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Abstract are willing to spend on the camera then is the difference
between the value of the camera-flash combination and the
estimated price of the flash alone. Thus, a fundamental
challenge when bidding for multiple goods is predicting the
prices of all of the relevant goods before they are known.

In complicated, interacting auctions, a fundamen-
tal problem is the prediction of prices of goods
in the auctions, and more broadly, the modeling
of uncertainty regarding these prices. In this pa-
per, we present a machine-learning approachto  To attack the price prediction problem, we propose a
this problem. The technique is based on a new machine-learning approach: gather examples of previous

and general boosting-based algorithm for condi- auctions and the prices paid in them, then use machine-
tional density estimation problems of this kind. learning methods to predict these prices. This learning
This algorithm, which we present in detall, is at problem can be viewed as a conditional-density-estimation
the heart ofAT Tac-2001, a top-scoring agent in problem: given current conditions, estimate the conditional
the recent Trading Agent Competition (TAC-01). distribution of prices. To solve the problem, we devise a
We describe hovAT Tac-2001 works, the results new boosting-based algorithm that we present in detail in

of the competition, and controlled experiments this paper.
evaluating the effectiveness of price prediction in

auctions. We also describe how we successfully applied the algorithm

to the problem of price prediction in auctions. It was imple-
mented as a part &T Tac-2001, a top-scoring agehin the
1. Introduction second Trading Agent Competition (TAC-01), which was

) ) . ) held in Tampa Bay, FL on October 14, 2001. In this com-
Auctions are becoming an increasingly popular method foletition, each agent must bid simultaneously for multiple
transacting business, especially over the internet. In afhteracting goods. As observed above, the key challenge in
auction for a single good, it is fairly straightforward 10 gych auctions is the modeling of uncertainty in the even-
create automated bidding strategies; for instance, an agegfa| prices of goods: with complete knowledge of eventual
can keep bidding until reaching a target reserve price, or iprices, there are direct methods for determining the opti-
can monitor the auction and place a winning bid just beforen g pids to place. Our guiding principle in the design of
the closing time. ATTac-2001 is to have the agent model uncertainty and, to
When bidding for multiple interacting goods in simulta- the greatest extent possible, analytically calculate optimal
neous auctions, on the other hand, agents must be able ffs. AT Tac-2001 uses a predictive, data-driven approach
reason about uncertainty and make complex value assed: bidding based on expected marginal values of all avail-
ments. For example, an agent bidding for a camera an@Ple goods. The price-predictor presented in this paper is
flash may end up buying the flash and then not being able t8t the heart of the algorithm.

find an affordable camera. Alternatively, if bidding for the |, aqdition to the results of the trading agent competition
same good in several auctions, it may purchase two flashggef, we also present controlled experiments exploring the
when only one was needed. degree to which accuracy in price prediction affects overall

When bidding in any auction, it is important to be able to Performance in the auction.

Qvaluat(_a how ”.‘“Ch eqch item Is .WOl‘th 'to the agent. I.” Top-scoring by one metric, and second place by another.
interacting auctions, this also requires being able to predict

the price of other items in the auction. For instance, in the

example above, to determine the value of the camera, we

need to guess the price of the flash; the amount that we



2. TAC Entertainment Tickets (12): Alligator wrestling, amuse-

' . . ) ment park, and museum tickets are each sold for days
We first describe the TAC domain in order to motivate the 1-4 in continuous double auctions. Here, agents can

need for our new algorithm. buy and seltickets, with transactions clearing imme-
We instantiated our approach as an entry in the second Trad- ~ diately when one agent places a buy bid at a price at
ing Agent Competition (TAC), as described in this section. ~ least as high as another agent’s sell price. Unlike the
Building on the success of TAC-00 held in July 2000 (Well- other auction types in which the goods are sold from
man et al., 2001; Stone & Greenwald, 2002), TAC-01 in- a centralized stock, each agent starts with a (skewed)

cluded 19 agents from 9 countries. A key feature of TACis ~ fandom endowment of entertainment tickets.

that it requirecautonomous bidding agertis buy and sell - ach TAC agent has eight clients with randomly assigned
multiple interacting goods auctions of differenttypes. It yaye| preferences. Clients have parameters for ideal ar-
is designed as a benchmark problem in the complex ang 5 day,IAD (1-4): ideal departure dapD (2-5): hotel
rapidly advancing domaln of e-marketplaces, motivating remium, HP ($50-$150); and entertainment valu&/
researchers to apply unique approaches to a common tas 0-$200) for each type of entertainment ticket.

