy, for some small ranges of N and (). Moreover,
the following section provides a simple adversarial strategy which generates a lower bound on the
optimal net loss Viy ¢ and Section 4 provides a simple prediction algorithm which generates an upper
bound on V. As we will see, these two bounds are quite tight.

10

3.1 Prediction using static experts

The strategy described above can be refined to handle certain special cases. As an example of
this technique, we show in this section how to handle the case that all the experts are static in
the sense that their predictions do not depend either on the observed outcomes or on the learner’s
predictions.® That is, each expert can be viewed formally as a function & : {1,...£} — [0, 1] with
the interpretation that the prediction at time ¢ is & ; = &(¢). We assume further that the learner
knows this function and thus can compute the future predictions of all the experts. Thus the
adversary must choose the static experts at the beginning of the game and reveal this choice to the
learning algorithm. The adversary still chooses each outcome y; on-line as before. The resulting
game is called the binary sequence prediction game with static experts and its min/max value is
denoted V]&zam).

Since this game is easier for the minimizing player (the predictor) than the general game, it

is clear that Vjifzatic) < Vny. When N = 2, the values of the two games are the same for all (.

(static)

However, a calculation shows that V37 < V34 with strict inequality, so the general sequence
prediction game is actually harder in the worst case than the same game with static experts. The
actual values are VS(ZMMC) =1land V34 = %.

We give below a characterization of the optimal prediction and adversarial strategies for the
binary sequence prediction game with static experts. In fact we go further and analyze the game
explicitly for every possible choice of the static experts. The resulting min/max values have a
simple geometric interpretation. For real vectors x and y of length ¢, let ||x —y||1 = S2f_; |2 — vl
Let & ={&,...,En} be a set of N static experts. For any expert &, its loss on the bit sequence
y is S 1&:(t) — e = ||& — yl|1, viewing & as a vector in [0,1]°. Thus Le(y) = min; [|& — y]|1.
We define the average covering radius of £, denoted R(E), as the average [; distance from a bit
sequence y to the nearest expert in &, that is

R(&) = Eyle(y) = By min 1€ — ¥yl

where Py denotes expectation over a uniformly random choice of y € {0, 1}
We will use the following convexity result, an analog of Lemma 3.

Lemma 4 Let £ = {&} and F = {F;} be two sets of N vectors in [0,1]" and let 0 < a < 1. Then
R(aE+(1—a)F) > aR(E)+ (1 — a)R(F),

where af + (1 — a)F is the set of N vectors {a&; + (1 — a)F;}.

Proof:

RaE+(1—a)F) = Ey miinz |Oz5¢¢ +(1 - Oé)fi,t — v
t

By min Y (agi e — 0w + (1 0)Fie ~ (1 - a)u])
t

Ey mljn(a||& -yl + (1= a)||Fi—ylh)
Ey(a miin & -yl + (1 —a) miin |17 = yll1)
aR(E)+ (1 — a)R(F),

v

°In an earlier version of this paper [CBFH* 93], we incorrectly claimed that the same analysis also applied to all
stmulatable experts, i.e., experts whose predictions can be calculated as a function only of the preceding outcomes.

11

where the second equality follows from a case analysis of y; = 0 and y; = 1, combined with the fact

that &4, Fip €10,1]. 1

Theorem 5 Let £ be a set of static experts whose current and future predictions are accessible to
the prediction algorithm. Then there exists a prediction strategy MS such that for every sequence
y, we have

(

Lys(y)— Le(y) = 3~ R(E)

Moreover, MS is optimal in the sense that for every prediction strateqy A, there exists a sequence
y such that

Laly) = Le(y) 2 5 — R()

Hence

static 14 .
) g

where the minimum is over all sets & of N wectors in {0,1}".

Proof: For any prediction strategy A, the expected value of L4 — Lg with respect to a uniformly
random choice of y € {0,1}" is simply £/2 — R(&) since we expect any algorithm to have loss /2
on an entirely random sequence, and R(E) is the expected loss of the best expert in £. Thus, there
must be some sequence y for which La(y) — Le(y) is at least as great as this expectation; this
proves the second part of the theorem.

The first part of the theorem can be proved using the technique in Section 3 with only minor
modifications, which we sketch briefly. First, the function v is redefined to take account of the
fact that the experts’ predictions are pre-specified. As the predictions of the experts correspond
to vectors in [0, 1]%, we can think about them as rows in an £ x N matrix. We can calculate the
average covering radius by considering one column (i.e., game iteration) at a time. That is, we
define the new function % as follows:

B(M,0) = min M,

o(M4+Z"r—1)+o(M+1-2"r—1)
2
where Z" = (&1 4,...,&N,) is the experts’ predictions at trial t = £ — r + 1.
The (re)proof of Lemma 1 for is similar, except that we no longer minimize over Z € [0, 1]",
and in the case that r > 0, Zg is replaced by Z".
The new prediction strategy MS computes its prediction at time t = £ — r + 1 as before with
the obvious changes:

o(M,r) =

Y =

B(M 42 r—1) =M™ +1— 2", r—1)+1
5 :

The induction argument given in the first part of the proof of Theorem 2 holds with little modifi-
cation. Variable v is obviously replaced by @, and the inductive hypothesis given by Equation (4)
is modified so that equality holds for every outcome sequence:

Las(y) — Le(y) = A, + % —B(MT,r) .

12

Also, Equation (5) becomes the equality:

Lus(y) = Lely) =

- A+ % —B(M", 7).

ro (M2 = D) (M 12— 1)
Aty 2

By expanding #(0, () according to the recursive definition we find that

‘
0(0,0) = % > 77(Z(ZT(l—yf—rH)-l-(l_ZT)W—TH),O)

ye{o,1}¢ =1
1 .
= 9 Z v(<||gi_}’||1>¢:1m]\770)
ye{o,1}¢
1 i
= % > min|l& - ylh
ye{o,1}f

= Bymin & - ylh = R(¢)

Finally, it follows directly from the first two statements of the theorem that

static 14 .
Vi & e,

where the infimum is over all sets & of N vectors in [0, 1]’. However, in light of Lemma 4, R(E)
must be minimized by some extremal &, i.e., by & C {0,1}*. The last statement of the theorem

follows. |

Theorem 5 tells us how to compute the worst-case performance of the best possible algorithm
for any set of static experts. As an example of its usefulness, suppose that & consists of only two
experts, one that always predicts 0, and the other always predicting 1. In this case Theorem 5
implies that the loss of the optimal algorithm MS is worse than the loss of the best expert by the
following amount :

ARy A . (
5—2 ;(2) min{i, £ — i} ~ oy
This result was previously proved by Cover [Cov65]; we obtain it as a special case.

Strategy MS makes each prediction in terms of the expected loss of the best expert on the
remaining trials (where the expectation is taken over the uniformly random choice of outcomes
for these trials). This is why we need the experts to be static. In general, we do not know how
to efficiently compute this expectation exactly. However, the expectation can be estimated by
sampling a polynomial number of randomly chosen future outcome sequences. Thus, there exists
an efficient randomized variation of MS that is arbitrarily close to optimal.

3.2 An asymptotic lower bound on Vy,

We now use Theorem 5 to give an asymptotic lower bound on the performance of any prediction
algorithm. To do this we need to show that there are sets & of N vectors in {0, 1}* with small
R(&). We do this with a random construction, using the following lemma.

13

Lemma 6 For each {,N > 1 let So1,...,5 n be N independent random variables, where Sy ; is
the number of heads in { independent tosses of a fair coin.
Let A&N = minlgiSN{Sﬁ,i}- Then

=t —F(A
liminf liminf 2 (g’N)

N—oo £—00 W

> 1

Proof: See Appendix A.
From this we get

Corollary 7 For all N,(, let Ry, = ming R(E), where the minimum is over all & C {0,1} of
cardinality N. Then

bminf Lim uf £ — Ry -1

Nl imte)N —

Proof: Clearly
mgin R(E) S E(R(E)) = E(Asn),

where the expectation is over the independent random choice of N binary vectors in &, and A/ n
is as defined in Lemma 6. Hence the result follows directly from that lemma. |

Finally, we obtain

Theorem 8

v (static)
liminf liminf V.t > liminf liminf V.t

_— — > 1
N—oo f—00 \/(K/Q)IHN N—oo f—00 \/(K/Q)IHN_

Proof: Follows Corollary 7, Theorem 5, and the fact that Vi, > V]&zam). |
Hence for any € > 0 there exist sufficiently large N and { such that Vx> (1 —¢)\/({/2)In N.

4 Some simple prediction algorithms

In this section, we present a parameterized prediction algorithm P for combining the predictions
of a set of experts. Unlike the optimal strategy outlined in Section 3, algorithm P can be imple-
mented efficiently. The analysis of P will give an upper bound for the min/max value Vi, that
asymptotically matches the lower bound derived in the previous section.

4.1 The algorithm P.

The prediction algorithm P is given in Figure 2. It works by maintaining a (nonnegative) weight
for each expert. The weight of expert 7 at time ¢ is denoted w;;. At each time ¢, the algorithm
receives the experts’ predictions, &, ...,&{n,, and computes their weighted average, ;. Algorithm
P then makes a prediction that is some function of this weighted average. Then P receives the
correct value y; and slashes the weight of each expert ¢ by a multiplicative factor depending on how
well that expert predicts, as measured by |£;+ — y¢|. The worse the prediction of the expert, the
more that expert’s weight is reduced.

Algorithm P takes one parameter, a real number § € [0,1) which controls how quickly the
weights of poorly predicting experts drop. For small 3, the algorithm quickly slashes the weights of

14

Algorithm P(3)

1. All initial weights {wy1,...,wn 1} are set to 1.

2. At each time ¢, for ¢ = 1 to oo, the algorithm receives the predictions of the N
experts, &14,...,&N ¢, and computes its prediction g as follows:

e Compute
N
D1 Witki
N
Zi:l wi,t

Ty 1=
e Output prediction g§; = Fp(ry).

3. After the correct outcome y; is observed, the weight vector is updated in the following
way.

o Foreachi=1to N, w;sy1 = wi+ Ug(|&t — ye)-
Definition of Fjs(r) and Us(q).

There is some flexibility in defining the functions Fp(r) and Ug(q) used in the algorithm.
Any functions Fp(r) and Ug(q) such that

In((1—=r)B+7r) —In(1 —=r+rp)
1+ < Fy(r) < : 6
2n(12;) plr) < 21n(125) (6)
forall 0 <r <1, and
31 < Us(q) < 1—(1-7f)g, (7)

for all 0 < ¢ <1, will achieve the performance bounds established below.

Figure 2: Description of algorithm P(3), with parameter 0 < 5 < 1.

poorly predicting experts and starts paying attention only to the better predictors. For 3 closer to
1, the weights will drop slowly, and the algorithm will pay attention to a wider range of predictors
for a longer time. The best value for 5 depends on the circumstances. Later, we derive good choices

of 3 for different types of prior knowledge the algorithm may have.
There are two places where the algorithm can choose to use any real value within an allowed

range. We have represented these choices by the functions Fg and Ug, with ranges given by (6) and
(7), respectively, in Figure 2. These are called the prediction and update functions, respectively. In
terms of our analysis, the exact choice for these functions is not important, as long as they lie in
the allowed range. In fact, different choices could be made at different times. The following lemma

shows that these ranges are nonempty.

Lemma 9 Forany 0 < <1l and0<a<1,

114 In((1—a)B+a) < —In(1—a+af)

2 = 2
211”1@ 211”1@

2. 8% <1—a(l-).

15

Proof: We begin by proving part 1. The inequality can be rewritten as
Inf(5 —af +a)(1 - a+ab)]

1+ 21n ﬁ < 0.
Since 0 < 3 < 1, this is in turn equivalent to
In[(f—af+a)(l—a+aB)] <2In ! -|2- ﬁ
Exponentiating both sides yields
B-ap+ai—atan < (LY

which holds since zy < ((z + y)/2)? for all real z and y (here we take v = 3 — a8 + a and
y=1—a+ap).

