
Approximate Planning in Large POMDPs

via Reusable Trajectories

Michael Kearns �

AT&T Labs
Yishay Mansour y

AT&T Labs
Andrew Y. Ng
UC Berkeley

May 5, 1999
Abstract

We consider the problem of reliably choosing a near-best strategy from
a restricted class of strategies � in a partially observable Markov decision
process (POMDP). In particular, we are interested in what might be con-
sidered the sample complexity | that is, the amount of data or experience
we must generate in the POMDP in order to choose a good strategy. We
assume we are given the ability to simulate the behavior of the POMDP,
and we provide methods for generating simulated experience su�cient to
accurately approximate the expected return of any strategy in �.

We prove upper bounds on the amount of simulated experience our
methods must generate in order to achieve such uniform approximation.
These bounds have no dependence on the size or complexity of the under-
lying POMDP, depend only linearly on the complexity of the restricted
strategy class �, and depend exponentially on the horizon time. The main
challenge in obtaining such bounds lies in generating trajectories that can
be reused , in the sense that they simultaneously provide estimates of the
return of many strategies in the class.

Our methods can be viewed as generating a \small" set of trajectories
that provide an accurate estimate of the value of any strategy in the class.
They can thus be easily used with many standard approaches to search
in strategy space, such as gradient descent and local search. For such
algorithms, the exponential dependence on the horizon time can be re-
placed by a factor linear in the number of steps of search to be performed.
Although we emphasize the use of entire (�nite-horizon) trajectories for
obtaining accurate value function estimates, we note that our methods
can also be combined with standard TD(�) updates and variants.

Our measure of strategy class complexity generalizes the classical no-
tion of VC dimension, and our methods develop connections between prob-
lems of current interest in reinforcement learning and well-studied issues
in the theory of supervised learning. We also discuss a number of practical
planning algorithms for POMDPs that arise from our methods.

�Contact author. Address: AT&T Labs, Room A235, 180 Park Avenue, Florham Park,
New Jersey, 07932. E-mail: mkearns@research.att.com.

yOn sabbatical from Tel Aviv University.

1

1 Introduction

Markov decision processes (MDPs) and reinforcement learning have become a
standard framework for planning and learning in uncertain environments. The
desire to attack problems of increasing complexity with this formalism has re-
cently led researchers to focus particular attention on MDPs with (exponen-
tially or even in�nitely) large state spaces, and on partially observable MDPs
(POMDPs). A number of interesting and basic issues arise when designing
planning and learning algorithms for large POMDPs.

First, as the state space becomes large, the classical representation of a
POMDP by explicit tables of transition probabilities, rewards and observations
clearly becomes infeasible. To intelligently discuss the problem of planning |
that is, computing a good strategy in a given POMDP | compact or implicit
representations of POMDPs (such as representations in which the next-state
distributions can be factored [BDH99, BK98, KP99]) must be developed. Sec-
ond, even a compact representation of a POMDP is no guarantee that a good
strategy in that POMDP has a compact representation. Thus, we must also be
prepared to consider compact representations for strategies (such as those typi-
cally considered when using function approximation in standard MDPs [SB98]).

Motivated by these issues, in this paper we address the following question:
given the ability to simulate experience in a POMDP M , and given a class
of strategies �, how can we choose a � 2 � whose expected return is close
to the best possible within the class �? Here we are imagining that � is a
restricted class of strategies, perhaps given by some compact representation,
or perhaps de�ned by some natural limitation on strategies (such as having
bounded memory). We will focus on the question of how we should generate
experience in the POMDP in a way that allows us to simultaneously estimate
the value of as many strategies as possible.

More precisely, we consider a setting in which we are given access to a
generative model , or simulator, for M . Informally, this is a \black box" that
allows us to generate many trajectories of experience in the POMDP, from
di�erent states and under di�erent strategies. Generative models are a natural
way in which a large POMDP might be speci�ed, and are more general than
most compact, structured representations, in the sense that such representations
usually provide an e�cient way of implementing a generative model. Generative
models provide less information than explicit tables of probabilities, rewards,
and observations, but are more powerful than a single continuous, irreversible
trajectory of experience generated according to some �xed strategy. In this
sense, results obtained via a generative model blur the distinction between what
is typically called \planning" and \learning" in POMDPs.

We will study the question: How many calls to a generative model are
required in order to have data su�cient to choose a near-best strategy in a given

2

class? This question is analogous to the classical question of sample complexity
in supervised learning | but harder. The added di�culty lies in the reuse
of data. In the supervised learning setting, every random example hx; f(x)i
provides feedback about every hypothesis function h(x) (namely, how close h(x)
is to f(x)). If h(x) is restricted to lie in some \hypothesis class" H, this reuse
permits bounds on the number of random examples required that are far smaller
than the number of functions in H. For instance, if H contains only a �nite
number n of functions, O(log(n)) bounds (ignoring parameters of the problem
other than n for now) are obtained on the sample size required to choose a near-
best approximation to f(x) lying in H. In the case that H is in�nite, sample
sizes are obtained that depend only on some measure of the complexity of H
(such as VC dimension). Note that these bounds have no dependence on the
complexity of the target function f or the size of the input domain.

In the POMDP setting, however, we must decide how to use the generative
model | that is, which states and actions to feed to the generative model
| in order to recover this same desirable reuse of experience across multiple
strategies in our class. To see the issue more clearly, consider the \straw man"
algorithm that, starting with some initial strategy � 2 �, uses the generative
model to generate many Monte Carlo trials of � from the start state s0, and
thus form an accurate empirical estimate of V �(s0). It is not clear that these
trajectories under � are of much use in evaluating a di�erent �0 2 �, as � and
�0 may quickly disagree on which actions to take. Thus, the naive method of
generating Monte Carlo trials would result in O(n) bounds on the number of
calls to the generative model, rather than O(log(n)), for the �nite case j�j = n.

In contrast, in the ensuing sections, we shall present two di�erent ways
of generating \reusable" trajectories. Both methods yield similar theoretical
bounds. The �rst method, which we call trajectory trees, has an easier and
more intuitive analysis, and also directly suggests some practical algorithms for
approximate planning using a generative model. The second method, which we
call random trajectories, requires a more di�cult analysis, but uses a consider-
ably weaker form of generative model.

Both methods generate a (relatively) small number of trajectories | a num-
ber that is independent of the state-space size of the POMDP, depends only
linearly on a general measure of the complexity of the strategy class �, and
depends exponentially on the horizion time. We prove that these generated
trajectories are enough to give us accurate estimates of the expected return of
any strategy in �. Both methods can be viewed as generating a \small" set
of trajectories that provide an accurate estimate of the value of any strategy
in the class. They can thus be easily used with many standard approaches to
search in strategy space, such as gradient descent and local search. For such
algorithms, the exponential dependence on the horizon time can be replaced by
a factor linear in the number of steps of search to be performed. Although we

3

emphasize the use of entire (�nite-horizon) trajectories for obtaining accurate
value function estimates, we note that our methods can also be combined with
standard TD(�) updates and variants.

Our measure of strategy class complexity is inspired by and generalizes the
notion of VC dimension in supervised learning, and we give bounds that recover
for our setting the most powerful analogous results in supervised learning |
bounds for arbitrary, in�nite strategy classes that depend on the dimension of
the class rather than the size of the state space.

Although our development concentrates on restricted classes of strategies,
this can be translated to many other types of restriction. For example, if we
restrict our value function estimates to be of a certain parametric form, this
implies a restriction on policies, namely to those policies that can be achieved
by behaving greedily with respect to the parametric value functions. Similarly,
if we estimate models of a POMDP that lie in some restricted class (for instance,
POMDPs with factored next-state distributions), this implies a restriction to
strategies that are optimal with respect to such POMDPs. In this way, our
results for restricted strategy classes can be applied to any other hypothesized
constraint on a POMDP planning problem.

