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Abstract 

The widespread use of algorithmic trading has led to the question of whether the most suitable 
algorithm is always being used. We propose a practical framework to help traders qualitatively 
characterize algorithms as well as quantitatively evaluate comparative performance among vari-
ous algorithms. We demonstrate the applicability of the quantitative model using historical data 
from orders executed through ITG Algorithms. 
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he relentless pursuit of lower transaction costs has led to increasing demand for sophis-

ticated trading tools and algorithms, which in turn has led to an explosion in the num-

ber of algorithmic products offered in the marketplace today. Yang and Borkovec 

[2005] predict that this trend will continue as more investment management firms em-

brace best execution as a top priority. 

T
 Having more algorithms at their disposal offers traders both opportunities and challenges. 

On the up side, a trader now has the opportunity to pick the suitable algorithm that will most 

likely achieve the trading objective for each order. On the down side, the number of algorithm 

choices can be so large as to make it difficult to make a quick and correct choice.1 

 Adding to the algorithm selection challenge is the fact that algorithms offered by sell-side 

vendors usually come in the form of a “black box,” with inner workings hidden to the end users. 

Because of this lack of transparency, users may find it difficult to clearly understand the per-

formance characteristics of a particular algorithm, which, in turn, further complicates the algo-

rithm selection decision. 

 Instead of looking inside an algorithm, we propose a systematic, quantitative approach to 

evaluating an algorithm’s historical performance by identifying the determining factors of rela-

tive performance across alternative algorithms, and we present a framework for algorithmic se-

lection based on these underlying factors. Our methodology is easy to implement in practice and 

provides a quantitative framework for conducting performance attribution on algorithmic prod-

ucts. We will demonstrate how we perform empirical analysis on the algorithm performance and 

how we turn historical data-based model parameters into forward-looking algorithm selection 

criteria. Our proposed approach can also help investment managers and traders become more 

proactive in selecting algorithms that are of the highest value to them, and help to ensure the 

alignment of algorithmic trading with their investment objectives. 

   

ALGORITHMIC STRATEGY SPECTRUM 

 The significance of conducting pre-trade “homework” on algorithms is well understood. 

The need to understand the nature of an algorithm starts at the point when an algorithm is offered 

by a third-party vendor. We begin our discussion of algorithm choice with a look at how algo-

rithms can be categorized. 
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 At its core, a trading algorithm takes an order, or trade list, and structures a sequence of 

trades that aim to achieve the objectives of the user, e.g., minimizing cost (vis-à-vis a specific 

benchmark), maximizing fill rate, or minimizing execution risk. Domowitz and Yegerman 

[2005a] suggest that, at the most abstract level, the different kinds of algorithms can be thought 

of as occupying a trade structure continuum, ranging from the less structured to the very struc-

tured. In Exhibit 1, we divide this range into three categories. 

E X H I B I T  1  
Spectrum of Algorithmic Strategies 

 

Less structured More structured 

Opportunistic Evaluative Schedule-driven 

• ITG Active 

• ITG Real Time 
  Volume Participation 

• ITG ACE® • ITG Horizon (VWAP) 

• ITG TWAP

Examples: 

 

 On the less structured side, we find strategies that can be called opportunistic, in the 

sense that these strategies do not have pre-defined execution schedules; instead, they utilize real-

time information to actively search for optimal times when trades can be executed. These strate-

gies create execution schedules as they go along. At the beginning of an order, a trader does not 

know what the execution schedule will look like. An example is ITG Active (formerly known as 

ITG activePeg® to clients), an algorithm that employs sophisticated agent-like logic to continu-

ously search for liquidity opportunities. 

 At the other extreme – on the more structured end – are algorithms that follow precisely- 

defined execution schedules; we call these algorithms schedule-driven strategies. The schedules 

are based on historical data, pre-programmed into the strategy’s logic and, save for small updates 

which incorporate real-time information, are followed precisely in optimizing trade entries. All 

VWAP- and TWAP-based strategies, for example, can be categorized this way. The realized 
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trade schedule will be similar to the pre-defined one, absent significant, unusual changes in li-

quidity over the order horizon. 