To prove part 2, notice that f(a) = 3% is convex downward since it has nonnegative second
derivative for all 3 > 0. Thus, by definition of convex function,

flazo + (1 —a)zy) < af(zo) + (1 — a)f(21)
for all zg,21 and all 0 < a < 1. The proof is then concluded by choosing zo = 0, 21 = 1, and
a=1—a. |

4.2 The performance of algorithm P(5)

Algorithm P’s performance is summarized by the following theorem, which generalizes a similar

result of Vovk [Vov90].

Theorem 10 For any 0 < 8 < 1, for any set & of N experts, and for any binary sequence y of
length (, the loss of P(3) satisfies

InN — Le(y)In g
2111% '

Lpg)(y) <

The proof of the theorem is based on the following lemma.

In (72;;:1 Lo)
i1 Wit

Lemma 11

Lppy) <

2
2111 m
Proof: We will show that for 1 <t </,
In <7§f=1 St)
~ i=1 Wi t41
19—y < 21n1i+ . (8)
1403

16

The lemma then follows from summing the above inequality for t = 1,...,{. We first lower bound
the numerator of the right-hand-side of the above inequality:

In (f\;l Wit) - —_I (Zf\; wit Us(|€is — th|))
S wien Y wig
> I (vaﬂ wi,t(l—(l—ﬂ)|&,t—yt|))
B Zf\;1 Wit

= —In(1—(1=08)|r:—wl),

where the inequality follows from Equation (7), and the last equality is verified by a case analysis
using the fact that y, € {0,1}. Thus Equation (8) is implied by

In(1 = (1 = B)lre = yel)

2
thm

|9 — e < —)

The above splits into two inequalities since y; is either 0 or 1. These two inequalities are the same
as the two inequalities of (6) which we assumed for the prediction function. |

Proof of Theorem 10: All initial weights equal 1 and thus Zf\; w;1 = N. Let j be an expert
with minimum total loss on y, that is, >¢_; [£;.s — y:| = Le(y). Since, by Equation (7), Us(q) > 3,
we have that

N 4
Yowieyr > wipr = win [[Us(1€0 — wil)
=1 t=1
4
> Hﬁlfm—yﬂ = L),
=1
The theorem now follows from Lemma 11. |

4.3 Discussion of the algorithm

Although our algorithm allows any update function Ug(g¢) between the exponential 37 (used by
Vovk in his related work [Vov90]) and the linear function 1 — (1 — 3)¢ that upper bounds it, it
turns out that the linear update has a nice Bayesian interpretation, and thus in some sense may
be preferable.

To get this Bayesian interpretation, we view each expert as a probability distribution on bit
sequences of length £, and pretend that the actual sequence y = yq,...,y¢ is generated by picking an
expert uniformly at random and then generating a bit sequence of length ¢ at random according to
the distribution defined by that expert. The probability distribution for the i** expert is defined as
follows: For any 1, ..., y:—1, if the expert’s estimate of the probability that y; = 1 given v, ..., ¥:—1
is & 4, then the actual probability that y; is 1 given y,...,y¢—1 is defined to be

pig =1+ (1—=2n)&,, (9)

where n = B/(1 4). It is easy to see that p;; is just the probability that y, is 1 if originally y,
is set to 1 with probability & ; and 0 with probability 1 — &;;, and then the value of y; is flipped
with independent probability 7. Hence the value 5 can be interpreted as a “subjective” noise rate
between 0 and 1/2. Under this interpretation, we easily obtain the following result:

17

Theorem 12 When the update function Ug of the algorithm P(3) has the form

Us(q)=1-(1-p)q,

then the (normalized) weight wiﬂg/(Z;\TZI w;) is the posterior probability that the outcome sequence
is being generated from the distribution defined in (9) above for the ith expert given the previous
outcomes Yi,...,Y_1, assuming that all N expert distributions are a priori equally likely to be

generating the sequence.

Proof: Initially w;; = 1 for all 4, hence the normalized initial weights are the uniform prior
distribution, as required. It suffices to show that for each time ¢ > 1, the ratio of successive weights
w; 441/ w; ¢ is proportional to the ratio P(¢|y1,...,y:)/ P(i|y1,. .., y:—1) of successive posterior prob-
abilities (with the same constant of proportionality for all 7), where P(i|y1,...,y:) denotes the
posterior probability that the sequence is being generated from the distribution of the i** expert

given y1,...,y;. However, using Bayes rule
P(i|y17"'7yt) x P(ylvvyt|l)
P(i|3/17---73/t—1) P(ylv"'vyt—1|i)
_ { Pit ity =1

I —pig ity =0"

where p; ; is as defined in (9) above, and P(y1, ..., y:|7) denotes the probability of yy,. .., y; under the
distribution defined above for the it expert. Using equation (9) with the substitution = 3/(143),
this implies that

P(ilyi, ..., ut) ~ B+(1-p): ify =1
P(ilyr, .y yi-1) 1—(1=-p)&; ify =0

= 1=(1=B)l&s—wl-

As this is precisely the factor by which the weights are updated after seeing y;, this is the ratio of
successive weights w; 141 /wie. |

Since the weights are posterior probabilities on the experts, the weighted average r; of the
expert’s predictions, computed by the algorithm P, also has a Bayesian interpretation: it is simply
the posterior probability that y, = 1 given y1,...,y:—1. The only aspect of the algorithm that
does not have a Bayesian interpretation is the prediction function Fg(r). A Bayes method would
predict 1 whenever the posterior probability r; is greater than 1/2 and predict 0 otherwise, in
order to minimize the posterior expectation of the loss |§; — y¢|. Thus a Bayes method would use
a step function at 1/2 for the prediction function Fj(r). However, as is clear from Figure 3, this
function lies outside the allowable range for Fi(r), and this is no accident. The Bayes method does
not perform well in the worst case for this prediction problem, as was shown in [HW95, FMG92].
Hence we must deviate from the Bayes method at this step. This leads to the requirements we
have specified for the prediction function Fg(r).

One function that satisfies the requirements for Fj is the piecewise linear function®

0 ifrg%—c
Fg(r) = %—IZST if%—cgrg%—l—c (10)
1 ifrz%—l—c

A similar piecewise linear function was suggested by Feder, Merhav and Gutman [FMG92], in a related context.

18

Figure 3: This figure shows the upper (high) and lower (low) bounds on the possible values of the
prediction function Fj for § = 0 (Inequality (6)). Also shown are two possible choices for Fjg, a
piecewise linear function (lin) given in (10), and the function that has been suggested by Vovk’s
work (vovk) given in (11).

(1+8)In(g5)
2(1-5)
Another possible choice for Fj is suggested by Vovk’s work” [Vov90]

where ¢ =

In(1 —r+r03)
(I—r+r3)+In((1=r)8+7)

Fy(r) = (1)

Figure 3 contains a plot of these functions when 3 = 0, along with the upper and lower bounds on
Fjg given in Inequality (6). Recall that 5 = 0 corresponds to the case when there is no noise. In that
case — In(1—r) is the information gain when the outcome is zero and — In(r) is the information gain
when the outcome is one. Furthermore, the prediction function (11)is the normalized information
gain when the outcome is zero. See [HW95] for a more detailed discussion. As the noise increases,
[— 1 and all four curves converge to the identity function.

Finally, we note that the parameterized bound given in Theorem 10 on the performance of
algorithm P was first proved by Vovk [Vov90] for his version of Fjz and the exponential update.

"Vovk’s algorithm generates its prediction according to the prediction function

: 3oL wife
Y = 3
In Zf\; wi o0t +1n Zf\; wi Bt
where the weights are normalized so that they sum to one. Note that this function depends on the experts’ predictions
in a more complicated way than just through the weighted average r.. Hence it need not satisfy our Inequality (6).
However, when the experts’ predictions are all in {0,1}, then Vovk’s prediction function is equivalent to the one
described in Equation (11).

19

Le

Figure 4: This figure describes the bounds obtained by algorithm P(3) when an upper bound on
Lg is given. The horizontal axis corresponds to the known upper bound and the vertical axis to
Lp(s) — Le. The number of experts is assumed to be 10. The thin straight lines correspond to the
upper bounds achieved by choosing 3 to be one of 0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8. The
continuous curve corresponds to the bound achieved when /3 is chosen as in Theorem 15, and the
dotted curve corresponds to the upper bound given in the theorem.

Also, Littlestone and Warmuth [LW94] prove a bound for their algorithm W MC which has the
same form as the bound of Theorem 10, except the denominator 21n ﬁ is replaced by the smaller
function 1 — 8. Their algorithm uses the prediction function Fg(r¢) = r¢ and works for the more
general setting when the outcome y; can be in the interval [0, 1] as opposed to being binary. For the
noise-free case (f = 0), their algorithm becomes the Gibbs algorithm (see discussion in [HW95]).
The bound of Theorem 10 (with denominator 21n ﬁ) was recently also obtained by Kivinen and
Warmuth [KW94] for the case when the outcomes are in [0,1]. Curiously enough, the denominator
of In ﬁ is obtained by the Weighted Majority algorithm of Littlestone and Warmuth [LW94] which
assumes that the outcomes are binary and predicts binary as well (See [CBFFHW96] for a detailed

treatment of the case when the outcomes are binary).

4.4 Performance for bounded ¢

So far we have ignored the issue of how [is chosen. In this section we show how 3 can be chosen
when there is a known bound K on the loss of the best expert. When Lg(y) is replaced by K, the

20

upper bound from Theorem 10 can be written

InN—-Klnpg
L(B) = om
M35

It has been shown by Vovk and others [Vov90, CBFHWO96] that L* = inf{L(3):0 < 3 < 1} is the

unique value of L satisfying
logy N K
L=—"—+4+L-H|—
P (8)
where H(p) is the binary entropy, —plogy(p) — (1 — p)logy(1 — p). This minimum is achieved when
0= sz;_B However, it is difficult to explicitly solve for L* and the corresponding 3. A recent
paper by Cesa-Bianchi et.al. [CBFHW96] shows how binary search can be used to choose a value
for 5 that yields the bound [L*]. In this paper we give an explicit choice of § as a function of

log(N)/K which approximately minimizes %
e

and leads to good closed-form bounds (see
Figure 4).
We will use the following function in our choice of 3.
1

)=
9(2) 1422+ &5

(12)

We give g(o0) its natural value of 0. The key property of this function is the following inequality.

Lemma 13 For any z > 0 or z = oo,

2_1 2
Zing(z)glﬂ+21 .
thm n

Proof: See Appendix B. |

Another simple inequality that we need in the proof is given in the following lemma.

Lemma 14 For all0 < 3 < 1
—In(5)

2
thm

>1.

2
Proof: Since 5 < 1, the lemma is equivalent to In(5) < In (#) , which follows from the trivial

inequality
14 8\?
s (0

Using the function ¢ to make our choice of 3 we can obtain the following bound.

Theorem 15 Pick any positive integer N and non-negative real K. If § = g(\/%) for the
g defined in Equation (12) then for any set & of N experts and for any sequence y such that
Le(y) < K we have
log, N

o

Lpp)(y) — Le(y) S VK In N +

21

Proof: The proof is trivial when N = 1, since the algorithm makes the same predictions as the

In

single expert. For the remainder of the proof we assume that N > 2, so 3 = g(y/*5) is strictly
less than 1. From Theorem 10 we know that for any choice of 5 € [0,1)
< InN — Le(y)In g

Lpg)(y) < 7in 2

(13)

We rewrite (13) as

Lppy(y) < Le(y) + In N + Le(y) (_ 2nﬁ - 1) -

2
2In 35 T+F

From Lemma 14 we know that —% > 1, and from the conditions of the theorem we know

that Lg(y) < K. Based on these we get that

In N ~1
Lpe)(y) < Le(¥)+ gt K (Tnﬂ - 1)

2
2In 133 s

2 _
= Le(y)+ K (ﬂ — 1) , where z = \/ﬂ.
thm K

Since § was chosen to be ¢g(z), we use the inequality of Lemma 13 to obtain

log, N
Lp(e)(¥) < Le(y) + VRN + 22—,

completing the proof. |

To get a feel for the bound given in Theorem 15, it may be helpful to consider the average
per-trial loss guaranteed by the bound. Letting a = K/{, we get:

LP(ﬁ)(Y) < Le(y) N aln N N log, N
{ - { { 20

Thus, for large £, the average loss of P approaches that of the best expert. The rate of convergence
of the average loss depends on a: for “small” a, the rate of convergence is roughly O(1/() (for large
¢ and N fixed); for fairly large a (say ©(1), so that K is linear in £), the middle term dominates
giving a slower convergence rate of O(1/V1).