Our main contributions are:

� Giving speci�c methods for generating \resuable" trajectories from gen-
erative models;

� Proving that these methods allow the generation of a set of trajectories
su�cient to evaluate an entire class of strategies;

� Giving practical algorithms for approximate planning in POMDPs based
on resuable trajectories;

� Establishing connections between natural problems in supervised learning
and reinforcement learning, via generalizations of the VC dimension.

2 Preliminaries

We begin with the de�nition of a (partially observable) Markov decision process,
explicitly allowing the possibility of an in�nite number of states.

De�nition 1 A Markov decision process (MDP) over a state set S, with
start state s0 2 S, and actions fa1; : : : ; akg, consists of:

� Next-state distributions: For each state-action pair (s; a), a next-state
distribution P (s0js; a) that speci�es the probability of transition to each
state s0 upon execution of action a from state s.

4

Note that
P

s0 P (s0js; a) = 1 if S is �nite, and
R
S
P (s0js; a)ds0 = 1 in the

case of in�nite S.

� Rewards: For each state-action pair (s; a), a real-valued reward 1 R(s; a)
for executing action a from state s. We assume rewards are bounded in
absolute value by Rmax.

A Partially Observable Markov Decision Process (POMDP) consists of
an underlying MDP and observation distributions Q(ojs) for each state s.
Here o is a random variable called the observation made at state s.

In the above de�nitions we have a assumed a designated start state. This
is because once we limit the class of strategies we will entertain, there may not
be a single \best" strategy in the class, unless we explicitly induce a metric
of some kind | one strategy might be better from certain states, and another
strategy better from other states, and so there may not be a single strategy that
is optimal from all states. We thus adopt the common assumption of a �xed
start state s0 in the underlying MDP. (An equivalent de�nition is to assume a
�xed distribution D over start states, since s0 can be a \dummy" state whose
next-state distribution under any action is D.)

An agent wandering in a POMDP takes actions and receives rewards, as
in an MDP, but the agent never directly sees the identity of the current state.
Rather, the agent has access only to the current observation. This step towards
realism greatly complicates the problems of both planning and learning. Intu-
itively, the agent may never know the true state, but must attempt to track the
current belief state | that is, the likelihood that it is in each of the possible
states of the underlying MDP. In general, this belief state may be arbitrarily
complex, depending strongly on both the initial state of the underlying MDP
(or an initial distribution of states), as well as on the entire history of actions
and observations. This is a sharp contrast to the fully observable case, where
the optimal policy depends only on the current state. Recent work has made
some interesting proposals for planning in POMDPs via approximate belief state
tracking [BK98, MS99].

We will primarily be interested in POMDPs with a large or in�nite number
of states, thus precluding approaches that require access to explicit tables de-
scribing the next-state and observation distributions and the rewards. Instead,
we assume that our algorithms are \given" a POMDP M in the form of the
ability to sample the behavior ofM . Thus, the model given is simulative rather
than explicit. We call this ability to sample the behavior of M a generative
model .

1Note that for simplicity, we have assumed that all rewards are in fact deterministic.
However, all of our results have easy generalizations for the case of stochastic rewards (with
an appropriate and necessary dependence on the variance of the reward distributions).

5

De�nition 2 A generative model for a POMDP M is randomized algorithm
that, given as input a state-action pair (s; a), outputs a state s0 that is distributed
according to the next-state distribution P (�js; a), an observation o that is dis-
tributed according to the distribution Q(�js), and the reward R(s; a).

Thus, a generative model for a POMDP simply consists of a generative model
for the underlying MDP, along with a random observation at each state. At �rst
blush, this de�nition may seem unreasonably generous | we are essentially
assuming that we are provided with a fully observable simulation of a partially
observable process. However, the key point is that algorithms provided with this
generative model must still �nd a strategy that performs well in the partially
observable setting. For instance, although we could simply use the generative
model to �nd a near-optimal policy (state-to-action mapping) for the underlying
MDP [KMN99], this policy will be useless in the POMDP, where the state is
unknown. We can really only use the generative model to �nd a strategy that
maps from (histories of) observables to actions. As a concrete example, in
designing an elevator control system [CB96], we may have access to a simulator
that generates random rider arrival times, and keeps track of the waiting time of
each rider, the number of riders waiting at every oor at every time of day, and
so on. However helpful this information might be in designing the controller,
this controller must only use information about which oors currently have had
their call button pushed (the observables). In any case, readers uncomfortable
with the power provided by our POMDP generative models are referred to the
results of Section 5, where they are replaced by an extremely weak form of
simulation | namely, a subroutine for generating only the observable history
along truly random trajectories, with no ability to \reset" the simulation to any
chosen state.

We now move on to de�ne strategies and strategy classes in a POMDP. In
general, an agent will, at any time t, have seen some sequence of observables
o0; : : : ; ot, and will have chosen actions and received rewards for each of the t
time steps prior to the current one. Thus, we may write its observable history
as a list of triples of observations, actions and rewards:

h = h(o0; a0; r0); : : : ; (ot�1; at�1; rt�1); (ot; ;)i

where the last entry indicates that observable histories always conclude with
the observation made at the (unknown) �nal state reached. We will also refer
to observable histories as trajectories. Such trajectories are the inputs to
strategies:

De�nition 3 A strategy � in a POMDP is any (stochastic) mapping from
�nite observable histories h(o0; a0; r0); : : : ; (ot�1; at�1; rt�1); (ot; ;)i to actions.
A strategy class � is any set of strategies. The expected return of a strategy
� starting from state s0 is denoted by V �(s0).

6

Of course, this de�nition includes the special case in which the MDP is fully
observable (the observations are the states), and � is simply a class of policies.
As we have already remarked, we can think of � as representing a constraint
or bias on strategies adopted with the hope of avoiding the intractability of full
belief-state planning, while still permitting good, if suboptimal, performance.

Our results are rather general with respect to the notion of return that is
used. Our main assumption is that for any history h, the return along h can be
approximated by a (possibly discounted) sum of the �rst H� rewards, with an
error of at most �. We refer to H� as the �-horizon. This assumption includes
two well-studied notions of return. The �nite-horizon average return, with
horizon H, is handled by simply setting H� = H. Here, by de�nition, the return
depends only on the �rst H steps taken from the start state, so the parameter
� is unnecessary. The standard in�nite-horizon discounted return is also
easily handled. Let be the discount factor. The return along a history h isP1

i=1
i�1ri where ri is the ith reward in h. If we set H� = log (�(1�)=Rmax),

we are guaranteed that the discounted return beyond the �rst H� steps cannot
contribute more than �. We also assume there is a bound Vmax on the return
of any trajectory; for example, Vmax = Rmax=(1�) su�ces in the discounted
case. It is worth noting that the in�nite undiscounted return does not fall into
this category, and our techniques cannot be directly applied to it.

As discussed before, once we limit the class of strategies we will entertain,
there may not be a single strategy in the class that is the best from every state,
and therefore we compare the strategies with respect to the designated start
state s0. This permits the following de�nition.

De�nition 4 Let M be a POMDP with start state s0, and let � be a class of
strategies. Then

opt (M;�) = sup
�2�

V �(s0) (1)

where V �(s0) is the expected return of � from s0.

With these de�nitions, we can now state our problem more precisely. We are
given a generative model for a POMDP M and a strategy class �. How many
calls to the generative model must we make in order to have enough data to
choose a � 2 � whose performance V �(s0) approaches opt(M;�)? And more
importantly, which calls should we make to the generative model in order to
minimize the number of calls required?

3 The Trajectory Tree Method

We now describe the �rst of our two methods for creating \reusable" trajectories
from a generative model. Although this method requires a stronger generative

7

a1 a2 a1 a2 a1 a2 a1 a2a1 a2 a1 a2

a1 a1a2 a2

a1 a2

a1 a2

 H
Depth

a1 a2

a1 a1a2 a2

a1 a2

a1 a2
...