 Between these two ends is a category that we call evaluative strategies. Not surprisingly, 

these strategies combine approaches of both opportunistic and schedule-driven algorithms. At 

the macro level, these algorithms suggest how to optimally slice a large order in different time 

intervals, for example, half-hour bins. At the micro level, intelligent rules – often quantitative in 

nature – are employed to execute each part of the original order while balancing the tradeoff be-

tween cost and risk. Oftentimes these micro rules require the input of substantial real-time in-

formation, which makes them similar to opportunistic strategies. The trader will have a good 

idea of what the execution trajectory may look like, but the ex post trajectory may differ little or 

greatly from the ex ante prediction. An example is ITG ACE, a highly quantitative strategy that 

actively evaluates the potential price impact of each slice and continuously adjusts how and 

when each slice of the big order is executed in order to minimize the impact.  

 While our three-part categorization of algorithms is only a guide,2 dividing algorithms 

into different categories is a necessary first step in deciphering the nature of the myriad strategies 

available. It is important to see beyond general descriptions and get a clear sense of what kind of 

strategy any given algorithm is at its core. 

 

ALGORITHM SELECTION: A QUANTITATIVE FRAMEWORK 

 Given the availability of a basket of algorithmic strategies, attention is now turned to or-

der-specific pre-trade analysis. Specifically, there are two questions concerning algorithm selec-

tion: 

1. Is the order at hand suitable for algorithmic trading? 

2. If so, which algorithm is the optimal one for trading this order? 

 It is well known that not all orders can be traded using an algorithmic approach. This is 

because, essentially, algorithms are pre-programmed logic run on computers. As such, algo-

rithmic trading is not, and will never be, the magic bullet that solves all transaction cost-related 

problems. This is an important pre-trade analysis issue that is beyond the scope of this paper; in-

stead, we focus on the optimal algorithm selection question. 

 4

 

 



 We assume algorithmic suitability has been established and that the appropriate bench-

mark has been determined. The next step is deciding which algorithm, among the many avail-

able, should be used to trade a particular order. For example, even if VWAP is determined to be 

the best strategy, there may be a number of VWAP strategies from different vendors that can be 

used. One still needs to pick the best specific VWAP strategy. 

 We propose a simple quantitative framework that affords a quick but rigorous compara-

tive analysis of algorithmic performance. The workflow of this pre-trade analysis consists of four 

steps:  

 

1. Specify the model structure which links algorithm performance to a basket of factors that 

comes from order requirements, stock characteristics, or market conditions. 

2. Derive the estimable form of the structural model and obtain performance attribution pa-

rameters using historical data. These parameters allow us to characterize how an algo-

rithm’s performance responds to changes in the factors. 

3. Forecast the performance for each candidate algorithm using factor values known at or-

der entry time. 

4. Finally calculate a selection “score” for each algorithm. At this point, selecting the 

optimal algorithm is as simple as picking the one with the highest score. 

 

We focus on the first step, model structuring, in this section. 

 While a trader’s specific trading objective may vary, implementation shortfall has be-

come a popular cost benchmark. First proposed by Perold [1988], implementation shortfall 

measures the price distance between the final, realized trade price and a pre-trade decision price. 

In practice this pre-trade decision price can be different to different people, e.g., the price at 

which a portfolio manager wishes to enter or exit a position, a previous day’s closing price, to-

day’s open price, etc. For our purposes, we expand Perold’s original definition to include limit 

orders and define implementation shortfall as the difference between the share-weighted average 

execution price and the mid-quote at the point of first entry for market or discretionary orders, 

and the difference between the average execution price and the limit price of the order for limit 

orders.3 The nature of the order – limit or non-limit – is taken from the very beginning; whether 

this nature changes during the course of trading the order is not considered.4 In addition, the im-
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plementation shortfall is sided so its sign is consistent for both buy orders and sell orders. (A 

negative value signifies a price improvement.) 