4.5 Performance for known sequence length

As a corollary of Theorem 15, we can devise a choice for 3 that will gnarantee a bound on the
difference between the loss of the algorithm and the loss of the best expert for the case where (,
the length of the sequence to be predicted, is given to the algorithm in advance. Theorem 8 shows
that this guaranteed difference is very close to optimal.

Theorem 16 Let 3 = g(\/2In(N + 1)/(). Then for any set & of N experts, and for any sequence
y of length (there is a prediction algorithm P'(3) such that

CIn(N +1) logy(N +1)

, - < .
Lpig)(y) — Lely) < 5 + 5

22

Proof: As the length of the sequence is {, the largest possible loss is £; however, this bound can
be easily decreased to /2. To do so, we add to the N experts of P a single new expert whose
predictions are the inverse of the predictions of the first expert i.e., {ng1¢ = 1 — & . We denote
the algorithm that uses the expanded pool of experts by P’. It is easy to see that for any y, either
Ley, < U/2 or Lgy,, < (/2. Thus, for the increased pool of experts we have Lg < (/2 and from
Theorem 15 we get the statement of the theorem. |

We remark that while the bound stated in Theorem 16 holds for all £, there is a slightly better
bound on P’(/3) for the given choice of § when { — oo (and N remains fixed):

CIn(N +1) 1
— + (5 +o(1))In N.

Lpip) (&) = Le(y) <
This can be proved by a Taylor expansion of the bound given in Theorem 10.
Combining Theorem 8 and Theorem 16, we see that P’(3)’s performance is very close to optimal
for sufficiently large N and ¢, and we thereby obtain an upper bound on the min/max value Vi,
of the general binary sequence prediction game defined in Section 3.

Theorem 17 For all N,/,

CIn(N +1) n logy(N + 1)

Vs <
N& = 2 2

and (static)
static
) . A . . N,
Iim lim

Neooitoo JL2) N Newso oo \/(0/2) 0 N

Proof: The first statement follows from Theorem 16, and the second follows from this and Theo-
rem 8. |

We have thus shown that the ratio between Vv, and Lpig)(y) — Le(y) converges to 1 as £ and
N grow. While this is a rather strict notion of optimality, there is still a gap between the upper
and lower bounds and it is interesting to consider the actual numbers to see where improvement
might be possible. We give such comparisons in Figures 5, 6, and 7. These comparisons indicate
that the lower bound is very close to the min/max value even for small values of N and ¢. The
space for improvement is mostly in the upper bounds, i.e., in improving the prediction algorithm
or its analysis.

As a final note, we also get from Theorem 16 an interesting geometric corollary concerning the
average covering radius of a set of binary vectors. Recall that we defined the average covering
radius of & C {0, 1} by R(€) = Ey min, ||€; — y||1, where Ey denotes expectation over a uniformly
random choice of y € {0, 1}%, and for all N,(, we defined Ry, = ming R(&), where the minimum is
over all £ C {0,1}* of cardinality N.

Corollary 18 For all N/,

By > g_ Kln(]\; +1) logz(]gf +1)

and

23

Laly)—1/2
In N

0% 5) 3 8 10 12 1‘4

(/In N

Figure 5: This figure describes the relationship between the upper bounds guaranteed by P’(3)
when the length of the sequence is given to the algorithm as input and the corresponding min/max
values. The min/max values are scaled so that they can all be compared to the same upper bound.
The horizontal axis corresponds to the length of the sequence divided by In(N), where N is the
number of experts, and the vertical axis corresponds to (Lps gy — €/2)/In(N). The two thick-line
curves correspond to the upper bounds given by the algorithm as in Figure 4. The four piece-wise
linear graphs correspond to the min/max values for N = 2,3,4,5and { =1,...,15.

Proof: Follows from Theorems 17 and 5, since Vjifzatic) <Vnye |

4.6 Prediction without prior knowledge

In the previous sections we showed how to tune so that P(/3) (or, more precisely, its slight
variant P’(3)) performs well when either a bound on the loss of the best expert or the length ¢ of
the sequence is known to the algorithm. Here we present a version of the algorithm, algorithm P*,
that uses neither the length of the sequence nor the loss of the best expert. Algorithm P* repeatedly
guesses different loss bounds until it guesses a bound greater than the remaining loss of the best
expert. The gap between this algorithm’s loss and the loss of the best expert is only a factor of
(roughly) 4 greater than the gap when the loss of the best expert is known.

Algorithm P* (see Figure 8) takes two parameters, a and ¢, which control how it guesses loss

(5.

bounds. We show later that one reasonable choice for these parameters is ¢ = 2 and ¢ =

24

Laly)—1/2
In N

0% 5) 3 8 10 12 1‘4

(/In N

Figure 6: This figure describes the relationship between the min/max value for N = 4 (the piece-
wise linear graph) and the lower bound achieved by randomly selected static experts (the cross
marks). Three different random choices are given for each selected sequence length in order to
provide an estimate of the spread of this statistical lower bound.

At the start of each iteration z of the outer loop, a bound k., on the best expert’s remaining loss is
guessed. Algorithm P* resets the experts’ weights to 1 and uses algorithm P(g(y/(In N)/k.)) (for
the function ¢ defined in Equation (12)) to generate predictions. If the bound k, is correct then
the remaining loss will be no greater than a value b, calculated using Theorem 15. If the total
loss incurred by algorithm P during the iteration exceeds b., then the guessed bound on the loss
of the best expert is incorrect® and algorithm P* increases the guessed bound by a factor of ¢ and
proceeds to the next iteration of the outer loop. Note that the first iteration is iteration number
zero (z = 0).

Before analyzing algorithm P*, we state a few simple facts that will be needed. First, from the
description of the algorithm,

b, =k, +Vk.In N + bgTQN =k, +ac”/*In N + %logzN =k, + (ac?/? + YIn N, (14)

21n2

Also, since at most one unit of loss is incurred by any prediction, the loss incurred by algorithm P*
during any iteration number z of the outer loop is at most b, + 1.

8The bounds of this section also hold if instead we use the following stopping criterion: “Until the loss of the best
expert in this loop exceeds k..”

25

Laly)—1/2
In N

0% 20 40 60 80 100 120 140

(/In N

Figure 7: This figure describes the relationship between randomly generated lower bounds and the
upper bounds for longer sequences. The cross, square, circle and diamond marks correspond to the
lower bounds for N = 2,4.,8, 16, respectively.

Lemma 19 If algorithm P* exits iteration number z of the outer loop then, for all £ € &, the loss
incurred by & while algorithm P* is executing iteration number z of the outer loop is greater than

k.

Proof: If some expert incurs loss at most k., during loop iteration number z, then algorithm P
has loss at most b, during this iteration (by Theorem 15), and iteration number z is not exited.

Let y, be the subsequence of outcomes seen during iteration number z of the outer loop. The
loss of an expert & while algorithm P* is executing iteration number z may not be the same as
Le,(y,). This is because the experts can be algorithms whose state changes based on the outcomes
seen. Expert & may make different predictions on y, after having seen the outcomes in previous
loop iterations than it would make on y, without having seen the other outcomes. It is important
that we reset only the weights of the experts that are maintained by P and not the internal states
of the experts before calling algorithm P as we want to compare the loss of P* with Le(y).

Lemma 20 Pick any a > 0 and ¢ > 1. If “last” is the number of the last loop iteration entered by

26

Algorithm P*(a, c):

Parameters @ > 0 and ¢ > 1 are constants. {good choices are @ = 2 and ¢ = (1"'2\/3)2}
for z := 0 to oo do { z is the loop iteration counter }
k. :=a*c*In N; { guess a bound on best expert’s loss }

b, =k, +Vk.In N+ @ { loss bound if guess correct }
Reset the weight of each expert to 1.
repeat

run P(g(\/In(N)/k.)) to generate a prediction

until the total loss in this loop exceeds b.,.

Figure 8: Description of Algorithm P*.

P*(a,c) on some sequence 'y then

Le(y)(c— 1)) '

last < log, (1 + 2l N

Proof: If last = 0 then the lemma trivially holds, so we continue under the assumption that
last > 1. If iteration number z of the outer loop is exited when algorithm P* runs on sequence y

then
z+1 _ 1

z z
: c
Le(y) >) kj = InN =a*In N——
£(y) Z] Zacn a’lnN——-or
J=0 J=0
Since last > 1 and iteration number last is entered, iteration number last — 1 is exited. Thus,

Clast 1

Lg(y) Z 612 In Nﬁ

Solving for last yields the desired result. |

The above lemma shows that algorithm P* executes the outer loop a finite number of times
whenever the loss of the best expert is bounded. Thus our bounds on algorithm P* hold even for
infinite sequences, as long as the loss of the best expert is finite over the infinite sequence.

We now return to bounding the total loss of algorithm P*.

Theorem 21 Let & be a set of N experts, y be any sequence, and ¢ be the golden ratio (1 —I—\/g)/Q.
If Le(y) is finite then for all a > Q(LI)N, the difference Lps(y) — Le(y) is at most

(2—4/4)In

(#3/? N 0.805\/¢ 0.805\/¢
¢—1 4a(ln2)(In¢) = 2a(ln N)(In ¢)

1
) Le(y)In N + (a + m)lnl\f

when algorithm P* uses parameters ¢ = ¢* and a.

27

Proof: In Appendix C. |

Corollary 22 If N > 7 and algorithm P* uses parameters ¢ = ¢* and a = 2 then for any sequence

y;
Lp«(y)— Le(y) <44/ Le(y)In N +2.8In N.

Note that the parameter a allows one to trade off (in a limited way) between the constant
in front of the In N term and the constant in front of the \/Le(y)In N term. Furthermore, the
constant multiplying the (more important) /Le(y)In N term can be made arbitrarily close to
(/53/2/(q§ — 1) = 10/3 by choosing the constant a sufficiently large.

Since the algorithm P* is not given the length of the sequence y, the bound of Theorem 21
holds for all prefixes y of any infinite sequence y’. Different experts might have minimum loss for
different prefixes of y’, but the loss of P* is always close to the best expert on each prefix.

5 Applications to the pattern recognition problem

Up until this point we discussed the problem of predicting binary sequences, where the predictions
made by the experts are functions of past predictions and outcomes. We turn now to an application
of these results to the general pattern recognition problem as was described in the introduction.

Our goal is to approximate a stochastic mapping from an instance space X to labels {0,1}. The
algorithm observes a set of examples of the stochastic mapping and produces a hypothesis, a rule for
predicting the labels of new instances. The goal of the learning algorithm is to produce a hypothesis
whose error (i.e., probability of mistake) is not much worse than the error of the best function in
some known class H of functions called the comparison or touchstone class [KSS94]. Outside of
the pattern recognition literature, this type of problem might be called by many names, such as
L1 regression with a regret formulation of the loss function (in typical statistics literature, see e.g.
[BM93]), or, as mentioned in the introduction, the agnostic version of PAC learning [KSS94]. The
terminology we use here is that from the PAC learning literature.

More formally, let D be a probability distribution on X x {0,1}.? We assume a sequence
s = (21,91), ..., (20, y0) of training examples is drawn from the product distribution D, i.e., each
example is drawn independently according to D. A learning algorithm A, which does not know
the distribution D, takes these training examples as input and outputs a hypothesis h = A(s) that
maps from X into [0, 1]. The error of the hypothesis % is defined by erp(h) = E,. y~plh(z) — yl,
where F(, , ~p denotes the expectation over (z,y) drawn randomly according to D.