ε

 (s0,o0)

 (s2’,o2’) (s1’,o1’)

(a2,r2’)(a1,r1’)

Figure 1: The structure of a typical trajectory tree. (Shown here with actions a1 and a2,

and with observation, state, and reward labels omitted below the second level.)

model than that required of our second method (presented in Section 5), it
enjoys two advantages over that method that justify our considering it �rst.
First, it has a simpler and more intuitive analysis. Second, it directly leads to
some practical gradient ascent algorithms that we describe in Section 4.

Recall that we are given a generative model for a POMDP M with distin-
guished start state s0. For ease of exposition, we assume there are only two
actions in M , action a1 and action a2, but our results easily generalize to any
�nite number of actions (see Appendix C).

A trajectory tree is simply a binary tree in which each node is labeled by
both a state in M and an observation, and has a single child for action a1 and
a single child for action a2. Additionally, each link from a parent to a child
will have a reward labeling that link. The depth of the tree will always be H�,
the �-horizon time 2, so the total size (number of nodes) in each trajectory tree
will be about 2H�. We will eventually discuss various settings in which this
exponential dependence on H� can be avoided.

A trajectory tree is built in a straightforward manner from the generative
model. The root will always be labeled by the start state s0 and the observation
o0. To generate the two children of the root, we call the generative model
on (s0; a1) and (s0; a2), and the generative model returns the two next states
reached (say s01 and s

0
2, respectively), the two observations made (say o01 and o

0
2,

2Again, here we are simultaneously covering both the case of �nite-horizon average return
and in�nite-horizon discounted return.

8

respectively), and the two rewards received (r01 = R(s0; a1) and r02 = R(s0; a2)).
Then (s01; o

0
1) and (s

0
2; o

0
2) will label the a1-child and a2-child of the root, and the

links from the root to these children will have rewards r01 and r02. Recursively,
for any node s of depth less than H�, we generate two children and rewards in
the same way with the generative model. (See Figure 1.)

Now for any deterministic strategy �, and for any trajectory tree T , � ac-
cumulates a well-de�ned return on T . Strategy � de�nes a path through the
tree T | we start � at the root, where it sees whatever observation is stored
there (that is, the observable history so far consists only of this observation).
Strategy � then decides to either take action a1 or action a2, which selects a
child of the root. Inductively, if � has reached some internal node in T , we can
feed to � the entire observable history generated along the path to this node,
and discover which child of the current node � selects. In this way, we \run" �
on T to reach some leaf node of T , and we de�ne the return R(�; T) to be the
return along the path taken by �. In the general case that � is stochastic, �
de�nes a distribution on paths in T , and R(�; T) becomes the expected return
according to this distribution. If we have created trajectory trees T1; : : : ; Tm, a
natural estimate for V �(s0) is then

V̂ �(s0) =
1

m

mX
i=1

R(�; Ti): (2)

For technical reasons, all trajectory trees in the remainder of this section are
assumed to have depth equal to the �=2-horizon (rather than the �-horizon)
time. Our main goal in this section is now to establish a nontrivial relationship
between the quality of this estimate and the \sample size" m. As is typical of
analogous results in supervised learning, we will actually prove uniform con-
vergence theorems. Section 3.1 �rst treats the easiest case, that of �nite �;
Section 3.2 then extends the theorem to in�nite � for deterministic strategies;
and Section 3.3 �nally generalizes the result to in�nite and stochastic �.

3.1 The Case of Finite �

To convey the intuition via the simplest analysis, we begin with the case where
� is a �nite class of n strategies.

Theorem 3.1 Let � be any class of n (stochastic) strategies in an arbitrary POMDP
M . Let m trajectory trees be created using a generative model for M , and let V̂ �(s0)
be the resulting estimates. If

m = O((Vmax=�)
2 log(n=�)) (3)

then with probability at least 1� �, jV �(s0)� V̂ �(s0)j � � holds simultaneously for all
� 2 �. The total number of calls made to the generative model will thus be at most
2H�m = O(2H�(Vmax=�)

2 log(n=�)).

9

Proof (Sketch): Let us �x any strategy � 2 �. Then each trajectory tree
is used to generate a run (or distribution on runs) of the strategy �, and our
estimate V̂ �(s0) for the return of strategy � is the average return of its m runs
(distributions on runs). The crucial observation is that for this �xed �, the
values R(�; Ti) that are generated by the di�erent trajectory trees Ti are inde-
pendent. This is easily seen if we imagine that each trajectory tree is constructed
by �rst constructing the path (or distribution on paths) determined by �, and
then afterwards constructing the rest of the tree. The resulting distribution on
trees is identical to the distribution generated by our original description.

This independence implies that we can apply the Cherno� bound for the
deviation of an estimate from its mean. Since the maximum return is bounded
by Vmax , we have that the probability that the deviation is more than �=2 is

bounded by e��
2m=(4Vmax

2).

So far we have restricted our attention to a �xed policy �. By appealing to
the so-called union bound , we have that the probability that any � 2 � deviates
by more than �=2 from its mean is bounded by ne��

2m=(4Vmax
2) = �. Finally, the

error from truncation at depth H�=2 is at most �=2. Hence, we have that with
probability 1� �, the largest deviation of our estimates from the true values is
at most �=2 + �=2 = �. 2

The crucial point to note about this result is the dependence on n: it is only
logarithmic in n, as opposed to the linear bound expected for the straw-man
Monte Carlo approach described earlier. Thus, the trajectory tree approach is
achieving considerable reuse of the generated experience: with only on the order
of log(n) data, we can get an excellent estimate of the value of all n strategies.

3.2 The Case of In�nite Deterministic �

We now move on to the more general case of in�nite classes of deterministic
strategies. Our treatment will again parallel the theme of data reuse in su-
pervised learning, and while this section will give a complete description and
explanation of our result, some of the mathematical details will be left to Ap-
pendix A.

When addressing the sample complexity of supervised learning, perhaps the
most important observation is that even though a class H may be in�nite, the
number of possible behaviors ofH on a �nite set of points is often not exhaustive.
More precisely, in the case of a class of boolean functions, we say that the set
x1; : : : ; xd is shattered by H if every of the 2d possible labelings of these points
is realized by some h 2 H. The VC dimension of H is then de�ned as the size
of the largest shattered set. It is known that if the VC dimension of H is d,
then the number �d(m) of possible labelings induced by H on a set of m points
is bounded by (em=d)d, which is much less than 2d for d� m. This nontrivial

10

bound provides the key leverage exploited by the classical VC dimension results,
so we will concentrate on replicating this leverage in our setting.

In the interests of concreteness, we will now focus on and sketch the ideas
behind the two-action case of our theorem, which can be done by appealing only
to the familiar VC dimension of boolean functions. Generalizations of all of our
results to the case of multiple actions are provided in Appendix C.

Suppose � is an in�nite class of deterministic strategies in a two-action
POMDP. Then each strategy � 2 � is simply a deterministic function mapping
from the set of all observable histories to the set fa1; a2g, and thus can be
viewed as a boolean function on observable histories. We can thus write VC(�)
to denote the familiar VC dimension of the set of binary functions �.

We now show intuitively why a strategy class � of bounded VC dimen-
sion d cannot induce exhaustive behavior on a set T1; : : : ; Tm of trajectory
trees for m � d. Note that if �1; �2 2 � are such that their \labelings"
hR(�1; T1); : : : ; R(�1; Tm)i and hR(�2; T1); : : : ; R(�2; Tm)i di�er, then we must
have R(�1; Ti) 6= R(�2; Ti) for some 1 � i � m. But if �1 and �2 give di�erent
returns on Ti, then they must choose di�erent actions at some node in Ti. Thus,
if h is the observable history leading to that node, �1(h) 6= �2(h). In other words,
every di�erent labeling of the set of m trees yields a di�erent labeling of the set
of m � 2H� observable histories that are given by the trees. This means that the
number of di�erent tree labelings can be at most �d(m � 2H�) � (m � 2H�=d)d.
By developing this argument carefully, and appealing to classical uniform con-
vergence techniques, we obtain the following theorem.