 To account for the large variability in stock prices, it is the usual practice to express im-

plementation shortfall in relative terms, i.e., the normalized difference between the share-

weighted average execution price and the mid-quote immediately before the order started execut-

ing for market orders and the user-specified limit price for limit orders. 

 As a first cut, one may imagine using a simple “horse race” approach to selecting the best 

algorithm: whichever strategy that potentially achieves the lowest implementation shortfall cost 

wins. In this approach, it is only necessary to analyze the historical cost of each algorithm and 

apply the coefficients obtained from the analysis to forecasting its cost for the order at hand. This 

approach has the appeal of being very easy to implement, assuming historical trading data is 

readily available. 

 This simple approach suffers one significant drawback: it tells the trader nothing about 

how confident he or she will be in achieving the cost the model says an algorithm can achieve on 

average. A second-degree measure is needed to augment the selection process so the trader can 

compare algorithms along two equally important dimensions: cost advantage and confidence 

level. We propose a simple solution in the form of estimating the cost and its variance simulta-

neously. In other words, we will estimate both how much an algorithm’s implementation short-

fall cost will be and how closely the realized cost will come to this ex ante estimate. The struc-

tural model specifies the conditional mean and variance of the cost as functions of relevant mar-

ket- and stock-specific factors. 

 Our key innovation here is to propose that the cost and variance functions be jointly es-

timated, which provides a set of intimately linked performance attribution parameters for each 

algorithm. The analyst’s job, then, is to translate the structural functions into econometrically 

sound estimable specifications and employ the right econometric tools to carry out the estima-

tion. For example, one can use time series, cross sections or panel data to do the estimation; all 

that is required is the appropriate econometric technique be used given the chosen specifications. 

The rest of this paper describes our empirical investigation, which can serve as an example to the 

reader who wishes for a “cookbook” guide to implementing quantitative algorithm selection. 

 Our proposed framework is completely broker-neutral and can be applied to any algo-

rithm. It can be used to compare strategies across the algorithmic spectrum as discussed earlier in 
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the paper, or even within the same general type of algorithms (e.g., VWAP from vendor X vs. 

VWAP from vendor Y). 

 Next, we describe the dataset we work with before discussing our empirical implementa-

tion of the general framework. 

 

DATA 

 Our aim is to obtain parameter estimates of the structural model from historical perform-

ance data. Our algorithm-related dataset contains over 100,000 single-name, completely filled 

client orders handled by the ITG SmartServer® suite of algorithmic strategies, also collectively 

known in the industry as ITG Algorithms. Here, a client order means an explicit instruction from 

a user to buy or sell a certain number of shares in a stock over a pre-specified period of time; it is 

the algorithm’s job to break this order into individual trades or executions. The orders in the 

dataset cover U.S. stocks traded from February through June 2005. All the orders in our sample 

were either completed or canceled by close, so there are no multiple-day orders in our sample. 

We focus on three particular ITG algorithmic strategies: ITG Active, an opportunistic strategy 

(less structured); ITG ACE, an evaluative strategy (middle of the road); and ITG Horizon Smart-

server™, a VWAP strategy (more structured). 

 Each record in our dataset includes the following order-specific variables: 

• Ticker 

• Size (in number of shares) 

• Side (buy or sell) 

• Market or limit 

• Limit price (if a limit order) 

• Starting time and ending time for the entire order 

• Share-weighted average fill price. 