The learning algorithm is given a priori a comparison class H consisting of a set of mappings
from X into {0,1}. The functions in the comparison class play a role similar to that played by the
experts above. However, while the experts defined in Section 4 are arbitrary prediction strategies,
the comparison class contains only fixed functions which do not depend on past predictions and
outcomes. Also, we restrict these functions to output either 0 or 1 and not real numbers in the
range [0, 1]. On the other hand, the comparison class may be infinite, while the set of experts in
Section 4 is assumed to be finite.

Let

erp(H) = 5161; erp(h)

be the error of the best function in H for the particular distribution D. The goal of the learning
algorithm is to, on average, produce a hypothesis that is almost as good as the best function in the

When X is uncountable, appropriate assumptions are made to insure measurability in what follows.

28

comparison class H for examples generated by the (unknown) distribution D. That is, the learning
algorithm attempts to minimize!'® the regret

Fq.pelerp(A(s))) — erp(H). (15)

Bounds on this regret for certain types of learning algorithms can be obtained from the work
of Vapnik [Vap82] and Birge and Massart [BM93]. The basic idea of their learning algorithms is to
predict according to the single hypothesis that suffers the minimal loss over the sample of instances
presented to the learner. Vapnik calls this empirical risk minimization. In this paper we obtain
better performance bounds by using an algorithm that combines the predictions of all the experts,
weighted according to their performance on the sample.

We now sketch how the techniques developed in Section 4 for the sequence prediction problem
can be applied to the pattern recognition problem. Suppose that s = (z1,%1),...,(@¢, y¢) is the
sequence of random labeled examples presented to the learning algorithm, and let z be an instance
whose label is to be predicted. The natural way of using a sequence prediction algorithm, such as
the algorithm P, in this context is to simulate it on the sequence s, and then obtain its prediction
on the new instance . Here we regard as experts the set of all possible labelings of the instances
x1,...,20,¢ that agree with some function in the comparison class H. Although the cardinality of
‘H may be infinite, the number of possible binary labelings of the sequence that agree with some
function in H is always finite, and in fact, is polynomial in ¢ if the VC dimension of H is finite (see
[BEHWS89] or [Vap82] for a definition of the VC dimension and its relation to this kind of learning
problem).

Unfortunately, we do not know how to analyze an algorithm of this type, since the bounds that
we have for our sequence prediction algorithms hold only for the cumulative loss over the entire
sequence, and not the loss at any particular time step. To handle this difficulty, we define a more
complicated scheme that uses the sequence prediction algorithm in a more elaborate way. Instead
of placing the unlabeled example at the end of the sequence, we insert it in all possible positions in
the sequence s and take the average of the predictions so obtained. More precisely, for every choice
of index ¢ = 0, ..., ¢, we insert the unlabeled example between examples ¢z and ¢ + 1, producing the
sequence (Z1,Y1),---» (@i, ¥i), (2, 1), (Zi41, Yit1), - - -, (22, yo). We simulate our prediction algorithm
P on each of these sequences to obtain £ + 1 predictions of 2’s label and output their average. A
simple argument, which will be given in Section 5.2, bounds the expected error of this learning
algorithm. Similar methods were previously used by Helmbold and Warmuth [HW95].

Before using algorithm P as the sequence prediction algorithm, we need to choose the parameter
3. We analyze two methods for tuning 3 in this context. The first method is to tune 3 according to
the length of the sample, using the results of Section 4.5. These results are described in Section 5.2.
The drawback of this method is that the dependence of the regret of the learning algorithm on the
sample size £ is of order O(l/\/Z) even if the loss of the best function in H is very small. By using
a much more sophisticated choice of 5 we can improve the upper bound on the regret to O(1/()
when erp(H) is small. These results are described in Section 5.3.

5.1 Further definitions

Before stating our results, we need to make a few further definitions. Our first definition deals with
the issue of optimizing the error on the training examples (called empirical error) versus optimizing

1T ypically, in the PAC learning literature, tail bounds are also given that bound the probability that the hypothesis
returned is significantly worse than the best hypothesis in ‘H. Our current methods do not provide these, but standard
“confidence boosting” methods can be applied on top of them to achieve good tail bounds [HKLW91, Lit89]. More
direct methods are given by Littlestone and Warmuth [LW94].

29

erp, the error with respect to the underlying distribution D. This is often referred to as the problem
of over-fitting. Let

N 1o
erg,p(H) = Eg.pe 5161% 7 Z A1) = il
=1

Thus er, p(H) is the expected empirical error of the hypothesis in H that does best on a random set
s = (21,%),-..,(xe,ye) of £ training examples drawn independently according to the distribution
D. The quantity

erﬁD(H) =erp(H) — éryp(H)

will be called the expected over-fit for training examples. It is clear that this quantity is nonnegative
for any £, D and H, since

erp(H) = gg;erp(h)

= mf ESNDZK Z|h xt) — Y

. 1
> Fgupe élela 7 ; |P(@1) — vl
= e p(H).

In other words, the expected empirical error of the best hypothesis on the training examples is
always smaller than the expected error of the asymptotically best hypothesis on a set of random
“test” examples.

We also will need a formal notation for the set of all label sequences that agree with some
function in . For any comparison class H and sequence x = x1,..., 2, let us define

Hig = {(h(@1), ..., h(2s)) : h € H}.

We call H|, the restriction of H to x.

5.2 The basic bound

Theorem 23 For any instance space X and any comparison class H on X, there exists a learning
algorithm A such that for all { and all distributions D on X x {0,1}

EX 1n(|7_(|x| + 1 EX 10g2 |H|X| ‘|‘ 1))

FE, pe(erp(A(s))) —er — ey, H),
cepr(erp(A(s))) ~ erp e T A7)
where Fx denotes expectation over X = x1,...%¢41, each z; drawn independently at random ac-

cording to the marginal of D on X.

Proof: We define the learning algorithm A by describing its hypothesis, h. Given the sequence
of examples s = (21,%1),...,(2s, y¢), and instance z, we define h(z) as follows. First, for each
1<t<(41,let x =aq,... 2,2, 2¢,...,20and let EO = H|X(t). Thus there is an expert in £)

for each possible labeling of x(*) that agrees with some function in the comparison class . Note that
the experts in () are the same as the experts in 01 except that the predictions on trials ¢ and {+1
are swapped due to the different placement of . Let N = |®)| and 3 = g(/2In(N + 1)/({ + 1)).

30

For each 1 < ¢t < (4 1 let §; denote the prediction of the sequence prediction algorithm P’(3)
defined in Section 4.5 after seeing outcomes yq,...,y:—1, and the first ¢ predictions of the experts
in £®. The value of the function h = A(s) on input z is defined by the average of the 7,’s, i.e.,

1 041
h(z) = +1 Ztil Y-
To show that this strategy A has the desired performance, first note that

Espelern(A(s))) = Egupt o y~plAls)(@) = 9]

5
T2 U~y
(+14

where g, is as defined in the previous paragraph, and s = (z1,y1), ..., (@, yr).
Because |(% Yoap) —cl = %Z?:l |p: — ¢| for ¢ € {0,1} and 0 < p; < 1, it follows that

= ESNDZ,(x,y)ND

b

/41
1 N
Lswpelerp(A(s))) = Lgupt eymn g > 13—yl
=1
1 /41
= =2 Espt(wy~nlit — (16)
K + 1 =1 Y
1 /41
= —>» F 1|90 — i (17)
(x,y)~DH Y — Yt
K + 1 =1
where, in analogy with the definition of §;, we define §; as the prediction of P’(3) after observing
the outcomes y1,...,y;—1 and the first ¢ predictions of the experts in H,, where x = @1,..., 2441,
and § = g(\/an(|H|X| +1)/(L+1)).

Let Lpi(g)(x,y) = f"z'} U; — yi|, the total loss of the prediction strategy P’(/) for instances

X = 1,...,%41 and outcomes y = y1, ..., ys41, assuming the set of experts is H, . It follows from
the above that

Eoupr(ern(A(s) = 1 Eoxyyeness prn(.3). (18)
Furthermore, it is clear that for all £
. 1. o
erep(M) = Exy)ny jof ; |h(z¢) — il
= E(X,y)NDl’%LHb((XvY)v (19)

where LHIX (x,y) is the total loss of the best expert in H|y on the outcome sequence y.
It follows from Equations (18) and (19) and the definition of expected over-fit that

Eswpe(erp(A(s))) — erp(H)

= Esope(erp(A(s))) — erpp1,p(H) — (erp(H) — étoy1,p(H))
1 1
= H—lE(x,y)NDHlLP/(ﬁ)(X,Y) - mE(x,y)NDMLmX(Xa}’) — erfy1,p(H)

1
= 71 1E(x,y)~DZ+1 (LP/(B)(X,y) — LHIX (X,y)) — erﬁ_LD(H)

31

By Theorem 16, for any x and y of length ¢ 4+ 1,

4+ D In([Hy|+1 log,(|[H | + 1
LP,w)(x,y)—wa,y)sw il +1) , oMyl +1)

The result follows. |}

It is easy to see that the constant in the leading term of the bound in Theorem 23 is the best
possible. The argument is similar to the lower bound argument we used for prediction strategies.
We assume that the distribution D is such that for a random example (z,y), the value y is 1
with probability 1/2 and 0 with probability 1/2, independent of 2. Hence, every hypothesis h has
erp(h) = 1/2. This implies that Fy_pe(erp(A(s))) — erp(H) = 0 for any comparison class H and
algorithm A.

Now assume in addition that X is a large finite set and the marginal of D on X has a uniform
distribution. Let us choose each of the N functions hq,...,hy to be included in the comparison
class H at random by letting h;(x) = 1 with probability 1/2 and h;(z) = 0 with probability 1/2
independently for each ¢, 1 < ¢ < N, and each instance 2 € X. Then Lemma 6 implies that for
any fixed sample size £ 4+ 1, in the limit of large X, the expectation (with respect to the random

choice of H) of the expected over-fit erﬁ_LD(H) is (1+o(1)) V\l/l%v. This is because in this limit all

the 21,..., 241 are distinct with probability one, and the values |h;(z;) — 3| are distributed like

independent coin flips for 1 <7 < N and 1 <t </ + 1. It follows that there exists a sequence of
Vin N
20 "

The expected over-fit appears with a minus sign on the right hand side of the bound in Theorem

comparison classes ‘H such that the expected over-fit erﬁ_LD(H) is (14 0(1))

23. Hence for this bound to be nonnegative, as required in this case, the constant in the first term
on the right hand side must be at least (1 + o(1))/v/2. This shows that this constant cannot be
improved in general.

5.3 Refined result

The result of the previous theorem can be improved by a more sophisticated choice of 3.

Theorem 24 For any instance space X and any comparison class H on X, there exists a learning
algorithm A such that for all { and all distributions D on X x {0,1}

Eg pe(erp(A(s))) — erp(H)
Ve p(MWT+1) 7/m243yT+1 4

< T T —erpyq p(H) (20)
erp(H) VT +1) | T/In2+3VT +1 & p(H), (21)

~ \/m ¢ n 1 - erf-l—l,D
where T = Ex In [H |, |.

The proof of this theorem is given in the next section. Our first attempt to prove it followed
the proof of the previous theorem with the different choice § = g(1/(In N)/K'), where K is the best
upper bound that can be obtained on the total loss of the best expert in £®). Then in the last step,
Theorem 15 is used instead of Theorem 16. Since we know all the predictions of the experts and
all the outcomes but the one for the instance x, we can estimate the total loss of the best expert

32

to within 1, and choose § accordingly. It remains an open problem to prove a bound on the regret
for this approach that is comparable to the bound given in Theorem 5.3.