Theorem 3.2 Let � be any class of deterministic strategies for an arbitrary two-
action POMDP, and let VC(�) be the VC dimension of �. Let m trajectory trees be
created using a generative model for M , and let V̂ �(s0) be the resulting estimates. If

m = O
�
(Vmax=�)

2(H�VC(�) + log(1=�))
�

(4)

then with probability at least 1� �, jV �(s0)� V̂ �(s0)j � � holds simultaneously for all
� 2 �.

The full proof of this Theorem is in Appendix A.

3.3 The Case of In�nite Stochastic �

We now address the general case of in�nite stochastic strategy classes. Again
for the sake of concreteness, we focus on the two-action case, deferring details
of the multiple action case to Appendix C.

Our approach involves transforming stochastic strategies into deterministic
ones, thereby reducing to the case handled in the previous section. In particular,
given any class of stochastic functions �, each with domain X (where X is the
set of all possible �nite observable histories), we �rst extend the domain from

11

X to X � [0; 1]. For each stochastic function � 2 �, we de�ne a corresponding
deterministic function �0 overX�[0; 1] as follows: �0(h; r) = a1 if r � Pr[�(h) =
a1], and �0(h; r) = a2 otherwise. Let �0 be the collection of these deterministic
functions �0.

Given a set of stochastic strategies �, we now de�ne its pseudo-dimension
pVC(�) to be VC(�0), the VC dimension of the corresponding set of deter-
ministic strategies. (This is equivalent to the conventional de�nition of the
pseudo-dimension of �, when � is viewed as a set of maps into real-valued
action-probabilities.)

We now show how we can modify the original POMDP such that the exe-
cution of the stochastic strategy � in the original POMDP is equivalent to the
execution of the deterministic strategy �0 in the modi�ed POMDP. We �rst
explain the construction assuming full observability. Intuitively, we simply add
to each state an observable value r 2 [0; 1] which is uniformly distributed. For-
mally, given an MDP with states S, we augment the state space to become
S � [0; 1]. On state transitions that would have entered a state s in the original
MDP, we now enter an augmented state (s; r), where r is distributed uniformly
in [0; 1], and is independent of all previous events. It is easy to see that if in the
original MDP the stochastic policy � had some probability p = Pr[�(s) = a1]
of taking action a1, then �0 has the same probability of doing so.

Thus, by construction the transformed MDP has left the underlying transi-
tion probabilities (viewed as functions only of s) unchanged. Indeed, to an ob-
server seeing only a sequence of the s-components (and not the r-components),
a stochastic � : S 7! fa1; a2g executed on the original MDP would be indis-
tinguishable from the corresponding deterministic �0 : S � [0; 1] 7! fa1; a2g
executed on the augmented MDP, as desired. Thus, it is easy to see that
V �(s0) = Er [V �0

(s0; r)], where the left-hand side is the value function in the
originalMDP, the right-hand side is the value function in the MDP with the aug-
mented states, and � 2 � and �0 2 �0 are any pair of corresponding stochastic
and deterministic strategies.

Returning to the partially observable case, the observable histories can also
be augmented with these (observed) extra random variables at each state, and
the action taken now depends on r at the current state. Moreover, since we are
now working with deterministic strategies, evaluation of R(�0; T 0) on a given
trajectory tree T 0 (which is essentially an unaugmented trajectory tree T , with
an additional random variable r at each of its state-nodes) would require only
taking one path deterministically through the tree. Doing so, we get an estimate
of the value of �0 and therefore an estimate of the value of the corresponding
stochastic �. Our result for deterministic strategies therefore applies, giving the
following theorem.

Theorem 3.3 Let � be any class of stochastic strategies for an arbitrary two-

12

action POMDP, and let pVC(�) be the pseudo-dimension of �. Let m trajectory
trees be created using a generative model for M with augmented states, and let
V̂ �(s0) be the resulting estimates derived using their corresponding deterministic
strategies. If

m = O
�
(Vmax=�)

2(H�pVC(�) + log(1=�))
�

(5)

then with probability at least 1 � �, jV �(s0)� V̂ �(s0)j � � holds simultaneously
for all � 2 �.

We note that a very similar result can be obtained for the original proposal
of averaging over all paths in the original trajectory tree T (without the state
augmentation proposed above).

4 Algorithms for Approximate Planning

Given a generative model for a POMDP M , the uniform convergence results of
the preceding sections immediately suggest a class of algorithms for approximate
planning, given a strategy class �: we generate m trajectory trees T1; : : : ; Tm,
and search for a � 2 � that maximizes V̂ �(s0) = (1=m)

P
R(�; Ti). The follow-

ing simple corollary to the uniform convergence results establishes the soundness
of this approach.

Corollary 4.1 Let � be a class of strategies in a POMDP M , and let the number
m of trajectory trees be as given in Theorem 3.1 (�nite �), Theorem 3.2 (in�nite
deterministic �) or Theorem 3.3 (in�nite stochastic �). Let

�̂ = arg max
�2�

fV̂ �(s0)g (6)

be the policy in � with the highest empirical return on the m trajectory trees. Then
with probability at least 1� �, �̂ is near-optimal within �:

V �̂(s0) � opt(M;�)� 2�: (7)

If it is computationally infeasible to perform the suggested maximization, one
can search for a local maximum � instead, and uniform convergence again as-
sures us that V̂ �(s0) is a trusted estimate of our true performance. Of course,
even lowering our ambitions to �nding a local maximum of the surface V̂ �(s0)
remains an expensive proposition, since each trajectory tree is of size exponential
in H�.

However, in practice it may be possible to signi�cantly reduce the cost of
the search, by means of a simple observation. Suppose we are using either a
class � of deterministic strategies (or transformed stochastic strategies), and
that we perform a greedy local search over � to optimize V̂ �(s0). Then at any
time in the search, to evaluate the policy we are currently considering, we really

13

need to look at only a single path of length H� in each tree, corresponding to
the path taken by the strategy being considered by our local search. Thus, we
should build the trajectory trees lazily | that is, incrementally build each node
of each tree only as it is needed to evaluate R(�; Ti) for the current strategy �.
If there are parts of a tree that are reached only by poor policies, then a good
search algorithmmay never even build these parts of the tree. In any case, each
step of the local search now takes time only linear in H�.

Avoiding the exponential dependence on H� via lazy trajectory tree con-
struction would appear to apply only to the case of deterministic strategies,
or to stochastic strategies transformed into deterministic ones. Without the
state augmentation described in the last section, stochastic strategies de�ne a
distribution over all the paths in a trajectory tree, and thus evaluation of the
current � may in general require examining complete trees. However, suppose
� = f�� : � 2 Rdg is a smoothly parameterized family of stochastic strategies. It
turns out that there is a practical implementation of stochastic gradient ascent
on V̂ �� (s0) that again has per-step time that is only linear in H�. The key to the
stochastic gradient ascent algorithm is that it subsamples the trajectory trees,
again permitting lazy construction. The update made to the current position
�0 at each step will be a learning-rate parameter times an unbiased estimate of
the gradient (d=d�)V̂ �� (s0) evaluated at �0.

In fact, in the discounted case, rather than doing stochastic gradient ascent
on V̂ �� (s0), it is possible to perform stochastic gradient ascent directly on the
true value function V �� (s0). Formally, in Appendix B we give an algorithm
that, given a generative model for the POMDP and a setting of the parameters
�0, enjoys the following properties:

� (E�ciency) The algorithm has expected running time O(1=(1�));

� (Unbiasedness) The algorithmoutputs an unbiased estimate of (d=d�)V �� (s0);

� (Bounded Variance) This estimate has bounded variance (for �xed ;Rmax ,
and given a bound on the gradient j(d=d�)Pr[��(s) = a]j of the parame-
terized family itself).