 

 Exhibit 2 gives the sample statistics of the orders data after suitability filtering. The three 

algorithmic strategies vary significantly in average order size, whether measured as a percentage 

of MDV (median daily volume) or duration volume. ITG Active (the opportunistic strategy) 

tends to receive, on average, smaller-sized orders than ITG Horizon (the VWAP strategy), which 
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in turn gets smaller orders than ITG ACE (the evaluative strategy). This presents a potential 

sample selection bias problem across the algorithms, because it seems sensible that smaller or-

ders tend to have lower IS cost. If the sample selection bias is indeed present, the implication is 

that when we estimate the model, ITG Active may get more favorable parameter estimates rela-

tive to the other two strategies not because it is inherently “better” but because it handles 

smaller, “easier” orders. In our case, this turns out not to be a serious problem because while size 

is a significant factor for the level of IS across orders under each algorithm, it does not correlate 

significantly with cost across the strategies. This is apparent when we examine the “Relative IS” 

column in Exhibit 2. Even though ITG Horizon handled larger orders than ITG Active, it had a 

lower average cost. Even though ITG ACE handled larger orders than ITG Horizon, it had a 

lower median cost. Furthermore, when we divided the range of relative order sizes into many 

brackets, we found that there were statistically sufficient sample points in each bracket for all 

three servers; meaning, our estimation results would not be significantly skewed by relative sam-

ple size in different order size baskets. 

E X H I B I T  2  
Sample Statistics 
ITG Strategy # orders

Average Median Average Median Average Median
ITG Active 24,341   2,214      400         0.31 0.04 1.74 0.26
ITG ACE 4,635     8,305      2,300      2.04 0.56 4.99 2.08
ITG Horizon 28,926   5,765      1,500     0.93 0.24 1.97 0.60

Order Size (shares) Order Size (%MDV) Order Size (%dur. vol.)

 
ITG Strategy

Average Median Average Median Average Median
ITG Active 0.023 0.016 -0.33 0 -2.60 0.00
ITG ACE 0.032 0.021 1.87 1 9.86 3.13
ITG Horizon 0.030 0.020 -0.68 1 -4.16 3.43

Implementation Shortfall (cents)Intraday Volatility (%) Relative I.S. (bps)

 
 

 It should be emphasized that even when there is sample selection bias, it is an economet-

ric estimation problem, not an inherent issue with our model. Econometric techniques exist to 

handle this bias. The key lesson here is, when performing quantitative analysis, one must take 

care not to fall victim to biased estimates due to the presence of sample selection bias or other 

data-related issues. An experienced econometrician can help solve this problem and provide sta-

tistically robust parameter estimates. 
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 Another interesting issue with the data is the large difference between average relative 

implementation shortfall and the median value for all three strategies. In the cases of ITG Active 

and ITG Horizon – the two “extreme-end” strategies – the average relative IS is much lower than 

the median. For ITG ACE, the relationship is reversed. All these suggest the presence of signifi-

cant skewness in the values. We’ll come back to this issue later when we discuss how we scale 

the IS value to obtain a distribution that is closer to normal. 

 In addition to the order-specific dataset, we also obtained stock-specific data that in-

cludes essential characteristics such as historical intraday volatility, historical volume profile, 

and historical ADV. We merge these stock-specific variables into the orders dataset by date and 

stock. The final dataset contains implementation shortfall for each order as well as various factor 

variables taken from both order and stock characteristics. 

 

EMPIRICAL ESTIMATION 

 The structural model must be reduced to a form that can be statistically estimated. In de-

riving the corresponding reduced form equations, we make the explicit assumption that the rela-

tive implementation shortfall should be scaled by the stock’s intraday volatility. There are rea-

sons for this transformation. First and foremost, a stock’s intraday volatility appears to be a sig-

nificant driver for order cost.5 We can either include it as a regression factor (i.e., independent 

variable), or via a nonlinear specification. Earlier we mentioned that the implementation shortfall 

values in our sample exhibit significant skewness. But when we divide IS by the stock’s intraday 

volatility, we find the ratio having a statistical distribution similar to the normal distribution. The 

normality of the scaled implementation shortfall is important for us in constructing a single-

number rating measure of algorithms in the next section. Scaling IS by volatility also reduces or 

eliminates heteroskadasticity in the model. 