The subtle difficulty we encountered in trying to prove such a bound is in moving from Equa-
tion (16) to Equation (17). In Equation (16), g; is the prediction made by the algorithm on the
additional instance (z,y) when it is inserted into position ¢ of sequence s. Thus §; depends on
the previous elements of the sequence, the current predictions of the experts, and the choice of 3.
In Theorem 23, 3 is a fixed function of the length of the sequence, and thus the prediction ¢; is
identical to the prediction made by P(3). This is why we can replace §; by ;.

Unfortunately, when we choose 3 as a function of the examples in s, this substitution of g for
i is impossible. Because a different 3 is chosen for each position ¢, the sequence of predictions ¢
no longer corresponds to the predictions generated by a single run of P(3), and so we cannot derive
Equation (18). (Recall that the performance bound on P(/) requires that § is held constant.)

There are several ways one could attempt to patch this flaw, but despite much effort we were
unable to find a simple fix. The approach that was ultimately successful deals directly with pre-
diction when all but one outcome is available. This setting is reminiscent of that obtained when
using the “hold-one-out” method of cross validation, commonly used in statistics. Results for this
setting are given in the next section, as is the proof of Theorem 24.

The bounds given in Theorem 24 are better than those obtained for this kind of pattern recog-
nition problem by the only other methods that we are aware of [Vap92, Tal94, BM93]. Bounds
given by Vapnik ([Vap92], Equation (11)) imply a bound in the same form as the second bound
in Theorem 24, but with an additional factor of 2 in the leading term. However, Vapnik’s bounds
hold in more general cases than the one we consider here. Talagrand [Tal94] gives similar general
bounds without the factor of 2, but with an unspecified constant in the lower order term. It is not
clear that this unspecified constant can be made small enough to get practical bounds for small
sample size £. Bounds obtained by Birge and Massart also contain constants that are difficult to
bound [BM93]. Thus our approach to the pattern recognition problem through worst case analysis
of the sequence prediction problem appears to be a fruitful one.

5.4 The hold-one-out model of prediction and proof of Theorem 24

In this subsection we discuss a slightly different prediction problem. After developing a theory of
this prediction problem, we will be in a position to prove Theorem 24.

Let x = z1,...,2, be a sequence of instances chosen from an arbitrary set X,y = y,...,ys be
a sequence of binary outcomes, and & = {&,...,En} be a set of experts. In this section we will
assume that each expert & is a function from X into [0, 1], i.e., the i expert’s prediction at time
t, denoted &; ¢, depends only on the instance z;, and not on previous outcomes or instances. As in
Section 3.1, we call such experts static.!! For a fixed sequence x of instances, they are equivalent
to the static experts defined there. As in the previous sections, the total loss of the i*" expert is
Le(x,y) = S |£i,t — y¢|, and the total loss of the best expert is Lg(x,y) = minj<;<n Lg, (X, y).

In hold-one-out prediction, the goal is still to predict almost as well as the best expert, but the
prediction algorithm is allowed more information to help it make its predictions. In particular,
when asked to predict the outcome y;, the prediction algorithm is provided with all the instances
X = 1,...,%¢, the entire matrix &4, 1 <@ < N, 1 <t < /(, giving the advice of each expert on
each instance, and the outcomes y1,...,%—1,Yit1,---,Ye, i-€., all outcomes except y,. Given this
input, a hold-one-out prediction algorithm produces a prediction g € [0, 1]. The total hold-one-out

"Thus a static expert is simply a regression function (or “p-concept” [KS94]) from the instance space X into [0,1],
the value of which represents a conditional probability of the label 1 given the input instance z:.

33

loss of the prediction algorithm A on outcome sequence y is defined in analogy with the on-line
prediction loss as HL 4(x,y) = S i — y¢|. This total loss can be viewed as the sum of the losses
of { separate runs of the algorithm, where in each run the algorithm is asked to predict a different
outcome y;. The motivation for the name “hold-one-out” loss comes from the similarity to the
cross-validation procedure of the same name used in statistics [Sto77].

The following example illustrates the use of the total hold-one-out loss. Consider a classroom
setting in which an instructor is trying to teach students to perform a classification task of some
type, say to distinguish earthquakes from underground nuclear explosions, based on seismographic
data. Suppose that the teacher has collected a sequence of labeled examples (z1,11), ..., (2, y2),
where for each ¢, 1 < t < [, the instance x; is a vector of seismic measurements and the label
¥¢ is a binary value, with 1 representing earthquake and 0 representing underground explosion.
Let x = z4,...,zp and y = #1,...,%. The teacher shows each of the examples to the students
(the experts in this example), in random order, first showing them the measurement vector ay,
then asking each student to predict the classification y;, and finally providing actual label y; as
feedback. A prediction is a number p € [0, 1] and the loss is |p — y;| as above. However, instead of
considering total loss, here the teacher only counts the loss on the last example shown, considering
the other examples to be merely training cases. The choice of which example is shown last (called
the “test” example) is random. Now imagine that you are auditing the class because of your
extremely limited knowledge of seismology. Nevertheless, you still want to impress the teacher in
hopes of eventually being admitted to the program. Can you or any algorithm A, after seeing all
the instances xy,..., 2, hearing all the students predictions for each of these instances, including
the test instance, and seeing all the labels except that of the test instance, predict the label of
the test instance in such a way that your expected loss, averaged over possible choices of the test
instance, is not much more than that of the best student in the class?

Instead of averaging over all choices of the last instance, we can equivalently consider the
experiment in which the examples stay in the fixed order (z1,y1),...,(@¢, ys), but for t from 1 to
€ we perform a series of experiments with the algorithm A, each time covering only the label y;
and forcing the algorithm to predict this label, based on the ¢ instances, the prediction of each
expert on each instance, and the label of all the instances except z;. Clearly the total hold-one-out
loss HL4(x,y) is the total loss obtained by all these experiments. Thus the average loss of the
algorithm in predicting a randomly chosen test instance is just HL 4(x,y)/(.

Note that we have restricted our analysis of the hold-one-out loss to the case of static experts.
For this type of loss, we must be careful about how much power we give the experts. Consider the
case in which there are just two experts & and &, and & always predicts that the sequence of
binary values y = %1,...,y¢ will have even parity, while & always predicts that y will have odd
parity. Clearly the predictions of each of these experts for y; can easily be expressed as a function
of the values y1,...,%-1, Y141, -, Y¢, ignoring the instances. Moreover, any sequence y either has
even or odd parity. Thus for any sequence y one of the two experts predicts each held out label
correctly! Yet for any prediction algorithm A there is always a sequence that forces total loss /2,
since this is the average loss obtained on a random sequence. It is thus clear that to get a useful
worst-case model in the hold-one-out setting, one needs to restrict the experts. Restricting to static
experts is one natural choice.

It should be clear that any on-line prediction strategy can also be used as a hold-one-out pre-
diction strategy: the hold-one-out version of the strategy simply ignores the additional information
available to it and makes its prediction of y; based solely on the instances z1, ..., z¢, the predictions
of the experts on these instances, and the outcomes %1, ..., %;_1. In this case the total hold-one-out
loss is the same as the total on-line loss. One might suppose, however, that significantly smaller

34

hold-one-out losses could be obtained by employing more sophisticated strategies that take into
account all the information that is available. Curiously, this is not true, at least in the worst case,
as we show below.

Let us define the hold-one-out prediction game for a given N and ¢ by assuming that the
adversary chooses a set £ of N static experts, a sequence x of £ instances and a sequence y of £
outcomes, and then the predictor is given ¢ separate prediction problems based on these choices,
where in each problem a different outcome is held out and must be predicted on the basis of the
other information as described above. Let V]g? denote the min/max value of this game, i.e., the
minimum over all hold-one-out prediction stfategies A of the maximum over all choices of the
adversary of the difference HL 4(x,y) — Le(x,y). It turns out that this min/max value is the same
as that of the on-line prediction game with static experts given in Theorem 5.

Before we state the analog of Theorem 5 for the hold-one-out prediction game, recall that
we defined the average covering radius of S C {0,1}" as R(S) = Fy minges||s — yl|1, where
Ey denotes expectation over a uniformly random choice of y € {0, 1}, and that for any set of
functions &£ from X into [0,1] and any sequence x = xy,...,2, of instances in X, we defined

Ex = {(f(21)s-. s f(me)) s f € &Y

Theorem 25 Let £ be a set of static experts and x be a sequence of { instances. Then there exists
a hold-one-out prediction strateqy A such that for every sequence 'y, we have

HL4(x,y) — Le(x,y) = g - R(E)-

Moreover, A is optimal in the sense that for every hold-one-out prediction strategy B, there exists
a sequence y such that

l
HLp(x,y) — Le(x,y) > 3 R(&4)-
Hence ’
VA = V) = 5 min R(S),

where the minimum is over all sets S of N vectors in {0,1}".

Proof: Wesimply let A be the optimal on-line prediction strategy MS from the proof of Theorem 5,
used as a hold-one-out prediction strategy, ignoring the outcomes ¥y41,...,ys when predicting the
outcome y;. Since the net loss HLA(x,y) — Le(x,y) is the same for the hold-one-out game as it is
for on-line prediction, this gives the first statement of the theorem. The second statement follows
from the fact that if y is chosen at random, then the expectation of HLg(x,y)— Le(x,y) is equal to
the right-hand-side for any hold-one-out prediction strategy B. Finally, the last statement follows
by the same argument used in the proof of Theorem 5 to prove the analogous statement. |}

The optimal algorithm MS is not very efficient. We get a simple, efficient, and nearly optimal
hold-one-out prediction strategy by using the on-line prediction algorithm P. From the above
theorem and Theorems 8 and 16 we have:

Theorem 26 Let P(3) be the on-line prediction algorithm defined in Section 4. For all { and N,
if B is chosen to be g(\/2In(N + 1)/(), where g is as defined in Equation (12), then for any set
E of N static experts, and any sequences x and 'y of length £, the total hold-one-out loss of P is
bounded by
CIn(N +1) logy(N 4+ 1)

2 + 2 ’

and the constant in the leading term on the right-hand-side cannot be improved.

HLp(x,y) — Le(x,y) <

35

Algorithm B(#):

{ The algorithm receives a sequence of instances, x = zy,...,2, a sequence of binary
outcomes, ¥ = Y1, -, Y1, {» Yi+1,- - *» Yo, Where the tth position is marked with a “?7,
and the predictions &; ; of each expert & for 1 <4 < N on each instance z; for 1 < j < (.
The algorithm produces a prediction g; for the held out outcome y;. }

1. Pick r € [0, 1] uniformly at random;
2. Compute L} () = min; > At & i — vl

2
3. Compute Lggi(t) = ([Lops(t) +1— 7‘} + 7‘) ;

4. Compute 3 = g(In N/Lest(t))v where ¢ is the function defined in (12). Run

algorithm P(3) on the sequence of instances 1, ..., 2, and observations y1,...,y—1,
and predict with the g, (for y;) generated by P.

Figure 9: Description of algorithm B for hold-one-out prediction.

When the value Lg(x,y) is given, we can use algorithm P with an appropriately tuned 5 (as
in Theorem 15) to get a better hold-one-out prediction algorithm. In this case we get an algorithm
that has hold-one-out loss at most Le(x,y)++/Le(x,y)In N + @. When neither this value nor
the length of the sequence is available, algorithm P*, which iteratively guesses the loss of the best
expert, can be used. However, algorithm P* ignores the extra information provided and its bound
has a factor greater than one multiplying the «/LgIn N term. It is better to use the observed losses
of the experts on the { — 1 outcomes provided to estimate Lg(x,y). Unfortunately, we are unable
to show that when these estimates are plugged directly into algorithm P, a small total loss results.
As mentioned in Section 5.3, the problem is that different runs of the algorithm could use different
values of 3 resulting in different predictions. Conceivably, the worst prediction in each run could
be the one used to predict the held out label.

Our solution is to discretize the estimated total loss and let 3 be a function of the estimate. A
little randomization is used to ensure that the estimate is likely to be the same regardless of which
label is held out. The resulting algorithm is algorithm B, described in Figure 9. The estimated
loss is determined in Step 3. We show that for this choice of the estimate, the probability that all
of the estimates are the same increases with the loss of the best expert.