It should be clear that the three conditions above are exactly what we need to
do stochastic gradient ascent directly on the surface V �� (s0). We note that this
algorithm leads us close to an interesting line of research pursued by Kimura,
Yamamura and Kobayashi [KYK95], and that our procedure is also similar in
spirit to William'sReinforce [Wil92]. (See also the recent paper by Baird and
Moore [BM99], which gives a generalization of Reinforce.) The main di�er-
ences between our approach and Kimura et al. and Williams are the following.
First, we �nd an unbiased estimate of the gradient in �nite time, whereas they
only converge to such an estimate asymptotically. Second, we explicitly bound

14

the variance of our estimator, whereas if we assume only a bound on the deriva-
tive of Pr[��(s) = a] as we did above, either of the previous algorithms can still
have arbitrarily large variance3.

5 The Random Trajectory Method

We now move on to present the second of our two methods for generating
only a small number of trajectories su�cient to evaluate all the strategies in
a large class. We call this second approach the random trajectory method,
and one advantage it enjoys over the trajectory tree method is that it does
not need the full power of a generative model for the POMDP. In fact, the
random trajectory method requires only the observable histories generated by
truly random trajectories from the start state. Resets to states other than the
start state are unnecessary, as is the ability to see the underlying states along the
trajectory. We begin with a de�nition capturing this weaker form of simulation.

De�nition 5 A random trajectory generator for a partially observable
Markov decision process M generates an observable history of a given length
H starting from the start state s0 by following the truly random policy (at each
state each action is equally likely). Thus, the generator outputs only the observ-
able history

h(o0; a0; r0); : : : ; (oH�1; aH�1; rH�1); (oH ; ;)i (8)

generated from s0 by choosing each ai uniformly from the set of actions.

As was the case for the depth of our trajectory trees in Section 3, we will choose
the length H of our random trajectories to be the �-horizon time H�. In this
section, we discuss only deterministic policy classes. Our results can be extended
to stochastic policy classes following the same lines of Section 3.3.

Recall that in the method of trajectory trees, we used a (stronger) generative
model to create a �nite set of trajectory trees, and proved that this set gave
uniformly good estimates of expected return within �. Here the proposal is even
simpler, but its analysis will be more challenging: we will simply take m truly
random histories, derive from these histories an estimate of V �(s0) for every
� 2 �, and show that a relatively small value for m again yields uniformly good
estimates.

Recall that each trajectory tree T allowed us to get an evaluation of any
deterministic strategy �, since any � always de�nes some path in T . But if h
is just a single random history, how can we evaluate an arbitrary � on t, given

3Though there are stronger assumptions that will allow bounding these variances. Basi-
cally, in�nite variance should not occur if we implement �� via a function approximator with
sigmoidal or softmax outputs. Details in Appendix B.

15

that � may diverge from h? The answer is that we cannot. Instead let us de�ne
the variable acc�(h) to be 1 if � \accepts" the history h and 0 otherwise. More
precisely, given a history h, if for any pre�x of h the strategy � would have
generated the same action, then acc�(h) = 1 (recall that � is deterministic).

We can now de�ne the estimate of V �(s0) we derive from a set of random tra-
jectories. Let H = fh1; : : : ; hmg be a set of histories from the random trajectory
generator. For each strategy � 2 �, de�ne V̂ �(s0) as follows. Let S�(H) � H
include all the histories for which acc�(h) = 1; thus,

S�(H) = fhjh 2 T and acc�(h) = 1g: (9)

Then V̂ �(s0) is the average return of the histories in S�(T):

V̂ �(s0) = (1=jS�(H)j)
X

h2S� (H)

r(h) (10)

where r(h) is the return of trajectory h.

Thus, in analogy with Section 3, we now have a method of generating a set
ofm random observable histories H = fh1; : : : ; hmg (as opposed to m trajectory
trees), and for any strategy �, there is a well-de�ned estimate V̂ �(s0) based on
the set H. As in Section 3, we wish to establish a nontrivial relationship between
the \sample size" m and the deviations jV �(s0) � V̂ �(s0)j for all � 2 �. We
again begin with the case of �nite �.

5.1 Random Trajectory Analysis: Finite Strategy Classes

LetD� be the distribution on observable histories h induced by �; thus,D�(h) is
the probability that following policy � from s0 forH steps generates h. Similarly,
let D$ be distribution on observable histories induced by the truly random
trajectory generator.

We start with a few simple lemmas about these distributions. Lemma 5.1
establishes that for any �xed strategy �, there is a 1=2H probability that the
random trajectory generator will produce a history that is accepted by (that
is, consistent with) �. Lemma 5.2 establishes that for any �xed strategy �, a
history generated by the random trajectory generator and accepted by � can be
viewed as a Monte Carlo trial of �.

Lemma 5.1 For any strategy �,

Prh�D$
[acc�(h) = 1] =

1

2H
: (11)

16

Proof: Note that D$(h) = (1=2H)P (h), where

P (h) = Q(o0js0)P (s1js0; a0) � � �Q(oH�1jsH�1)P (sH jsH�1; aH�1)Q(oH jsH):
(12)

Therefore,

Prh�D$
[acc�(h) = 1] =

X
h

1

2H
P (h)acc�(h) =

1

2H

X
h

P (h)acc�(h): (13)

But D�(h) = P (h)acc�(h), and for this reason
P

h P (h)acc�(h) = 1. 2

Lemma 5.2 For any policy �, and any history h,

D�(h) = D$(hjacc�(h) = 1): (14)

Proof: Recall that D�(h) = P (h)acc�(h) and D$(h) = (1=2H)P (h). This
implies that D$(h and acc�(h) = 1) = (1=2H)P (h)acc�(h). Finally, by Lemma
5.1, Prh�D$

[acc�(h) = 1] = 1=2H . Using Bayes formula one can see that the
two probabilities are identical. 2

Next we show that, if we let the set H of histories returned by the random
trajectory generator be su�ciently large, with high probability, the sets S� of
accepted histories are \large" for every � 2 �, where � is a �nite class of
deterministic strategies.

Lemma 5.3 Let H be a set of m histories returned by the random trajectory
generator, and let � be a �nite class of n deterministic strategies. Provided that
m > 2H+3 log(2n=�), the probability that there exists a strategy � 2 � for which
jS�(H)j < m=2H+1 is at most �=2.

Proof: For a given strategy �, the expected number of trajectories in S� isP
h2H acc�(h) = m=2H by Lemma 5.1. Therefore the probability that � will

accept fewer thanm=2H+1 trajectories is bounded by e�m=2H+3

. The probability

that some � has jS� j < m=2H+1 is bounded by ne�m=2H+3

. Therefore, for
m > 2H+3 log(2n=�) the probability is at most �=2. 2

The �nal step in the �nite � analysis is showing that if S� is su�ciently
large, then the value of V̂ �(s0) is a good approximation to the expected return
of �.

Lemma 5.4 Let H be a set of histories returned by the random trajectory gen-
erator, and let � be a �nite class of n deterministic strategies. Conditioned on
the event that

jS�(H)j > m1 =

�
Vmax
�

�2
log(2n=�) (15)

17

for every � 2 �, with probability 1� �=2,

jV̂ �(s0)� V �(so)j � � (16)

for every � 2 �.

Proof: Under the conditioning event, for a given strategy � the probability
that the estimate deviates by � is at most e��

2m1=Vmax
2

; here we are using the
fact that the histories in S�(H) are distributed according to D�(�) (Lemma 5.2).