ATAC game instance pits eight autonomous bidding agent§ e ytility obtained by a client is determined by the travel
against one another. Each TAC agent is a simulated trave), ckage that it is given in combination with its preferences.
agent with eight clients, each of whom would like to travel Tq ohtain a non-zero utility, the client must be assigned a
from TACtown to Tampa and back again during a 5-dayfeasipletravel package consisting of an inflight on some
period. Each client is characterized by a random set of 4 dayAD, an outflight on a departure dayD, and
preferences for the possible arrival and departure dates; h@ie| rooms o'f thesame typeTT or SS) for the d'ays .
tel rooms; and entertainment tickets.  To satisfy a clientyaiween. At most one entertainment ticket of each type

an agent must construct a travel package for that client by pe assigned, and no more than one on each day. Given
purchasing airline tickets to and from TACtown and secur-; feasiple package, the client's utility is defined as

ing hotel reservations; it is possible to obtain additional
bonuses by providing entertainment tickets as well. ATAC ~ 1000— travelPenalty + hotelBonus + funBonus
agent's score in a game instance is the difference betwegpere

the sum of its clients’ utilities for the packages they receive

and the agent's total expenditure. We provide selected de- ® travelPenalty= 100(|AD — IAD|+ |DD — IDD])

tails about the game next; for full details on the design o hotelBonus HPif the client is in the TT, 0 otherwise.
and mechanisms of the TAC server and TAC game, see funBonus= sum of EVs for assianed entertainment
http://tac.eecs.umich.edu ¢ ickets, 9

TAC agents buy flights, hotel rooms and entertainment tick-

ets through auctions, run from the TAC server at the uni- TAC agent'sscoreis the sum of its clients’ utilities in

versity of Michigan. Each game instance lasts 12 minuteéhe optlmgl allpcatlon of Its goods (computed by the TAC
and includes a total of 28 auctions of 3 different types: Server) minus its expenditures.
TAC-01 was organized as a series of four competition
phases, culminating with the semifinals and finals on Oc-
tober 14, 2001 at the EC-01 conference in Tampa, Florida.
First, the qualifying round, consisting of about 270 games
per agent, served to select the 16 agents that would partici-
gate in the semifinals. Second, the seeding round, consist-
bid at or above the ask price, the transaction is clearel]!d ©f about 315 games per agent, was used to divide these
immediately at the ask price and no resale is allowed agents into two groups of eight. After the semifinals on
the morning of the 14th, four teams from each group were

Hotel Rooms (8): There are two different types of hotel selected to compete in the finals during that same afternoon.
rooms—the Tampa Towers (TT) and the Shoreline
Shanties (SS)—each of which has 16 rooms available . _—
on days 1-4. The rooms are sold in a 16th-pase  3- Hotel Price Prediction

cending(English) auction, meaning that for each of ; ;
the 8 types of hotel rooms, the 16 highest bidders geﬁ‘s discussed earlier, a central part of our strategy depends

) . 2>~on the ability to predict prices, particularly hotel prices,
Fhehrooms at thehlgfchhhlghszt pr:jce. The _ask IO?Ceat various points in the game. To do this as accurately as
|st| € %urrer;]t 16th-hig ‘TSI ! ?\ln l;.rgns.ar(]:(tjlons ‘I:eabossible, we used machine-learning techniques that would
on VIW. en”t e ?jucﬁlon (r:]or?es. o flb'dWIt rat\)/val OF examine the hotel prices actually paid in previous games to
resale is allowed, though the price of bids may be Iow- o jict prices in future games. This section discusses this
ered provided the agent does not reduce the numb artof our strategy in detail, including a new boosting-based
of rooms it would win were the auction to close. One

randomly chosehotel auction closes at minutes 4-11 algorithm for conditional density estimation.
of the 12-minute game. There is bound to be considerable uncertainty regarding