Note that the hypothesis of algorithm B is probabilistic since it depends on a value r chosen
uniformly at random in the interval [0,1]. It is easy to get a deterministic version of algorithm
B: Run algorithm B ¢ times in parallel, where the ith copy uses the fixed & as its choice for r
(0 < i< qg—1). The new deterministic algorithm DB simply predicts with the average of the ¢
predictions. We still need to specify the choice of ¢g. As ¢ grows the worst case loss of algorithm DB
converges to the expected worst case loss of algorithm B, where the latter expectation is over the

uniform choice of r € [0, 1]. We choose ¢ = (+ (\/ﬁ +1+ 1) VIn N + &8N where ¢ is the number

2In2’
of trials. For this choice we prove in the theorem below that the worst case loss of algorithm DB

is at most one larger than the bound we prove on the worst case expected loss of algorithm B.

Theorem 27 The hold-one-out prediction algorithms B and DB have the property that for any x,

36

any set of static experts £, and any sequence 'y
(N)

Ervo(HLp(x,y)) < Le(x,y)+ \/mwln N +1) -
HLpp(x,y) < Le(x,y) + M(\/hl—+ 1)+ 3\/—_|_ (N)

Recall that in the case when Lg(x,y) is given to the algorithm, the algorlthm P with its
parameter 3 properly tuned as a function of Lg(x,y) has hold-one-out loss at most Lg(x,y) +
Le(x,y)In N+ M (see Theorem 15). Note that the bounds of the above theorem for algorithms
that do not have Lg(x,y) available are not too much larger. We develop the proof of this theorem
in a sequence of lemmas.

and

In N

Lemma 28 Choose any set of experts £, and sequences x and'y of length (. For each r € [0, 1] we
have that for all 1 <t < {,

Lest() € {LT s Hr } where
Ly = ([\/Le(x,y) = r1+r)* and Lf = [(\/Le(x,y) + 1~ r] +r)°.
Proof: Since the loss in any trial lies in [0, 1], we have

Lops(t) < Le(x,y) < Lgpg(t) +1,
Le(x,y) < Lops(t) +1 < Le(x,y) + 1 and

JLops(h) +1 € [\/Lg(x,y), V6Le(x,y) + 1] .

This interval is of length at most 1. Thus the ceiling function in the computation of Lagt() can
take at most two values and the lemma follows.]

Note that the set {L-,L} depends on r but not on ¢. Thus for each r € [0, 1] the two possible
values for Legt(t) are the same for all choices of t. We will show that for most r the two values for
Legt () are actually the same for all ¢.

Let L,.(t) be the loss of B(¢) when predicting the single value y, after seeing all ¢ examples
except the label y, and picking the value r. When r is drawn uniformly at random from [0, 1], the
expected total loss of B(t), summed over choices of ¢, is

1/t
E, o HLp(x, y)) Z / t)dr = /0 (Z LT(t)) dr. (22)

We now consider the expectation over r € [0,1] of S35_; L,(t).

Lemma 29 Choose any set of experts £, and sequences x and 'y of length {, and let L and L} be
defined as in Lemma 28.
Then for any r € [0, 1] such that for all 1 <t < { we have Lgogi(t) = L,

l

ZLT(t) < Le(x,y) + (Le(x,y)+ 1) vin N +

t=1

Similarly, for any r € [0,1] such that for all 1 <t < { we have Legt(t) = L},

r

In N

= low.
21n2

In N
= high.
m2 8

ZL <Lgxy)—|—< Lg(x,y)—l—l—l—l) In N

37

Proof: We only prove the first bound. The proof of the second bound is identical. Since Lg(x,y) <
Lops(t) + 1 < Legt(t) = L, we can apply Theorem 15:

‘ In N

> L(t) < Le(x.y) + /Ly In N + IR (23)

t=1

Because [z —r]|+7r <z —r+1+4+r=2a+1, we have L < (\/Le(x,y)+ 1)%. Thus the RHS of
inequality (23) is upper bounded by “low”. 1

In the proof of the following most important lemma of this section we show that most of the
time we get a total loss of “low” and only rarely a total loss of at most “low + high”. The resulting
upper bound is only slightly larger than “low”.

Lemma 30 For any set of experts £ and sequence y of length €,

Erngo(HLp(x,¥) < low + (1/Ze(x.3) + 1 - \/Le(x.y)) bigh.
where low and high are defined as in Lemma 29.

Proof: Let us first consider the case when r is such that L, = Lf: Then each B(t) chooses
Legt(t) = L7 and by Lemma 29

i: L.(t) < low. (24)

In the remaining case r is such that L # LT: Now the B(t) might use either Logt(¢) = L or
Legt (1) = LY for each ¢. In that case the sum of the L.(¢) is at most the sum of L,(¢) when all
Legt (1) = L plus the sum of the L,(t) when all Log(t) = L}:

l
> L,(t) < low + high. (25)
t=1

Let Z+r={k+r:k €Z} be the set of integers shifted by r € [0,1]. We will first show that
L, # Lf iff a point from Z+r lies in interval [\/Le(x,y), /Le(x,y) + 1) which is of length at most
one. (Note that L, and L} are the values obtained when applying the mapping d,.(z) = ([z—7]+7r)?
to the left and right boundary of the interval.) If a point k + r lies in the interval, then it and the
left boundary of the interval map to (k 4+ r)%. Also, any point in the interval that is larger than
k + 7 (including the right boundary of the interval) maps to (k 4+ 1 + r)%. On the other hand if
L7 # LT then let p be the largest point in the interval that maps to L. Clearly p must be in
Z 4+ r.

The probability that L;” # L} equals the probability that the interval [\/Le(x,y), /Le(x,y) + 1)
contains a point of Z + r. Since r is drawn uniformly in [0, 1] and since the interval has length
at most one, this probability equals the length of the interval, that is \/Le(x,y) + 1 — /Le(x,y).
This allows us to average inequalities (24) and (25) to get

l

4 1
Z_:LB(t) :/0 O L (t))dr

=1

< (1 — <\/L:(X,y) +1- \/Lg(x,y))) low + <\/Lg(x,y) +1- \/Lg(x,y)) (low + high)
= low+ <\/L5(X,y) +1- \/Lg(x,y)) high.

38

Proof of Theorem 27: Tor the first part of the theorem, which is a bound on F, o 1j(HLB(x%,y)),
what remains to be done is to simplify the upper bound of Lemma 30. First observe that

(\/LE(XaY) +1- \/Ls(xa}’)) high

IN

1
I —
vV LE(Xv}’) +1
1
e(x,y) + (1‘|‘ —) Vin N
Te(

IN
7

x,y)+1

. 1 In N
Le(x,y)+1) 2In2

Plugging this into the bound of the lemma we get

Eoo(HLlp(x,y)) < Le(x,y)+ m(\/ln—N—I— 1)+ (Q—I- ;) VW

. 1 L1 In N
Le(x,y)+1 2In2

< Le(x,y)+ 4/ Le(x,y)(VIn N+ 1)+ 3VIn N + In

In2°

For the second part, view algorithm DB as a version of algorithm B where 7 is chosen uniformly
from the finite set {% : 0 < i < ¢—1} instead of uniformly from the continuous interval [0, 1]. (Recall

that g =0+ (V{+ 1+ 1)VIn N +1n N/(2In2) and this choice of ¢ is at least as large as the value
high.) In Lemma 30 we showed that the expected hold-one-out loss is at most low + p high,
where p is the probability of the event that the set {k 4+ r : k € Z} has a point in the interval
[VLe(x,y),v/Le(x,y)+ 1). If r € [0,1], then p equals the length of the interval and in the case
T E {é :0 < i < gq— 1} the probability p equals the length plus or minus 1/¢. Since ¢ > high, we
get the following upper bound on the total hold-one-out loss of algorithm DB:

1y ..
HLpixy) < lowt (Le(ey)+1-/Le(xy) + -) igh

1 .
low + <\/Lg(x,y) +1- \/Lg(x,y) + @) high.

IN

Thus the bound in the second part is at most one larger than the bound proven in the first part.

We are finally now in a position to return to the pattern recognition problem considered in
Section 5. The next lemma generalizes the argument given in the proof of Theorem 23 to give a
general method for converting hold-one-out prediction strategies to learning algorithms that solve
the pattern recognition problem.

Lemma 31 Let A be a hold-one-out prediction strategy. Then A can be converted into a learning
strateqy B such that for any comparison class H, any {, and any distribution D on X x {0, 1},
1
Eqpelern(B(s)) = ern(H) = = Exympen (HLaY) = Ly (x.¥)) = erfyy p(H).

where Ex y)~pt+1 denotes expectation over X = x1,...%¢41 and 'y = Y1,...,Yi+1, €ach (T4, y;)
drawn independently at random according to D, 1 <t </{+ 1.

39

Proof of Lemma 31:

The learning strategy B works as follows. For any sequence of examples s = (21,91), ..., (2, y¢)
and any instance z, let §; denote the output of A when A is given as input the sequence of
instances X = 1,...,%4-1,%, T, ..., %, the set H), of experts, and the observed outcomes y =
YlseeosYi1s LUty - - -5 Yo, Where 77 denotes the location of the missing tth outcome to be predicted.
Now the value of the function A = B(s) on input z is defined by the average of the ¢’s, i.e.,
h(z) = g%l >k b

To show that this strategy B has the desired performance, first note the following

Egope(erp(B(s))) = Egupr,ey)~p|B(s)(@) -yl

1 !
= ESNDA(W,)ND (“‘—12%) - Y
i=

b

(26)
where g, is as defined in the previous paragraph, and s = (z1,y1), ..., (@, yr).
Because [(L 3772 pi) — ¢ = 237 |pr — ¢| for ¢ € {0,1} and 0 < p; < 1, it follows that
1 £+1
Eg. pe(erp(B(s))) = ESNDZ,(x,y)NDﬁ_I_—l Z; Gt — Y|
t=
1 £+1
= Z ESNDZ (z y)~D|3}t - y|
(+1—
1 £+1
= 7 2 Exyy~pertldi — vl
Y)~D i th
(+1—
(27)
where 7/ is the output of A when A is given as input the sequence of instances x = zy,..., 241, the
set H|, of experts, and the observed outcomes y = y1,...,9t-1,7, Y141, .., Yr41, where ’?" denotes

the location of the missing outcome to be predicted. Thus, by the definition of the hold-one-out
prediction loss

. 1
Eg . pe(erp(B(s))) = K_I_—lE(X,y)NDZ+1Z|yz/£_yt|
=1
1
= H—lE(x,y)NDmHLA(Xa}’)a (28)

where HL 4(x,y) denotes the total hold-one-out prediction loss of the strategy A on instances x
and outcomes y, assuming the set of experts used is H|.
Furthermore, it is clear that

N 1.«
er,p(H) = E(x,y)ND/fZ 5161% Z A1) = il
=1

1
= Exympelny (%, ¥). (29)

It follows from Equations (28), (29) and the definition of expected over-fit that

Es~pe(erp(B(s))) - erp(H)

40

= Es.pelerp(B(s))) — erey1, p(H) — (erp(H) — etey1,p(H))
1 1
= K—I——lE(X’Y)NDHl HL4(x,y)— K—I——lE(X’Y)NDHl LHIX (x,y) — erﬁ_LD(H)

1
= Py (HLaGey) ~ Iy (6,3)) = ey p(20)

Finally, we can now complete the

Proof of Theorem 24:
From Theorem 27 and the above lemma, with A being the algorithm DB, it follows that

By pe(ern(A) —erp(h) < PPl Lt (230 1n [y + 1)
s~D\ €L s)))—er <

(+1
FExlIn|H 3Ex /In|H |+ 1
xn [Hiy| | 27x T e (M) (30)
({+1)In2 (+1 41D

Hence by the Cauchy-Schwarz inequality (applied in the first line below) and by Jensen’s inequality

(applied in the second line),
\/E(Xy)NDHlLHlX(x, y)(y/ExIn[H |+ 1)

Eswpe(erp(A(s))) — erp(H) <

(41
Fxln |H 3/ ExIn|H |+ 1
x1n | |X|_|_ Ix ey p(H).
({+1)In2 +1 ’

Since T'= ExIn [H|, | and since Equation (29) implies that
E(X7Y)~DZ+1(LH|X (x,y)) = ({+1)érey1,p(H),

Equation (20) follows. From this, Equation (21) follows by simply noting that ér,;41 p(H) < erp(H).
i

Note that for sake of simplicity the bounds stated the Theorem 24 are actually weaker than
what we prove in Equation (30).