 We make no a priori assumption regarding whether the relevant factors influencing the 

cost and its variation are the same or even overlap. It is possible that different factors, some 

common to both, influence the two functions. For example, time-of-day may be a significant fac-

tor for cost estimation, but may not have any effect on the variability of this cost estimate. The 

choice of factors is a question to be answered empirically.6 
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 We also do not assume beforehand whether the cost and its variance functions are linear 

or nonlinear. In fact, as variances are often nonlinear in nature, imposing a linear functional form 

on cost variance would be too strict of a constraint and would likely produce inferior results. 

 We have run different sets of regressions using various factors to determine the final re-

duced (estimable) form of the conditional cost and variance functions. A few interesting results 

emerge from our analysis. 

 First, we found that nonlinear functions of order size relative to the predicted volume 

over the order time horizon, known as duration volume, to have worked best for estimating both 

cost and variance. In fact, this relative order size is the only factor that proves consistently sig-

nificant in both equations. The use of duration volume contains an implicit time-of-day effect: 

the same order size and required duration have different impact depending on the time of entry, 

since duration volume will be different. 

 Second, there is a nonlinear, marginally decreasing effect of relative order size: the larger 

the order, the less increased marginal effect it has on transaction cost. 

 Third, even though market cap and intraday volatility do not enter our final cost equation, 

we do find that both market cap and intraday volatility have some effect on the magnitude of im-

plementation shortfall. To control the impacts of market cap and intraday volatility, we double 

sort our samples along the two dimensions into four sub-groups: large-cap and small-cap, and 

within each market-cap group, high-volatility and low-volatility. The large-cap group roughly 

corresponds to the Russell 1000 stocks and the small-cap group is similar to the membership in 

Russell 2000 (plus some micro-caps). This division implicitly assumes the existence of a dis-

joint, “jump” effect market cap has on cost. The same logic applies to intraday volatility.7 One 

individual model is then estimated for each algorithmic trading strategy and, within each strat-

egy, using each sub-division of the data. In all, we have three algorithmic strategies and four di-

visions under each strategy, giving us 12 cost-variance pairs of models to estimate. 

 One interesting pattern in our cost estimation results is that the impact of the relative or-

der size factor on expected cost increases in magnitude as volatility drops from high to low. The 

reason for this trend has to do with how all of the algorithms presented here work their orders. 

All three use limit orders for executions to some extent; in fact, they employ an econometric 

model called the ITG Limit Order Model to forecast the probability of a limit order being hit at 

any given time. This probability is then used by the algorithms to determine how aggressive or 
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passive a limit order should be. When intraday volatility is high, the probability of a limit order 

being hit is high, therefore the individual limit-order trades are likely to be executed regardless 

of their sizes. In the aggregate, we observe a reduced effect of total order size on the total cost. 

E X H I B I T  3  
Algorithm Utility as a Function of Risk Aversion 

Risk aversion

"C
os

t u
til

ity
"

ITG Active
ITG ACE

λ*

 
 

 Our estimation results also provide empirical support to our assertion that cost estimate 

alone does not determine the relative optimality of an algorithm and that cost variance does mat-

ter. To see this, we hypothesize a utility function that is analogous to the one employed in the 

mean-variance framework: it is defined as the sum of cost and risk aversion-adjusted cost vari-

ance. The optimization goal here is to minimize this utility function given the risk parameter by 

choosing over a set of available algorithmic strategies. Exhibit 3 plots the utility curves for ITG 

Active and ITG ACE over different values of risk aversion, assuming a fixed order size (set to 

1% of duration volume), a low intraday stock volatility, and that the stock is a small cap name. 