Flights (8 auctions): There is a separate auction for each
type of airline ticket: to Tamparfflights on days 1-4
and from Tampadutflighty on days 2-5. There is an
unlimited supply of airline tickets, and their ask price
changes randomly every 30 seconds or so, with a
increasing bias upwards. When the server receives



hotel prices since these depend on many unknown factorspecialized for predicting only the price of TT on day 1,
such as the time at which the hotel room will close, who theanother for predicting SS on day 2, etc. This would seem to
other agents are, what kind of clients have been assignagquire eight separate predictors. However, the tournament
to each agent, etc. Thusxactlypredicting the price of a game is naturally symmetric about its middle in the sense
hotel room is hopeless. Instead, we regard the closing pricthat we can create an equivalent game by exchanging the
as a random variable that we need to estimate conditiondlotel rooms on days 1 and 2 with those on days 4 and 3 (re-
on our current state of knowledge (i.e., number of minutespectively), and by exchanging the inbound flights on days
remaining in the game, ask price of each hotel, flight prices], 2, 3 and 4 with the outbound flights on days 5, 4, 3 and
etc.). We might then attempt to predict this variable’s con-2 (respectively). Thus, with appropriate transformations,
ditional expected value. However, our strategy requires thathe outer days (1 and 4) can be treated equivalently, and
we not only predict expected value, but that we also be ablékewise for the inner days (2 and 3), reducing the number
to estimate thentireconditional distribution of thisrandom  of specialized predictors by half.

variable so that we casamplehotel prices. We also created specialized predictors for predicting in the

To set this up as a learning problem, we gathered a sdirst minute after flight prices had been quoted but prior to
of training examples from previously played games. Wereceiving any hotel price information. Thus, atotal of eight
defined a set of features for describing each example thapecialized predictors were built (for each combination of
together are meantto comprise a snap-shotof all the relevaiil versus SS, inner versus outer day, and first minute versus
information available at the time each prediction is madenot first minute).

All of the features we used are real-valued; a couple o(N ined di di h | closi
the features can have a special valuéndicating “value € trained our predictors to predict not the actual closing
unknown.” We used the following basic features: price of each room per se, but rather how much the price
' ' would increase, i.e., the difference between the closing price

e The number of minutes remaining in the game. and the currentprice. We thought that this might be an easier

e The price of each hotel room, i.e., the current ask pricgluantity to predict, and, because our predictor never outputs

for rooms that have not closed or the actual selling? N€dative number when trained on nonnegative data, this

price for rooms that have closed. approach also ensures that we never predict a closing price

L . below the current bid.
¢ The closing time of each hotel room. Note that this )
feature is defined even for rooms that have not yef-rom each of the previously played games, we were able
closed, as explained below. to extract many examples. Specifically, for each minute of

; ; the game and for each room that had not yet closed, we

* The prices of each of the flights. extracted the values of all of the features described above
To this basic list, we added a number of redundant variaat that moment in the game, plus the actual closing price of
tions, which we thought might help the learning algorithm: the room (which we are trying to predict).

e The closing price of hotel rooms that have closed (orNote that during training, there is no problem extracting
L if the room has not yet closed). the closing times of all of the rooms. During the actual
e The current ask price of hotel rooms that have notP'@y of @ game, we do notknow the closing times of rooms
closed (orL if the room has already closed). that _hav_e not yet _closgd. However, we do know the exact
o i . distribution of closing times of all of the rooms that have not
e The closing time of each hotel room minus the closingyet closed. Therefore, to sample a vector of hotel prices, we
time of the room whose price we are trying to predict. cap, first sample according to this distribution over closing
e The number of minutes from the current time until times, and then use our predictor to sample hotel prices
each hotel room closes. using these sampled closing times.
During the seeding rounds, it was impossible to know dur- . .
ing plgy who our ogponentswere, althF())ugh this information>- 1+ The Learming Algorithm
was available at the end of each game, and therefore duringaving described how we set up the learning problem, we
training. During the semifinals and finals, we did know are now ready to describe the learning algorithm that we
the identities of all our competitors. Therefore, in preparaysed. Briefly, we solved this learning problem by first
tion for the semifinals and finals, we added the followingreducing to a multiclass, multi-label classification problem
features: (or alternatively a multiple logistic regression problem), and

e The number of players playing (ordinarily eight, but then applying boosting techniques developed by Schapire

sometimes fewer, for instance if one or more players2nd Singer (1999; 2000) combined with a modification
crashed). of boosting algorithms for logistic regression proposed by

. N Collins, Schapire and Singer (2002). The result is a new
* A bit for each player indicating whether or not that machine-learning algorithm for solving conditional density
player participated in this game. estimation problems, described in detail in the remainder of

We trained specialized predictors for predicting the price ofthis section.
each type of hotel room. In other words, one predictor was