6 Worst-case Loss Bounds for the Log Loss

It is interesting to relate the min/max analysis, given in Section 3, to results on the problem of
optimal universal sequential coding studied by Shtarkov [Sht75, Sht87].

The problem of sequential coding is similar to the problem studied in this paper, with two major
differences:

1. The loss function that is studied in this paper is |p — y|. This loss corresponds to the prob-
ability of making a mistake if making a prediction by flipping a random coin whose bias is
p. The study of sequential coding, on the other hand, is interested in the log loss function
—ylnp— (1 —y)In(1 — p). This loss function is closely related to the minimal average coding
length that can be achieved by using the given predictions (see Rissanen and Langdon [RL81]).

41

2. The predictions made by the “experts” as defined here are not restricted; they can depend
on any information that is available to the experts. The corresponding concept in Shtarkov’s
paper is that of a “source.” A source is an expert whose prediction at time ¢ depends only

on the previous outcomes: %q,...,y;:—1. We call such experts “simulatable” because their
future predictions can be simulated by feeding them with future outcomes. The predictions
of a simulatable expert can be viewed as a conditional distribution p(y:|y1,...,y:—1). This

means that any simulatable expert can be identified with a distribution over the set of infinite
binary sequences. Assuming all our experts are simulatable, we denote by P; the distribution
associated with expert 7. Similarly, if we fix a prediction algorithm A that combines a fixed
set of experts we can associate with it a distribution Pj4.

It is well known that for the log loss, for any set £ of N experts there is a prediction strategy
A such that for any sequence y, L(y) — Le(y) < log N, where Lg(y) is the total log loss of the
best expert for y [Ris86, DMWS8S8, Vov92, HB92, Yam95, KW94].12 The strategy is just the Bayes
algorithm with uniform prior on the distributions represented by the experts.

A min/max optimal prediction algorithm is known for the case where the experts are simulatable
and (, the number of iterations, is known in advance. This result is given by Shtarkov [Sht&7]
(Theorem 1). For completeness, we restate the theorem and its proof here using our terminology.

Theorem 32 (Shtarkov) For each 'y € {0,1}° and each expert & € &, let Pi(y) denote the
probability of y under expert &;. Define the probability of y for the algorithm A by
_ max;<;<n P5(y)

Yyrefoy maxi<i<n Pi(y’)

Pa(y)

Then A minimizes the maxzimum of the difference L o(y)— Le(y) over all sequencesy. Furthermore,
this difference is the same for all sequences y:

La(y)— Le(y) = log Z max_ P;(y') <log N.

Proof: Since L4(y) = —log Pa(y) and Le(y) = —logmax;<;<n Pi(y), it follows from the
definition of P4 that

La(y)— Le(y)=log Y, max P(y')

for all y. Clearly this value is at most log N. Furthermore, A can be interpreted as a Bayes
algorithm for predicting the bits of y under the log loss, where the prior probability of y is given
by
B max;<;<n P5(y)

Zy'e{o,l}/»’ maxi<i<nN Pi(y’) '
Since A is Bayes and has the same regret L4(y) — Ls(y) for each y, it follows that A is min/max.
Otherwise there would exist another algorithm A’ with average regret with respect to this prior
that is less than the Bayes optimal algorithm, which would yield a contradiction. |}

P(y)

It is instructive to contrast the simplicity of the algorithms and analysis for log loss to the
relative complexity involved in the analysis of the algorithms in this paper, which aim to minimize
the absolute loss. This suggests that when given the choice, one might be better off choosing to use
the log loss. However, in many situations there is no such choice because the goal is to minimize
the number of mistakes and not to minimize the length of a coding of the sequence.

12This inequality holds even if the experts are not simulatable.

42

7 Conclusions

In this paper we prove worst-case loss bounds for on-line learning for the absolute loss, and give
applications in pattern recognition. We bound the additional loss of the algorithm over the loss
of the best expert. Apart from the game-theoretic analysis, our main upper bound is obtained
essentially by tuning an algorithm that was first introduced by Vovk (Theorem 15). Other loss
functions for the expert framework are considered in [Vov90, HKW95].

The paper leaves many open problems. Our lower bounds only address the case when a bound
on the length of the sequence of examples is known. We would like to have lower bounds for the
case when the sequence is of unbounded length but the loss of the best expert lies below a bound
that is known to the algorithm. In other words, are there lower bounds that match the upper
bounds of Theorem 157

For the case when the algorithm has no prior knowledge of the loss of the best expert (Theorem
21), can the constant in front of the square root be lowered and the algorithm be simplified? We
would also like to generalize our upper bounds of Theorem 15 to the case when the set of experts
is infinite. Assume the expert &; has initial weight w; and the total weight > 72, w; of all experts is
one. We would like to get bounds of the following form that hold for arbitrary outcome sequence

y:
Lay) < it (e)+ eyflen(1 /) + ¢ I /),)

where the constants ¢ and ¢ are as low as possible. Weaker bounds that are not in the above form
have been given by Littlestone and Warmuth [LW94].

Our new bounds proven for the PAC model (Section 5) are better that previous bounds but the
algorithms are very complicated. Is the hold-one-out model necessary to prove the bounds given
for the PAC model? Can the same bounds be obtained by simpler algorithms?

The upper bound for the main algorithm P of this paper (Theorem 10) has recently been
generalized by Warmuth and Kivinen [KW94] to the case when the outcomes lie in the interval
[0, 1] instead being restricted to be binary as done in this paper. The new result can be used as a
starting point for generalizing the results for the PAC model to the case when the hypotheses have
range [0,1] instead of {0, 1}.

Acknowledgments

We thank Meir Feder, Yuval Peres, Nick Littlestone and Michael Kearns for helpful suggestions and
discussions of this material. We also thank the two anonymous referees for their valuable comments
on an earlier draft of this paper.

References

[BEHWS&9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for
Computing Machinery, 36(4):929-965, 1989.

[BM93] L. Birge and P. Massart. Rates of convergence for minimum contrast estimators.
Probability Theory and Related Fields, 97:113-150, 1993.

[CBFH'93] Nicold Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. In Proceedings of the

43

[CBFHWY6]

[Chu94]

[Cov65]

[CS77]

[Daw84]

[Daw91]

[Dawar]

[DMWSS]

[FFK*91]

[FKL+91]

[FMG92]

[FRR94]

[Gal87]

[Han57]

[Hay94]

Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 382-391,
1993.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, and M.K. Warmuth. On-line prediction
and conversion strategies. Machine Learning, 1996. To appear.

Thomas H. Chung. Approximate methods for sequential decision making using expert
advice. In Proceedings of the Seventh Annual ACM Conference on Computational
Learning Theory, pages 183-189, 1994.

Thomas M. Cover. Behaviour of sequential predictors of binary sequences. In Trans-
actions of the Fourth Prague Conference on Information Theory, Statistical Decision
Functions, Random Processes, pages 263-272. Publishing House of the Czechoslovak
Academy of Sciences, 1965.

T. M. Cover and A. Shanhar. Compound Bayes predictors for sequences with ap-
parent Markov structure. IEFFFE Transactions on Systems, Man and Cybernetics,
SMC-7(6):421-424, June 1977.

A. P. Dawid. Statistical theory: The prequential approach. Journal of the Royal
Statistical Society, Series A, pages 278-292, 1984.

A. Dawid. Prequential analysis, stochastic complexity and Bayesian inference. In
Bayesian Statistics 4, pages 109-125. Oxford University Press, 1991.

A.P. Dawid. Prequential data analysis. Current Issues in Statistical Inference, to
appear.

Alfredo DeSantis, George Markowski, and Mark N. Wegman. Learning probabilistic
prediction functions. In Proceedings of the 1988 Workshop on Computational Learning
Theory, pages 312-328. Morgan Kaufmann, 1988.

A. Fiat, D. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competi-
tive algorithms for layered graph traversal. In 32nd Annual Symposium on Founda-
tions of Computer Science, pages 288-297, 1991.

A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive
paging algorithms. Journal of Algorithms, 12:685-699, 1991.

M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences.
IEFFE Transactions on Information Theory, 38:1258-1270, 1992.

A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. Journal of
Computer and System Sciences, 48(3):410-428, 1994.

Janos Galambos. The Asymptotic Theory of Fxtreme Oreder Statistics. R. E. Kreiger,
second edition, 1987.

James Hannan. Approximation to Bayes risk in repeated play. In Contributions to
the theory of games, volume 3, pages 97-139. Princeton University Press, 1957.

S. Haykin. Neural Networks: a comprehensive foundation. Macmillan, 1994.

44

[HB92]

[HKLW91]

[HKS94]

[HKW95]

[HLW94]

[HW95]

[KS94]

[KSS94]

[KW94]

[Lit89)]

[LLW95]

[LW94]

[MF93]

[Ris78]

[Ris36]

David Haussler and Andrew Barron. How well do Bayes methods work for on-line
prediction of {+1,—1} values? 1In Proceedings of the Third NEC Symposium on
Computation and Cognition. STAM, 1992.

David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equiv-
alence of models for polynomial learnability. Information and Computation, 95:129—
161, 1991.

D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of
Bayesian learning using information theory and the VC dimension. Machine Learning,
14:84-114, 1994.

David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Tight worst-case loss
bounds for predicting with expert advice. In Computational Learning Theory: Second
Furopean Conference, FuroCOLT °95, pages 69-83. Springer-Verlag, 1995.

David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting {0,1}-
functions on randomly drawn points. Information and Computation, 115(2):248-292,
1994.

D. Helmbold and M. K. Warmuth. On weak learning. Journal of Computer and
System Sciences, 50(3):551-573, June 1995.

Michael J. Kearns and Robert E. Schapire. Efficient distribution-free learning of
probabilistic concepts. Journal of Computer and System Sciences, 48(3):464-497,
1994.

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic
learning. Machine Learning, 17:115-141, 1994.

Jyrki Kivinen and Manfred K. Warmuth. Using experts for predicting continuous out-
comes. In Computational Learning Theory: FuroCOLT ’93, pages 109-120. Springer-
Verlag, 1994.

N. Littlestone. From on-line to batch learning. In Proceedings of the Second Annual
Workshop on Computational Learning Theory, pages 269-284. Morgan Kaufmann,
1989.

Nicholas Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line learning of
linear functions. Computational Complexity, 5(1):1-23, 1995.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212-261, 1994.

N. Merhav and M. Feder. Universal schemes for sequential decision from individual
data sequences. IFEE Transactions on Information Theory, 39(4):1280-1292, 1993.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465-471,
1978.

Jorma Rissanen. Stochastic complexity and modeling. The Annals of Statistics,
14(3):1080-1100, 1986.

45

[RLS1]

[Sht75]

[Sht87]

[SST92]

[Sto77]

[STS90]

[Tal94]

[Val84]

[Vap&2]

[Vap92]

[Vov90]

[Vov92]

[Vov93]

[Yam95]

Jorma Rissanen and Glen G. Langdon, Jr. Universal modeling and coding. IFEE
Transactions on Information Theory, IT-27(1):12-23, January 1981.

Yu. M. Shtarkov. Coding of descrete sources with unknown statistics. In I. Csiszar
and P. Elias, editors, Topics in Information Theory, pages 559-574. North Holland,
Amsterdam, 1975.

Yu. M. Shtarkov. Universal sequential coding of single messages. Problems of Infor-
mation Transmission, 23:175-186, July-September 1987.