Along the x-axis, risk aversion increases to the right; equivalently, risk tolerance decreases to the 

right. The two utility curves intersect at the point where risk aversion is equal to λ*. To the left of 

λ*, risk aversion is low (i.e., high risk tolerance), and ITG Active exhibits lower cost utility than 

ITG ACE and is therefore the better algorithm to follow. To the right of λ*, risk aversion is high 

(low risk tolerance), and ITG ACE has the lower cost utility value and is therefore the winning 
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strategy in this example. Exhibit 3, in effect, demonstrates the interaction between cost and cost 

variance in determining which algorithmic strategy is optimal. 

  

FROM ESTIMATION TO SELECTION 

 Now that we have constructed the models and obtained parameter estimates for each al-

gorithm, we can perform comparative analysis and predict, given a specific order, which algo-

rithm will be the best candidate for trading this order. 

 First, we forecast the cost and cost variance of each algorithm using the factor values 

known at time of order entry. To summarize, the factors that act as input to our estimated models 

are: (i) number of shares in the order; (ii) the stock’s historical duration volume as calculated 

from (a) expected or required order start time and end time and (b) the stock’s historical volume 

profile and ADV; and (iii) the stock’s historical intraday volatility. We simply feed these num-

bers into the reduced-form models for each algorithm and obtain the predicted values of cost and 

cost variance for that algorithm. 

 Exactly how these forecast numbers can be used is up to the user. One obvious approach 

is using the cost utility function we mentioned in the previous section. The problem with this ap-

proach is the additional complexity introduced by the risk aversion parameter: how does one 

measure one’s own risk aversion parameter and in what unit should this parameter be measured?  

 

 Instead, we propose another quantitative method which yields a concrete “score” for each 

algorithm: we can calculate a Value-at-Risk-like number that reflects the probability of keeping 

the implementation shortfall cost for an order under a certain threshold. Empirically our volatil-

ity-adjusted implementation shortfall cost exhibits a sample distribution close to a normal. From 

the estimates of the cost as well as its variance, the normal cumulative distribution curve can be 

used to compute the probability of achieving an implementation shortfall that is lower than the 

specified maximum threshold. This VaR-like value answers the question “What is the probability 

that implementation shortfall cost can be kept under a specific target?” Exhibit 4 illustrates this 

application, with c being the volatility-adjusted forecast of implementation shortfall, derived 

from the model’s parameter estimates, and x the volatility-adjusted maximum target. (For exam-

ple, we base our target on a maximum of 10 basis points in cost.) The intersection of the 

accumulative probability curve and the dashed line represents the probability of achieving a 

(volatility-scaled) cost less than or equal to x. When we calculate the VaR probabilities for all 
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ity-scaled) cost less than or equal to x. When we calculate the VaR probabilities for all the can-

didate algorithms, the strategy that achieves the highest probability is the optimal strategy for 

trading the order at hand: by using this strategy to trade the order at hand, we know it has the 

best chance of not incurring a cost higher than the maximum we are willing to tolerate. 

E X H I B I T  4  
Calculating Probability of Keeping IS Below x 

0

50
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c

Pr
ob

ab
ili

ty
 (%

)

x

 
 

 Of course, this is only one example of an algorithm selection criterion, and this is not 

meant to be a complete guide for such analysis. Our framework is flexible enough to accommo-

date the construction of any statistic a practitioner wishes to derive from the estimated models. 

Our feeling is that the criteria should be easy to understand and also easy to implement. 

 

CONCLUDING REMARKS 

 The rising popularity of algorithmic trading has led to the mushrooming of algorithm 

products in the marketplace today. A buy-side trader often has a large array of algorithmic 

choices available. Some of these algorithms may have come from in-house R&D, while others 

have been acquired from a third-party vendor and are likely to be of the “black box” type. 