The probability that some � deviates by � is thus bounded by ne��
2m1=Vmax

2
.

2

We can now state and prove our main theorem for the case of �nite �.

Theorem 5.5 Let H be a set of m histories returned by the random trajectory
generator, and let � be a �nite class of n deterministic strategies. Provided that

m > 2H+3(Vmax=�)
2 log(2n=�) (17)

with probability at least 1� � we have���V �(s0)� V̂ �(s0)
��� � � (18)

simultaneously for all � 2 �.

Proof: By our choice ofm, Lemma 5.3 guarantees that with probability 1��=2,
for each � 2 � we have that jS�(H)j > m1. By Lemma 5.4 this implies that,
with probability 1� �=2, we have jV̂ �(s0) � V �(so)j � � for all � 2 �. 2

If we compare Theorem 5.5 to Theorem 3.1 (the uniform convergence re-
sult for trajectory trees in the �nite � case), we see that the total amount of
experience that must be generated in the POMDP is quite similar. The main
di�erences are in how that experienced is organized | in one case into trajec-
tory trees, and in the current case a at list of random histories | and in how
it is generated , in the current case from a much weaker simulative model than
is required to build trajectory trees.

5.2 Random Trajectory Analysis: In�nite Strategy Classes

We now move on to sketch the derivation of our results for in�nite classes of
strategies, still limiting our attention to the case where all strategies are deter-
ministic for simplicity.

Let � be an in�nite class of deterministic strategies in a two-action POMDP.
Let us associate with � the class FH

� = facc�(h) : � 2 �g of binary functions
mapping observable histories h of length exactly H to f0; 1g. We �rst bound the
VC dimension of FH

� in terms of the VC dimension of � (which is well-de�ned,
since each � 2 � maps histories of any length to fa1; a2g).

18

Lemma 5.6 Let � be any class of deterministic strategies in a two-action
POMDP, and let VC(�) be the VC dimension of �. Then

VC(FH
�) = O(VC(�) log(H)): (19)

Proof: Let H be any set of observable histories of length H. Note that if
�1; �2 2 � have identical behavior on all pre�xes of histories in H | that is,
�1(h[j]) = �2(h[j]) for all h 2 T and all 1 � j � H | then we must have
acc�1 (h) = acc�2 (h) for all h 2 T . Thus, each di�erent labeling of H by the
class FH

� gives a di�erent labeling by � of the set of all pre�xes ofH. If FH
� shat-

ters d length-H histories, we must have 2d � �VC(�)(dH) � (dH=VC(�))VC(�),
where �d(m) is the dichotomy-counting function of uniform convergence the-
ory [Vap82]. The lemma follows from some algebraic manipulations. 2

The following lemma states that for each strategy in �, we have many tra-
jectories that it accepts.

Lemma 5.7 Let H be a set of m histories returned by the random trajectory
generator, and let � be any class of deterministic strategies. Provided that
m = O(2H log(VC(�)=�)), the probability that there exists a strategy � 2 � for
which jS�(H)j � m=2H+1 is at most �=2.

Let us review a bit. Lemma 5.1 shows that the expected fraction of the
h 2 H satisfying acc�(h) = 1 is exactly 1=2H , while Lemma 5.6 establishes that
the VC dimension of the variables acc�(h) is bounded. From this we proved in
Lemma 5.7 that for su�ciently large sample size m, all the sets S�(h) will be
large. However, this is not quite enough |merely having large samples of Monte
Carlo trials of each � (which by Lemma 5.2 is exactly what the S�(H) are) does
not ensure that the average return over each S�(H) will be near V

�(s0). In other
words, since the reader can readily verify that V �(s0) = Eh�D$

[2Hacc�(h)r(h)],

and that V̂ �(s0) = (1=m�)
P

h2H acc�(h)r(h) (where m� = jS�(H)j), it is not
uniform convergence of the variables acc�(h) we are concerned with so much as
uniform convergence of the variables acc�(h)r(h). For this we require general-
izations of VC dimension such as combinatorial dimension [Hau92], since the
acc�(h)r(h) are now real-valued rather than binary variables.

For this reason we need to extend the family F� to G�, by de�ning g�(h) =
f�(h)r(h). The important point is that r(h) is �xed by the model, and therefore
independent from �. For the function class G� it is easy to show that combina-
torial dimension is equal to the VC dimension of F�. Since we bounded the VC
dimension of F� by O(d logH) we immediately have a bound for the combina-
torial dimension of G�. Given that G� has a bounded combinatorial dimension,
we can deduce that the estimates for all g� converge uniformly. The following
lemma formalizes this.

19

Lemma 5.8 Given that

m > c(
d0

�02
(log 1=�0) +

1

�02
log 1=�); (20)

we have that for every � 2 �, with probability at least 1� �,

jV̂ �(s0) � V �(s0)j � �; (21)

where �0 = �=2HVmax and c is a constant. The probability is over the draw of
the random trajectories in H.

Now we can state the main result of this section.

Theorem 5.9 Let � be any class of deterministic strategies in a two-action
POMDP M , and let H = fh1; : : : ; hmg be m histories from the random trajec-
tory generator for M . If

m = O

 �
2HVmax

�

�2
(VC(�) log(H)(H + log(Vmax=�)) + log(1=�)))

!
(22)

then with probability at least 1� � we have

jV �i (s0) � V̂ �(s0)j � �; (23)

simultaneously for all � 2 �.

Proof: By Lemma 5.6 the VC-dimension of F�, d0, is bounded by O(d logH).
As we explained, the combinatorial dimension of G� is also d0. By Lemma 5.7
for each policy � 2 � we accept at least m=2H+1 trajectories. Given a sample
of m trajectories, the theorem follows from Lemma 5.8. 2

References

[BDH99] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural
assumptions and computational leverage. Journal of Arti�cial Intelligence
Research, 1999. To appear.

[BK98] X. Boyen and D. Koller. Tractable inference for complex stochastic pro-
cesses. In Proc. UAI, pages 33{42, 1998.

[BM99] Leemon Baird and Andrew W. Moore. Gradient descent for general Rein-
forcement Learning. In Advances in Neural Information Processing Systems
11, 1999.

[CB96] R. Crites and A. Barto. Improving elevator performance using reinforcement
learning. In Advances in Neural Information Processing Systems 8, pages
1017{1023, 1996.

20

[Hau92] David Haussler. Decision-theoretic generalizations of the PAC model for
neural networks and other applications. Information and Computation,
100:78{150, 1992.

[KMN99] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. In Proceedings of the
Sixteenth International Joint Conference on Arti�cial Intelligence, 1999.

[KP99] Daphne Koller and Ronald Parr. Computing factored value functions for
policies in structured MDPs. In Proceedings of the Sixteenth International
Joint Conference on Arti�cial Intelligence, 1999.

[KYK95] H. Kimura, M. Yamamura, and S. Kobayashi. Reinforcement learning by
stochastic hill climbing on discounted reward. In Proceedings of the 12th
International Conference on Machine Learning, pages 295{303, 1995.

[MS99] D. McAllester and S. Singh. Approximate planning for factored POMDPs
using simpli�ed belief states. In Proceedings of the 15th Conference on
Uncertainty in Arti�cial Intelligence, 1999.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT
Press, 1998.

[Vap82] V.N. Vapnik. Estimation of Dependences Based on Empirical Data.
Springer, 1982.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229{256, 1992.

A Appendix

In this section, we provide the proof of Theorem 3.2 (in�nite deterministic �).

We assume the reader is familiar with the de�nition of VC dimension of
sets of binary functions. There are several ways to generalize this to sets of
real-valued functions, and we now introduce one of them, given in [Vap82]. If
H = fh : X 7! [�B;B]g is a set of real-valued functions bounded by B, de�ne
VCr(H) to be the (convention) VC dimension of the set of binary functions
fI(h; r; �) : h 2 H; r 2 (�B;B)g, where I(h; r; x) = 1 if h(x) � r, I(h; r; x) = 0
otherwise. That is, we take H, introduce all possible thresholds to get indicator
functions, and �nally take the conventional VC dimension of the resulting set
of indicators.