Abstractly, we are given paifs1, ¥1), - - - , (Zm, ym) Where  We use a boosting-like algorithm described by Collins,
eachz; belongs to a spac& and eachy; is in R. In Schapire and Singer (2002) for minimizing objective func-
our case, ther;’s are the auction-specific feature vectorstions of exactly this form. Specifically, we build the func-
described above; for some X C (RU {L})". Each tion f in rounds. On each rount we add a new base
target quantityy; is the difference between closing price functionh; : X x {1,...,k} — R. Let

and current price. Given a new our goal is to estimate

the conditional distribution of givenz. f § B
t — t!
We proceed with the working assumption that all training oy

and test examplgg;, y) are i.i.d. (i.e, drawn independently ) ) _ )

from identical distributions). Although this assumption is P€ the accumulating sum. Following Collins, Schapire and
false in our case (for instance, because the agents, inclu®Nger, to construct eadh, we first let

ing ours, are changing over time), it seems like a reason- 1

able approximation that greatly reduces the difficulty of the Wi(i, j) = 13 o5 W fe@ig)
learning task. e ’
be a set of weights on example-breakpoint pairs. We then

Ouir first step is to reduce the estimation problem to a CIaSE:hOOSEht to minimize

sification problem by breaking the range of thés into

bins: m k .
[bo, b1), [b1,02), - - - , [bk, br+1] Z Z Wi (4, j)e=*i (vidhe(@i.d) 3)

for some breakpointgy < b1 < -+ < by, < bkﬂ where i=1 j=1

for our problem, we chosk = 50. The endpointsy and over some space of “simple” base functidns For this

b.+1 are chosen to be the smallest and largestalues work, we considered all “decision stumpis’bf the form
observed during training. We choose the remaining break-

pointsby, . .., by so thatroughly an equal number of training aj if p(x) >0
labelsy; fall into each bin. (More technically, breakpoints h(z,j) = { b; if p(z) <6
are chosen so that the entropy of the distribution of bin cj ifp(z) =1L
frequencies is maximized).

) . _ whereg(-) is one of the features described above, &nd,
For each of the breakpoints (j = 1,..., k), ourleaming . andc.; are all real numbers. In other words, suchfan
algorlthm attempts to estimate the probabll_lty that a pew simply compares one featugeto a threshold and returns
(givenz) will be at leasth;. Given such estimates; for 5 yector of numbera(z, -) that depends only on whether
egchbj, we can then estimate the probability thhas in the () is unknown (L), or above or below. Schapire and
bin [b;, bjy1) bY pj11 — p; (and we can then use a constant ginger (2000) show how to efficiently search for the best
density within each bin). We thus have reduced the probleny,,chz, over all possible choices af, 8, a;, b; andc;. (We
to one of estimating multiple conditional Bernoullivariables 554 employed their technique for “smjootjhirrg;’ b and
corresponding to the evept> b;, and for this, we use a .. B
logistic regression algorithm based on boosting techniques’’
as described by Collins, Schapire and Singer (2002). When computed by this sort of iterative procedure, Collins,

. . . Schapire and Singer (2002) prove the asymptotic conver-
Our learning algorithm constructs a real-valued functlongence off, to the minimum of the objective function in

[ X x{1,...,k} = Rwith the interpretation that Eq. (3) over all linear combinations of the base func-
1 tions. For this problem, we fixed the number of rounds
1+ exp(—f(z,7)) (1) toT = 300. Letf = fr,1 be the final predictor.

is our estimate of the probability that> b;, givenz. The  As noted above, given a new feature vectpwe compute
negative log likelihood of the conditional Bernoulli variable p; asin Eg. (1) to be our estimate for the probability that

corresponding tg; being above or below; is then bj, and we lepo = 1 andp,.1 = 0. Forthis to make sense,
_ we needp; > py > -+ > pg, or equivalently,f(z,1) >
In (1+ e*sf(yi)f(”“ﬂ)) f(z,2) > --- > f(z, k), a condition that may not hold
for the learned functiory. To force this condition, we
where ) replacef by a reasonable (albeit heuristic) approximation
si(y) = { fi :;Z i ZJ (2) f' thatis nonincreasing i namely,f’ = (7+i)/2 where
.

f (respectively) is the pointwise minimum (respectively,

We attempt to minimize this quantity for all training exam- maximum) of all nonincreasing functiopshat everywhere

ples(z;, y;) and all breakpoints;. Specifically, we try to  upper bound’ (respectively, lower boungl).

find a functionf minimizing With this modified functionf’, we can compute modified
m k probabilitiesp;. To sample a single point according to the
> > (1 + efsi(yi)f(””i’j)) . estimated distribution ot associated withf’, we choose
=1 j=1 bin [b;, b+1) with probabilityp; — p,+1, and then select a