H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from
examples. Physical Review A, 45(8):6056-6091, 1992.

C. J. Stone. Cross-validation: a review. Math. Operationforsch. Statist. Ser. Statist.,
9:127-139, 1977.

H. Sompolinsky, N. Tishby, and H.S. Seung. Learning from examples in large neural
networks. Physical Review Letters, 65:1683-1686, 1990.

M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of
Probability, 22(1):28-76, 1994.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134~
42, 1984.

V. N. Vapnik. Fstimation of Dependences Based on Empirical Data. Springer-Verlag,
1982.

V. Vapnik. Principles of risk minimization for learning theory. In John E. Moody,
Steve J. Hanson, and Richard P. Lippman, editors, Advances in Neural Information
Processing Systems 4. Morgan Kaufmann, 1992.

Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, pages 371-383. Morgan Kaufmann,
1990.

V. G. Vovk. Universal forcasting algorithms. Information and Computation,
96(2):245-277, Feb. 1992.

V. G. Vovk. A logic of probability, with application to the foundations of statistics.
Journal of the Royal Statistical Society Series B-Methodological, 55(2):317-351, 1993.

Kenji Yamanishi. A loss bound model for on-line stochastic prediction algorithms.
Information and Computation, 119(1):39-54, 1995.

A Proof of Lemma 6

The proof is based on the fact that the distribution of Ay n, after proper rescaling and shifting,
converges to a limit distribution. However, as convergence of the distributions does not imply
convergence of the expected values, we need to use a slightly more involved argument.

46

Let Y ; be a normalized version of 5, ;, with mean 0 and variance 1

v = Sk (31)
La — \/Z/Q ”
and let By n be
B = ming<;<n{Ys,} _ Aun - (/2 (32)
’ V2In N V(/2)InN
It suffices to show that Ve > 0 dNg VN > No Iy VL > fy
E(BgN) —1+¢€. (33)

In order to prove this claim, we upper bound the expectation by a sum as follows:
E(B&N) < P(B&N <-1+4 6/3)(—1 + 6/3) + P(—l + 6/3 < Bin < 0)0 —I-/ P(B&N > C)dC . (34)
0

We start by bounding the third term in (34). In general, we have that

P(Bin > ¢) = HP(Lan;ﬁ >c) : (35)

and as the expected value of Sy, is {/2, we can bound the RHS using Hoeffding’s bound:

Sei— 0)2 - | /I N)/2 L (/RN
P(WZC)—P(S&ZZK/Q‘Fﬁ(i\/Z)) §exp(2%(7\/Z))_ p(InN).

(36)
Plugging this back into the integral, we get

o0 o0 1
> < —c? =~/ <
/0 P(Byn > c)de < /0 exp(—c“NlIn N)de = 5 NlnN <¢€/3 (37)

for sufficiently large V.
It remains to bound the first term in Equation (34). Let ¢ be an arbitrary real number. From
the central limit theorem it follows that

P(Yei > ¢) =2 P(®; > ¢) (38)

where ®; are independent random variables from the normal distribution A(0,1). From this we
get that

N

P(lenNB&Ngc) :P(mm thc) zl—HP(YgZ>c) iy HP (®;>c)=P(ON <),

1<i<N by by
(39)
where On = minlgigN{‘I)i}- On the other hand, asymptotic analysis of the extreme order statistics
of the normal distribution (see Galambos [Gal87] Section 2.3.2, equations (59,60)) shows that

P <®Nb;aN < c) Mooy exp(—e°) , (40)
N

47

where

Inln N +1Indr 1
ay = —vV2InN+ ——— and by = . 41
N 2210 N N 2N (41)
Combining Equations (39) and (40), we get that
)) cby + aN)
lim lim P | By > ———— | = exp(—€°) . 42
N—0o l—0o0 (LN Vo2In N p() ()

We now fix ¢ sufficiently large so that exp(—e®) < ¢/3. For N and (sufficiently large we have that

cby + aN)
Pl{Bny>—F——=)<¢/3. 43
(o>) < ()
Plugging in the definitions of ax and by, we get that
¢ 1/2(Inln N + In4m)
P<B£’N>21nN_ + S NV) <€/3. (44)
Choosing N large enough we finally get that
P(Biny>-14¢/3)<¢/3, (45)

which upper bounds the first term in Equation (34) by (1 —¢/3)(—1+¢/3) < —1 + (2/3)e. This,
combined with the above bound for the third term, completes the proof. |

B Proof of Lemma 13

Recall that z > 0 or 2 = oo and thus ¢g(z) = m € [0,1). The following inequalities are
equivalent to the lemma.
21 1 1
o) o 11
2In Tr9(5) 9(2)

| 2 ,
0 < (1—|—g(2))ln<1+g(z))—z +In(g(2)) .

Since ¢(0) = 1, the last inequality holds for z = 0. Thus it suffices to show that the derivative of
the RHS is nonnegative for all # > 0. Taking this derivative we get

A (mm) (+d)de g
9(z)? 1+9(2) 9(2)
which simplifies to
s ()
- 5 - 2z.
9(2)
Note that ¢'(z) = —(2 + 2z/1n2)g(2)?, so the derivative is nonnegative whenever
(2+ﬁ)1 (2) 2:>0 (46)
m2) " \1+ g(2) 7=

48

We now consider two cases depending on the value of z. In the first case, 0 < z < % ~

4 and we use the approximation In(1 + 2) > «/(1 4 z). With this approximation,

In (%g(z)) —In <1+ 1+§EZ;) > 1_5(2).

Plugging back into Inequality (46), we see that the derivative is nonnegative whenever

22\ 1 —g(2)
24 — | ————= -2z > 0.
<+ln2) 2 220

By multiplying the above with g(l—z) we get the following equivalent inequalities:

2 2
i Z) - =) >
(1—|—12)(2—|—12) 22(1—|—QZ—I—12)_0

32 23 23
— — 477 —2—>0
ln2+ln22 § In2

3In2—4n?2+2—-22ln2>0

. . 4 1n?
which holds due to the assumption that z < %. Now we assume that z > %.

Note that 4(3% is an increasing function which approaches 1 as z — oo. Furthermore, under

the assumptions of this case, g(z) < (2In2 - 1)?/(1 —In2) < } and L gE > 1/3. Thus we can

hlgz

TTo(s) = z).

In (14_1_79(2)) Z§<1 1_79()) n(4/3) + (1_79(2) 1)1112
) 22T T gz 3
Thus for the values of z considered in this case, the following equivalent form of (46)

1<1+ 9(2))_ G

L+ g(2) 1+ &

underestimate In(1+) by interpolating between z = 1/3 and =1 (Wlt

holds whenever

%(1—%)111(4/3”;(%—%)1112—1+Zﬁ > 0
%1n(4/3)+%$1n2 +Z = 2 0
(39(2)1n(4/3)+(1—29(2))1n2)(1+11)—2(+9(2)) = 0
(31n(4/3)—1n2—|—221n2—|—22)(1—|—f)—z(?—l—?z—l—%) > 0
31n(4/3)—1n2+221n2+z2+%(;1/3)—2—22 > 0
31n(4/3)—1n2—|—2’(21n2—|—M—3)—|—22 > 0.

In2

Finally, we observe that this polynomial is always positive, obtaining its minimum of about 0.13
when z~ 0.18.. 1|

49

C Proof of Theorem 21

First, if Le(y) < a?In N then the algorithms first guess ko is an upper bound on the loss of the
best expert, and by Theorem 15 the loss of P* is bounded by at most

Le(y) +/a2(In N2 + Slogy N = Le(y) + (a+ o) N,
satisfying the theorem. We proceed with the assumption that Lg(y) > a?In N.

Let last be the largest iteration number in which a prediction was made by algorithm P*. Let
Liast ¢, be the loss incurred by the expert & while algorithm P* is executing iteration number last,
and let Lj.st ¢ be the minimum Ly, s, over & e & I Ly o < kg then by Theorem 15 the loss
of algorithm7P* during iteration number last is at most

1 1
Llast,s T4/ KjastIn N + §log2 N = L]ast,s + (aclast/z + 5Tn 2) In N.

If Ljggte > kjagt then, as there are no more iterations after last (implying that P* makes only
one additional prediction following the last prediction in which the loss of algorithm P* is at most
bjast), the loss of algorithm P* during iteration number Jast is at most

biast +1 < Llast,s + (aclast/z +) In N + 1.

2In2

Using the above and the fact that the loss incurred by P* during any iteration z is at most
b, + 1, we can bound Lp+(y),

Lp+(y) < Lpaste + (acl‘m/? + o 2) InN+1+ Iaszt; b, +1).
Using Equation (14),
last—1
Lpo(y) € Ljaste + (ac’aSW 51 2) N +14+ Y (k. + (ac”/? + ﬁ)1nN +1)
last—1 last -
< Ljaste + Z:(:) k- + Z(:) ((acz/2 + m) In N + 1)

Lemma 19 implies that Le(y), the loss of the best expert, is at least Lo o + ZlaSt Yk,. Using
this fact,

In N last P
. < o .
Lp«(y) < Le(y) + (last + 1) (1 + 21112) + ZZ:% ac’*In N (47)

We now work on the second and third terms separately. We will use the following lemma to
help simplify the second term.

Lemma 33 For all z > 0, In(1 4 2) < 0.805/z.

50

Proof: (of lemma) It is slightly easier to show that for all z > 0, In(1 + 2?) — 0.805z < 0. The
inequality clearly holds at 2z = 0 and z = co. By differentiating, we see that the extrema are at

— 1EVI-(0805) W. Plugging these values in show that both of these (local) extrema are negative,
so In(1 + 2%) — 0.8052 < 0 forall z > 0. |

We return to the proof of the theorem by applying Lemma 20 followed by Lemma 33 to the
second term.

In N In N In N Le(y)(e—1)
< e e DN ANT T)
(ast+ {1+ 53 5) < 14555 0+ 5y 2)10g0<1+ aZIn N)

In N InN 0.805 [Le(y)(e—1)
<
- 1+21n2+(1+21n2) Ine a21nN
In N In N 0.805/(c /
B 1+21n2+(1+21n2) alannc Le(y)In N
LN 0805 /[c—T) | 0805[e—1)

=1
2In2 (aln Nlne a(21n2)lnc)

Le(y)In N.

For the third term of Equation (47) we sum the geometric series and then apply Lemma 20.

last Iast-|—1_
Zacz/anN = alnNu
z=0 \/E_l
c—1
< alnN\/(1+ Pux) almN
- Ve—1 Ve—1

We continue with the approximation /1 + a2 < /z 4+ 1/v/42 and then use the assumption that
Le(y) > a’In N.

%:Stacz/anN < a\/ElnN Le(y)(e—1) N a?ln N _alN
ot - Je—1 a?ln N 4Le(y)(e—1) Ve—1

a\/_lnN aln N
\/ y)In N
C—l ! + Ve—1)e—1 Ce—1
2ve—1—4/c
Le(y)In N —aln N .
c—l V e N —aln NS o=

Plugging these results back into (47) yields

In N alnN(Q\/CT_\/E)
2In2 2(ve — 1)e—1
0.805v/c—1 0.805yc—1 \/e[c—1)
(alnNlne a(2ln2)Ine Ve—1) Le(y)In N.

Lp«(y) < Le(y)+1+

We use ¢ to denote the golden ratio, i, and recall that ¢ — 1 = ¢. The \/c(c—1)/(\/c — 1)

term is minimized at ¢ = ¢*, where it is (b3/2/(1), or about 3.33 (less than 3.3302).
With ¢ set to ¢?, the factor in front of the \/Le(y)In N term is less than

2 0.805(/F 0.805/3
(¢—1) + 4aln21In ¢ + 2aln Nln¢ |

51

We now turn our attention to the coefficient of the In N term together with the “+1”. For ¢ = ¢2,

this factor is
L 2=V
InN 2In2 2(¢-1)

and is less than 51— for all @ > 2(¢ — 1)/((2 — v/¢)In N), completing the proof of the theorem.
i

52