For a �xed deterministic strategy �, we have a map R(�; �) from trajectory
trees to real numbers [�Vmax ; Vmax]. Thus, � may be viewed as a set of real-
valued functions with trees as its domain, and so it makes sense to ask what
VCr(�) is. (This is not to be confused with the alternative view of � as a set of
binary functions mapping from histories to actions.) We then have the following
lemma.

21

Lemma A.1 Let � be a set of deterministic strategies for a two-action POMDP,
with VC dimension VC(�) when viewed as a set of maps from observable his-
tories to actions. Then when viewed as a set of maps from the space of all
depth-H trajectory trees to [�Vmax; Vmax], the set � has dimension bounded by

VCr(�) = O (HVC(�)) (24)

Proof: Let d = VC(�). From Sauer's Lemma (see [Vap82]), � can realize at
most (ek=d)d di�erent action labelings on any set of k observable histories. Now
on m trajectory trees, there are at most k = m2(H+1) di�erent observable his-
tories (one for each node). So if we view each � as selecting a path through each
tree, then � can realize at most (ek=d)d = (em2(H+1)=d)d di�erent selections
(where each \selection" is a set of m paths taken by a strategy �, one per tree).
Moreover, this set of trees has a total of m2H paths from roots to leaves, and
so R(�; T) can take on at most m2H values for � 2 � and T in our set of m
trees. Thus, we need consider only m2H settings of the threshold parameter r.

Multiplying the quantities together, we see therefore that the set of indicator
functions used to de�ne VCr(�) (where � is now viewed as a map from trees
to [�Vmax ; Vmax]) can, on m trees, realize at most m2H(em2(H+1)=d)d di�erent
labelings. Now in order for � (viewed a a set of real functions) to shatter m
trees, it must be able to realize at least 2m di�erent labelings, so that

m2H (em2(H+1)=d)d � 2m (25)

must hold. A little algebra shows this implies m = O (HVC(�)), proving the
lemma. 2

We now state one more result due to Vapnik [Vap82], with which we will be
ready to prove our theorem. Let H be a set of bounded real-valued functions h :
X 7! [�B;B] bounded by B, and let d = VCr(H). Let D be some distribution
over X, and let x1; : : : ; xm be m iid samples drawn according to D. Then with
probability 1� �,

sup
h2H

�����ED[h(x)]�
1

m

mX
i=1

h(xi)

����� � O

0
@B

s
d log m

d + log 1
�

m

1
A (26)

holds (where the randomization is over the draw of the xi's).

We are now ready to prove the theorem.

Proof (Theorem 3.2): There are two sources in the error in our estimate of
V �(s0): Error from truncating at depth H, and error from the randomness in
the sampling of trajectory trees. Let V �

H�
(s0) be the expected H�-step sum of

discounted reinforcements for � starting at s0. Clearly, ET [R(�; T)] = V �
H�
(s0)

holds for all �. From our choice of H�, it also holds by construction that

22

jV �
H�
(s0)� V �(s0)j � �=2 for all �. Finally, we apply Equation (26) with x = T

being the trajectory trees, H = � (viewed as a set of real-valued functions),
B = Vmax , h = �, h(x) = R(�; T), d = VCr(�) and ED[h(x)] = ET [R(�; T)] =
V �
H�
(s0), and �nd that with probability 1� �,

�����V �
H�
(s0) �

1

m

mX
i=1

R(�; Ti)

����� � O

0
@Vmax

s
d log m

d
+ log 1

�

m

1
A (27)

holds simultaneously for all � 2 �. Substituting d = O(H�VC(�)) from
Lemma A.1, we therefore see that with a choice of

m = O
�
(Vmax=�)

2(H�VC(�) + log(1=�))
�

(28)

we have that with probability 1 � �, it holds simultaneously for all � 2 �
that jV �

H�
(s0) � (1=m)

Pm
i=1R(�; Ti)j � �=2. When this is true, the triangle

inequality gives jV �(s0)�(1=m)
Pm

i=1R(�; Ti)j � jV �(s0)�V
�
H�
(s0)j+jV

�
H�
(s0)�

(1=m)
Pm

i=1R(�; Ti)j � �=2+ �=2 = � simultaneously for all �, which proves the
theorem. 2

B Appendix

In this Appendix, we give the details of our gradient descent algorithms de-
scribed in Section 4. Appendix B.1 gives the �rst algorithm, which �nds an
unbiased estimate of (d=d�)R(��; T) for a given trajectory tree T , and may be
used with stochastic gradient ascent to optimize the empirical return on a set of
trees. Appendix B.2 gives the second algorithm, which �nds an unbiased esti-
mate of (d=d�)V �� (s0) and which may be therefore be used to directly optimize
the value itself of our strategy; it then closes with discussions of some related
algorithmic issues.

Throughout this Appendix, we assume � is a a smoothly parameterized
family of stochastic strategies parameterized by Rd, by which we mean
a set of stochastic strategies � = f�� j � 2 R

dg, such that for any action a
and any �xed observable history h = h(o1; a1; r1); : : : ; (oi�1; ai�1; ri�1); (oi; ;)i,
Pr[��(h) = a] is continuously di�erentiable in �. To simplify the notation, we
also use (��(h))i to denote Pr[��(h) = ai]; a convenient way to think about it is
as �� mapping �nite histories to k-dimensional vectors (in the k�1-dimensional
simplex), where the ith element of the output is the probability of choosing
action ai. As mentioned, we also assume a bound on the gradient with respect
to � | that for all h and all i, j dd� (��(h))ij � B for some constant B. Finally,
to reduce notational clutter, we will frequently drop the \j�=�0" used denote
evaluation at the current �0 (for example, as in d

d�
j�=�0R(��; T)) when there is

no risk of confusion.

23

Function: EstimateTreeGradient(�; �0; T;)
Input: Strategy class �, parameter setting �0, trajectory tree T , discount .
Output: A vector that is an unbiased estimate of d

d� j�=�0R(��; T).

1. Randomly choose a depth d 2 f0; : : : ;H � 1g, with Pr[d = k] / k .

2. Perform a random walk on the tree T starting from the root with actions chosen
by ��0 (that is, where the action at each node is determined by ��0 applied to the
history of the path to that node), down to depth d on the tree. Let sd denote the
node we arrive at, and hd the history leading to sd.

3. For each action a 2 fa1; : : : ; akg, start from the node sd, execute action a (meaning
go to the action-a child), and then again follow ��0 down the tree until we reach
a leaf. Let ra be the sum of discounted reinforcements received executing the
trajectory from sd down to the leaf taking action a at sd, where the discounting
starts at 1, not d, for the sequence. (Thus, the reinforcement for taking a at sd
is undiscounted, the next reinforcement is discounted by and so on, with the last
step's reinforcement discounted by H�d�1.)

4. Output

1� H+1

1�

kX
i=1

rai
d

d�

����
�=�0

(��(hd))i (29)

(where as before, (��(hd))i denotes Pr[��(hd) = ai]).

Figure 2: Algorithm for �nding an unbiased estimate of the gradient of R(��; T) with
respect to �.

B.1 Appendix

We now describe our algorithm that, given a smoothly parameterized family of
stochastic strategies and a �xed setting of the parameters �0, �nds an unbiased,
bounded-variance estimate of the gradient of (1=m)

Pm
i=1R(��; Ti) with respect

to �, evaluated at �0. For a �xed trajectory tree T , Figure 2 gives an algorithm
for obtaining an unbiased estimate of the gradient of R(��; T). The estimate for
the gradient for m trees is then easily obtained by averaging over all m trees.