Input: (z1,y1), ..., (Tm,ym) Wherez; € X,y; € R
positive integerg andT

Compute breakpoints by < b1 < - -+ < br+1 Where
e bo=min; y;
® bpi1 = max y;
o bi,....bp chosen to minimize " g;Ing
where qo,...,qx are fraction of y’s in
[bo, b1), [b1, b2), . . ., [bk, br+1] (USing dynamic programing)

Boosting
o fort=1,...T:
. . 1
[ ] Compute We|ghtWt(’L,]) = m
wheres; (y) is as in Eq. (2)

e useW; to obtain base functioh; : X x{1,...,k} —
m k
R minimizing Z ZWt(i,j)e’SJ’(“)ht(“’j) over
i=1 j=1

all decision stumps

Output sampling rule:
T

oletf=> h
t=1

o letf = (?+i)/2 where

flz,j) = max{f(z,j'):j<j <k}
fz,j) = min{f(z,5'):1<5 <5}

e to sample, giver € X
1
o letp; = Tte F@n
o letpo=1,pry1=0
e choosegf € {0, ..., k} randomly with probability; —
Dj+1
e choosey uniformly at random fronjb;, b; 1]
e outputy

Table 1.The boosting-based algorithm for conditional density es-

timation.

When the first flight quotes are posted:
e ComputeG™ with current holdings andxpected prices
e Buythe flightsinG* for which expected cost of postponing
commitment exceeds thexpected benefit of postponing
commitment

Starting 1 minute before each hotel close:

e ComputeG™ with current holdings andxpected prices

e Buy the flights inG™ for which expected cost of post-
poning commitment exceea@sxpected benefit of post-
poning commitmer(B0 seconds)

e Bid hotel room expected marginal valugen hold-
ings, new flights, andexpected hotel purchas¢80
seconds)

Last minute: Buy remaining flights as needed by

In parallel (continuously): Buy/sell entertainment tickets based
on theirexpected values

Table 2.AT Tac-2001's high-level algorithm. The italicized por-
tions are described in the remainder of this section.

4.1. Goods Allocation

A core subproblem for TAC agents is the allocation prob-
lem: finding the most profitable allocation of goods to
clients, G*, given a set of owned goods and prices for
all other goods. We denote the value®f (i.e. the score
one would attain with*) asv(G*). G* andv(G*) can be
found (usually within 0.01 seconds on a 650 MHz Pentium
Il using the “LPsolve” package) via integer linear program-
ming (Stone et al., 2001). An approximationd#@=*) can

be obtained reliably quickly via LP relaxation.

4.2. Hotel Expected Marginal Values

Using the hotel price prediction module as described above,
ATTac-2001 is equipped to determine its bids for hotel
rooms.

Every minute, for each hotel room that is still op&i, Tac-
2001 assumes that that hotel will close next and computes
the marginal value of that hotel room given the predicted

point from this bin uniformly at random. Expected value c|osing prices of the other hotel rooms. If the hotel does

according to this distribution is easily computed as
k
bjr1—b;
> (v = pisa) (%) :

Table 1 shows pseudo-code for the entire algorithm.

4. ATTac-2001

not close next, then it assumes that it will have a chance to
revise its bids. Since these predicted prices are represented
as distributions of possible futureAT Tac-2001 samples
from these distributions and averages the marginal values
to obtain an expected marginal value. Using the full minute
for computation between closing times (or 30 seconds if
there are still flights to consider\T Tac-2001 divides the
available time among the different open hotel rooms and
generates as many price samples as possible for each hotel
room. In the endAT Tac-2001 bids the expected marginal
values for each of the hotels.

overview some of the other key componentadfTac-2001
and how they use the price predictor.

Table 2 shows a high-level overview AT Tac-2001. The

in Table 3.