 As we have amply demonstrated in this paper, using algorithms is not a simple task. The 

main advantages of using an algorithm, when used correctly, are two-fold: first, it gives the 

trader a systematic, disciplined way to trade an order that is consistent with the trading objective; 
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second, it generates an optimal trading trajectory that can maximize the chance of achieving the 

trading objective. To ensure algorithms are properly used, a trader must keep the following 

checklist of issues in mind when considering the use of algorithmic trading: 

 

• Nature of algorithmic strategy. A thorough analysis should be done on the nature of each 

algorithm before the algorithm is ever used. At a minimum, a trader should cast the algo-

rithm in the three-category paradigm we described. This paradigm helps the trader con-

ceptualize the underpinnings of each strategy so he or she can later quickly call on the 

appropriate strategies for an order. 

• Suitability of algorithmic trading. Some orders are less suitable for execution via an algo-

rithm and may be better handled (and closely monitored) by humans. These are typically 

very large orders, orders for stocks with difficult liquidity conditions, or those with very 

specific requirements. 

• Fit between order and algorithms. Even if an order is a “normal” one and can be algo-

rithmically traded, the trader must determine which available algorithms are suitable for 

this particular order. Algorithms are not all the same. Some are better under certain 

circumstances while others prevail under other circumstances. When offered an 

algorithmic trading product, the trader must question the vendor regarding the “optimal” 

operating conditions of the product. For instance, what is the tradable order size range (in 

shares, in bps relative to daily volume, or in bps relative to duration volume)? Does the 

algorithm handle extraordinarily low or high volatilities? Is the algorithm time-of-day-

dependent? • Choice of benchmark. Traders often have less flexibility in selecting the benchmarks as 

benchmarks are usually part of the desk’s trading policy, but it is still worth asking 

whether a given benchmark is the appropriate one under the circumstances. Additionally, 

it is important to have a good idea of how the benchmark is actually calculated inside the 

algorithm. 

 

 For the algorithm selection problem, we propose a quantitative approach that requires no 

knowledge of the internal mechanisms of the algorithm. Our approach focuses on performance 

attribution using historical data and provides parameters that help forecast the potential perform-
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ance of the algorithms in the context of the specific order and the prevailing market circum-

stances. 

 Our proposed framework is general and is broker-neutral. We demonstrate, by example,  

how to turn the framework into a reduced form that can be estimated and how to use the estima-

tion results in algorithm selection. The key takeaway is, it is not enough to just consider the com-

parative point estimates of the performance measure among the algorithm candidates. By 

considering the performance variance one can gain additional insight into how well each algo-

rithm will likely perform given the order at hand. In our study, we estimate a simple single-factor 

model that is both intuitive and easy to implement; it also requires little computation time to 

generate useable ex ante selection scores for the algorithms. 

 Quantitative pre-trade analysis of algorithms is an essential part of algorithmic trading 

and should not be omitted from the trader’s algorithmic toolkit. The extra time and effort needed 

to conduct the analysis will more than pay for itself, for each trade and in the long run, by help-

ing to ensure that the best algorithm be used in achieving the trading objective. 

 

END NOTES 

 1In addition to the problem of choosing from a large number of algorithms, one must also consider whether 

the order at hand is suitable for algorithmic trading. We will not address this second issue in this paper. The inter-

ested reader can see, for example, Domowitz and Yegerman [2005a, 2005b].  
 2Yang and Borkovec [2005], in contrast, use a two-category approach and characterize evaluative algo-

rithms as a special case of structured strategies. 

 3Some practitioners call the measure vis-à-vis mid-quote at entry (which is Perold’s original definition) “re-

alized market [or price] impact.” 

 4For example, opportunistic and evaluative strategies may dynamically adjust the order type of each trade 

to liquidity conditions. 

 5This may simply be a feature specific to the strategies we study; it is possible that some algorithmic strate-

gies in the marketplace can stay volatility-neutral. 

 6Any factor that is found to be significant empirically should also have sound economic justification behind 

it. 

 7In addition, this grouping approach can also be taken in regard to discrete factors such as exchange 

membership or industry sector classification. 
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