4.3. Other Price Predictor Uses

italicized portions use the learned price predictor in someAT Tac-2001 makes flight bidding decisions based on a cost-

way.

benefit analysis: in particulaAT Tac-2001 computes the



e For each hotel (in order of increasing expected price): putes the expected value of having one more and one fewer

e Repeat until time bound _ of the ticket, again by sampling hotel prices and computing
1. Generate a random hotel closing order (only other the relative values of(G*) with varying ticket supplies.
open hotels) These calculations give bounds on the bid and ask prices it

2. Sampleclosing prices from predicted hotel price g wjlling to post. The actual bid and ask prices are a linear
df"ég\‘jgﬁ':ﬁese closing prices, compg VA, .. V; function of time remaining in the game\T Tac-2001 set-
- Vi = v(G") if owning i of the hotel boeetin tles for a smaller and smalle_r profit from tlc_ket transactions
— Estimates(G*) with LP relaxation as the game goes on. Details of the functions mapping es-
— Assume that no additional hotel rooms of this type ~ timated ticket values and game time to bid and ask prices

can be bought remained unchanged from the previous year’s agent (Stone
— For other hotels, assume outstanding bids above et al., 2001).

sampled price are already owned (i.e. they cannot

be withdrawn).
— Note thatVp < V4 < ... < V,.: the values are 5. Results

monotonically increasing since having more goods .

cannot be wgrse in termgs of possible%llocatigns. 5.1. TAC-01 Competition

* Thevalue of théth copy of the roomisthemean®i—Vi-1  Of the 19 teams that entered the qualifying roukiiTac-
over all the samples. 2001 was one of eight agents to make it to the finals on
e Note furtherthaly — Vo > V2 —Vi... > Vo, — Vo1l the  the afternoon of October 14th. The finals consisted of 24
valu_e_s dlfferences_ are mo_notonlcally de_creasmg since ?acﬂames among the same eight agents. In raw sAdiac-
additional room will be assigned to the client who can derlve2001 ended up finishing a very close secondlitonga-

the most value from it. . . ;
ents (Fritschi & Dorer, 2002), scoring an average of two
e Bid for one room at the value of thigh copy of the room ;gevr:/er(points per game ) g 9

for all ¢ such that the value is at least as much as the curren
price. Due to the monotonicity noted in the step above, noAfter the competition, the TAC team at the University of
matter what the closing price, the desired number of rooms\iichigan conducted a regression analysis of the effects of
at that price will be purchased. the client profiles on agent scores. Using data from the
seeding rounds, it was determined that agents did better
when their clients had:

Table 3.The algorithm for generating bids for hotel rooms.

1. fewer total preferred travel days;
incremental cost of postpor_ling biddin_g foraparticularflight 2. higher total entertainment values; and
versus the value of delaying commitmenAT Tac-2001 3. ahigher ratio of outer days (1 and 4) to inner (2 and 3)
takes the cost of postponing commitment to be the aver- in preferred trip intervals
age predicted cost of the flight over the next several whole '
minutes. It computes this cost based on a knowledge oBased on these significant measures, the games in the finals
the general form of the price adjustment function and thecould be handicapped according to each agents’ aggregate
observed price points thus far in the current game. client profiles. Doing so indicated thiatingagents’ clients

Fundamentally, the benefit of postponing commitments toW('}re much easier to satisfy than those/dTac-2001,

flights is that additional information about the eventual hoteP"'"Y ATTac-2001 the highest handicapped score.
prices becomes known. Thus, the benefit of postponing ,
commitment is computed by sampling possible future price>-2- €ontrolled Experiments

vectors and determining, on average, how much better th&TTac-2001's success in the competition demonstrates its
agent could do if it bought a different flight instead of the gffectiveness as a complete system. However, since the
one in question. Ifitis optimal to buy the flight in all future gjfferent agents differ along several dimensions, the com-
scenarios (price vectors), then there is no value to delayingetition results cannotisolate the successful approaches. In
the commitment and the flight is purchased immediatelyinis section we report on controlled experiments designed

However, if there are many scenarios in which the flight istg test the efficacy oAT Tac-2001's machine-learning ap-
not the best one to get, the purchase is more likely to broach to price prediction.
delayed.

) . i . We attempted to determine experimentally how the qual-
The algorithm for determining the benefit of postponingity of ATTac-2001's hotel price predictions affects its per-
commitment is similar to that for determining the marginal formance. To this end, we devised seven price predic-

value of hotel rooms. tion schemes, varying considerably in sophistication and
inspired by approaches taken by other TAC competitors,
4.4. Entertainment Expected Values and incorporated these schemes into our agent. We then

played these seven agents against one another repeatedly,

The core of ATTac-2001's entertainment-ticket-bidding Yvith regular retraining as described below
a 3

strategy is again a calculation of the expected margin
values of each ticket. For each tickéf] Tac-2001 com-  Here are the seven hotel prediction schemes that we used,



in decreasing order of sophistication: [_Agent | _Relative Score]

. ATTac-2QOls: This is the “full-s_trength" agent based FarlyBidder Phase | 1403 £ 386
on boosting that was used during the tournament. ATTac-2001,. 1052 £ 495
e ConditionalMean,: This agent samples prices from ATTac-2001, 278+421
the empirical distribution of prices from previously ConditionalMean,,, 8.6+412
played games, conditioned on the closing time of the SimpleMean, —288+451
hotel room. In other words, it collects all historical CurrentBid —337+524
hotel prices and breaks them down by the time at which SimpleMean, —720+475
the hotel closed (as well as room type, as usual). The ConditionalMean, | —147.5+ 356
price predictor then simply samples from the collection _ Phase I
of prices corresponding to the given closing time. EarlyBidder 1528 + 434
_ , : ATTac-2001,; 1316 £47.7
e SimpleMean,: This agent samples prices from the ATTac-2001, 861 L 447
empirical distribution of prices from previously played ConditionalMean,,. 35+ 375
games, without regard to the closing time of the hotel SimpleMean,__ 5390+ 401
room (but still broken down by room type). SimpleMean, —716+428
e ATTac-2001,, ConditionalMean,,, SimpleMean,,: ConditionalMean, | —914+419
These agents predict in the same way as their corre- CurrentBid —1571 4548
sponding predictors above, but instead of returning a Phase [l
random sample from the estimated distribution of ho- AT Tac-2001,, 1662 + 208
tel prices, they deterministically return the expected AT Tac-2001, 1223+194
value of the distribution. EarlyBidder 1170+180
SimpleMean, —115+217
e CurrentBid: This agent uses a very simple predictor SimpleMean, —441+ 182
that always predicts that the hotel room will close at ConditionalMean,,; | —60.1+ 19.7
its current price. ConditionalMean, —911+176
CurrentBid —1988+26.0

In every case, whenever the price predictor returns a price
thatis below the current price, we replace it with the currentrap e 4 The average relative scores for eight agents in the three
price (since prices cannot go down). phases of a controlled experiment in which the hotel prediction

In our experiments, we added as an eighth agariyBid- algorithm was varied. The relative score of an agent is its score
der, inspired by thdivingagents agent. EarlyBidder uses minus the average score of all agents in that game.
SimpleMean,, ,, determines an optimal set of purchases, and

then places bids for these goods at sufficiently high prices

to ensure that they will be purchased ($1001 for all hotelclearly dominated the agents based on simpler prediction
rooms, just adivingagents did in TAC-01) right after the schemes. Moreover, with continued training, these agents
first flight quotes. It then never revises these bids. improved markedly relative t&arlyBidder. We also see

Each of th nts require training. i.e.. data from or Vithe performance of the simplest age@tyrentBid, which
ach ot (n€se agents require training, 1.e., data Irom préviy, o ¢ ot employ any kind of training, significantly decline
ously played games. However, we are faced with a sort 0

o " i elative to the other data-driven agents.

chicken and egg” problem: to run the agents, we need to

first train the agents using data from games involving theOn the other hand, there are some phenomena in this table
agent, but to get this kind of data, we need to first run thehat were very surprising to us. Most surprising was the fail-
agents. To get around this problem, we ran the agents inre of sampling to help. Our strategy relies heavily not only
phases. In Phase |, which consisted of 126 games, we uset estimating hotel prices, but also taking samples from
training data from the seeding, semifinals and finals roundshe distribution of hotel prices. Yet these results indicate
of TAC-01. In Phase Il, lasting 157 games, we retrained thehat using expected hotel price, rather than price samples,
agents once every six hours using all of the data from theonsistently performs better. We speculate that this may
seeding, semifinals and finals rounds as well as all of thébe because an insufficient number of samples are being
games played so far during the course of the experimentsed (due to computational limitations) so that the num-
Finally, in Phase llI, lasting 622 games, we continued tobers derived from these samples have too high a variance.
retrain the agents once every six hours, but now using onhAnother possibility is that the method of using samples
data from games played during the course of the experito estimate scores consistently overestimates the expected
ment, and not including data from the seeding, semifinalscore because it assumes the agent can behave with perfect
and finals rounds. knowledge for each individual sample—a property of our

Table 4 shows how the agents performed in each of theS%pproxmanon scheme.

phases. Much of what we observe in this table is consisterie were also surprised thafonditionalMean, and
with our expectations. As expected, the more sophisticate@onditionalMean,,s eventually performed worse than the
boosting-based agent8T Tac-2001; andAT Tac-2001,,;) less sophisticate8impleMean, and SimpleMean,,,. We



do not fully understand why this happened. One possibility1999038.
is that the simpler model happens to give predictions that
are just as good as the more complicated model, perha| f
because closing time is not terribly informative, or perhap ererences

because the adjustment to price based on current price &ollins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regres-
more significant. The simpler model has the additional ad- sion, AdaBoost and Bregman distancedachine Learning
vantage that its statistics are based on all of the price data, 48.

regardless of closing time, whereas the conditional modetramton, P. C. (1997). The FCC spectrum auctions: An early
makes each prediction based on only an eighth of the data assessmentlournal of Economics and Management Strategy
(since there are eight possible closing times, each equally 6, 431-495.

likely). Csirik, J. A., Littman, M. L., Singh, S., & Stone, P. (2001). FAucS:

As a measure of the inaccuracy of the predictions made by QSeEgCElsepcetféménciurﬁ“”?gr :e'r,ng'gggggirnzgtg?ct’&ogzctggg'?r?_
the three non-sampling ag_er)ts, we mea_sured the root MeaN o hational Workshogpp. 139-151). Heidelberg, Germany:
squared error of the predictions made in Phase Ill. These Springer Verlag.

were: 56.0 forAT Tac-2001,,, 66.6 for SimpleMean,,, - . .
69.8 for CurrentBid and 71.3 forConditionalMean,,,.  ntschi C., & Dorer, K. (2002). Agent-oriented software engi-
Thus, we see that the lower the prediction accuracy (ac- neering for successful TAC participatiorkirst International

. . . - Joint Conference on Autonomous Agents and Multi-Agent Sys-
cording to this measure), the higher the score (correlation ;o Bologna. g g 4
—0.88).

Reitsma, P. S. A., Stone, P., Csirik, J. A., & Littman, M. L.
(2002). Randomized strategic demand reduction: Getting more

6. Conclusion by asking for lessProceedings of the First International Joint

_ _ . Conference on Autonomous Agents and Multiagent Systems
'.” this paper, we have '”Fmduc.ed a boost_lng-ba_sed algoSchapire, R. E., & Singer, Y. (1999). Improved boosting algo-
rithm for conditional density estimation. It is designed t0  (ithms using confidence-rated predictiondachine Learning
be applicable in any scenario in which one wishes to esti- 37 297-336.
mate Fhe grobﬁb”gy dlstrlfbutlon of real rar;}domf Va”ablesSchapire, R. E., & Singer, Y. (2000). BoosTexter: A boosting-
associated with objects of some sort (such as feature vec- based system for text categorizatioMachine Learning 39,

tors). 135-168.

AT Tac-2001 used this learning algorithm to compete suc- Stone, P., & Greenwald, A. (2002). The first international trading
cessfully in TAC-01, a domain featuring simultaneous auc- agent competition: Autonomous bidding agentlectronic
tions for multiple interacting goods. We believe that price Commerce Researcfio appear.

prediction and the modeling of price uncertainty will be Stone, P., Littman, M. L., Singh, S., & Kearns, M. (2001). ATTac-
key challenges in the design of agents for auctions and e- 2000: An adaptive autonomous bidding agelaturnal of Arti-
commerce, and our results indicate that prediction accuracy ficial Intelligence Researcii5, 189-206.

will be critical to achieving high performance. The gener-weber, R. J. (1997). Making more from less: Strategic demand
ality of the technique described in this paper suggests that reduction in the FCC spectrum auctiodsurnal of Economics

it will be widely applicable in such domains. and Management Strategy, 529-548.

One such real application is the Federal Communication¥/ellman, M. P., Wurman, P. R., O'Malley, K., Bangera, R., Lin,
Commission’s aﬁgtioning off of radio spectrum (Weber, S-d- Reeves, D., & Walsh, W. E. (2001). A trading agent
1997; Cramton, 1997). Especially for companies that are competition.[EEE Internet Computingd, 43-51.

trying to achieve national coverage, the values of the differ-

entlicenses interact in complex ways. Perhaps autonomous

bidding agents will be able to affect bidding strategies in

such future auctions. Indeed, in related research we have

started down this path by creating bidding agents in a real-

istic FCC Auction Simulator (Csirik et al., 2001; Reitsma

et al., 2002).

In a more obvious application, an extended version of
ATTac-2001 could potentially become useful to real travel
agents, or to end users who wish to create their own travel
packages.
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