We will shortly give and prove a formal statement of this algorithm's correct-
ness, but let us �rst informally sketch the rationale behind its di�erent steps.
First consider Steps 3 and 4 of the algorithm. In Step 3, we have already �xed
some state sd with history hd, and we take k runs { one for each action { to get
the ra, each of which is exactly a Monte Carlo estimate of Q��0 (hd; a). Given
these estimates, a natural step to take is to tweak the parameters � so as to
increase the probability of taking actions with high ra. And indeed, it is easy

24

to check that the gradient estimate in Step 4 is exactly so that gradient ascent
will do this|the output is (proportional to) the gradient of

P
i((��(hd))irai .

Steps 1 and 2 choose sd, and there are also two interesting ideas regarding
this that are worth describing. First, if sd is far from the root, then because
of discounting, its gradient should be discounted by a factor of d. But if d is
large, then it would seem a waste to perform all the simulation and computation
required by the algorithm, only to multiply the result by d and discount it
almost all the way to 0. What we do instead is rather than multiply sd's estimate
by d, we choose the depth d with probability proportional to d (Step 1), which
avoids the need to discount by d. This is a standard idea from Monte Carlo
sampling, often used to signi�cantly reduce the variance of estimators. Also
along the same lines, the derivative of ��(hd) should be given more weight if
there is a high probability of getting to hd. In the trajectory-tree setting, a node
sd's gradient should have some weight proportional to how often it is visited;
so again, rather than weighting according to visitation probability, we instead
choose a node with probability proportional to its visitation probability (Step
2), and then do not further weight the resulting gradient.

The above sketches the rationale for EstimateTreeGradient. Our algo-
rithm for �nding an unbiased estimate of (d=d�)V �� (s0) is based on this; the
main idea is to consider applying the same algorithm to trajectory trees of \in-
�nite" depth, and this is described in detail in Appendix B.2. The remainder
of this section is devoted to proving the correctness of the EstimateTreeGra-
dient algorithm|that it gives an unbiased and bounded-variance estimate of
the gradient. (That its running time is O(kH) is obvious.)

Our strategy for proving the algorithm's correctness closely follows our dis-
cussion above. We will, for the �xed tree T , considering the change to R(��; T)
if any of the probabilities (��(hi))j is changed for some node i in the tree.
As discussed, the result of such a change at a node at depth d should have a
\weight" proportional to d, and also proportional to its visitation probability
by a ��0-random walk. After steps 1 and 2 sample a node with probability pro-
portional to its weight, we output just that node's contribution to the gradient;
the (1�H+1)=(1�) factor in our output is the normalization constant of the
sampling distribution. Here follows a more rigorous proof that EstimateTree-
Gradient outputs an unbiased and bounded-variance (bounded in terms of k,
, Rmax , and B) estimate of the gradient.

Theorem B.1 Let the random vector Z be the output of the EstimateTree-
Gradient algorithm. Then, E[Z] = d

d� j�=�0R(��; T). In addition, Var(Zi) �
(RmaxkB=(1�))2 for each i (where Zi is the i-th element of Z).

Proof (Sketch): Let ` = 2H+1 � 1 be the number of nodes in our trajectory
tree T , and let us �x some labeling of the nodes from 1 to `, so that we may
refer to the \i-th node" in the tree. Also, for i = 1; : : : ; `, let hi denote the

25

history at the i-th node in the tree (from the root down to that node), and
let pij = (��(hi))j be the probability of taking action aj at node i, as an
implicit function of �. Then for �xed T , R(��; T) is completely determined by
fpijji = 1; : : : ; `; j = 1; : : : ; kg, since the pij completely specify the probabilities
of taking each action at any node in the tree T . Thus writing R to denote
R(��; T), by the chain rule of di�erentiation,

d

d�
R(��; T) =

X̀
i=1

0
@ kX

j=1

dR

dpij

dpij
d�

1
A (30)

where we recall pij = (��(hi))j are implicit functions of �. We compare this
with (29), the expression of the algorithm's output in Figure 2, and notice (29)
bears some similarity to the term in parenthesis above, with raj playing the

role of dR
dpij

. Now notice also that, if pij is increased by �, then R = R(�; T)

will increase by � times the probability of reaching the subtree rooted at node
i times the average reward of the action-aj subtree of node i. But if the i-th
node is sd, then draj is an unbiased estimate of the (discounted) value of this
action-aj subtree, since raj is just a Monte Carlo estimate of the value of this
subtree. Letting P [i] denote the probability that a ��0-random walk will reach
node i, we therefore see, by our argument, that P [i]draj is in fact an unbiased

estimate of dR
dpij

when the node i is sd (e.g. when raj is gotten from a random

walk as in Step 3 of the algorithm, starting from node i and taking aj �rst).
Putting this back into Equation 30 and letting d(i) denote the depth of node i
in the tree, we see that

d

d�
R(��; T) =

X̀
i=1

0
@ kX

j=1

d(i)P[i]E[raj jsd = node i]
dpij
d�

1
A (31)

=
X̀
i=1

d(i)P[i]

0
@ kX

j=1

E[raj jsd = node i]
dpij
d�

1
A (32)

This is just a sum over nodes i, with the node-i term having a \weight" of
d(i)P[i]. To �nd an unbiased estimate of the sum, we may, as in Steps 1-2 of
the algorithm, randomly choose one of the terms with probability proportional
to its weight and then (with appropriate normalization, by

P`
i=i

d(i)P[i] =
(1 � H+1)=(1 �) in our case to make the \weights" sum to one and be
a probability distribution) output just that one term in the sum, to get an
unbiased estimate of the entire sum. This is of course just a standard Monte
Carlo estimate of a mean. Doing this, and further replacing the expectation
with a sample of raj then recovers the expression (29) used in our algorithm.

26

Finally, by our assumption of j dd� (��(h))ij being bounded as � B, we see the
output (29) is bounded by kBRmax=(1 �), which therefore gives our bound
on the variance. 2

B.2 Appendix

In this section, we describe how the EstimateTreeGradient algorithm can
be modi�ed to give in O(kH) time an unbiased estimate of (d=d�)V �� (s0).
This enables us to perform stochastic gradient ascent directly on the true value
itself. Note however that this version of the algorithm requires that we run the
generative model on each gradient ascent step (that is, it is not su�cient to
sample just a �xed number of trajectory trees, and then make no further use of
the generative model).

The idea is simple. We have given an algorithm for �nding an unbiased
estimate of the gradient with respect to a �nite trajectory tree. If we could
apply it to an \in�nite" trajectory tree (corresponding to a depth H = 1),
then we would get an unbiased estimate of the gradient of V �� (s0). To see this,
note that when we sample in�nite trees, we haveET [R(��; T)] = V �� (s0) exactly
for each �. So, applying d=d� to both sides and interchanging expectations and
derivatives, we get

ET

�
d

d�
R(��; T)

�
=

d

d�
V ��0 (s0) (33)

which shows unbiasedness.

If we do use such an \in�nite" tree (built lazily, of course) and try to apply
EstimateTreeGradient of the previous section, there are no di�culties with
Steps 1 and 2 of the algorithm { d is chosen with Pr[d = k] = k=(1 �),
and we take a random walk down to depth d to get sd. But Step 3 now tells
us to take a walk to depth H, which is in�nitely far away, and this is not
tractably implementable. Fortunately, given a POMDP with discount , we
may transform it into an undiscounted POMDP, but which now has a (1 �)
chance of transitioning to a zero-cost absorbing state after each step. Indeed,
one of the common justi�cations for discounting is that it represents a (1 �)
chance after each step of the POMDP ending; we are simply making use of
this fact here. Now in the transformed POMDP, we may proceed to sum the
\in�nite" trajectory in Step 3, and this will terminate �nitely once we transition
into the absorbing state in the transformed POMDP (which will happen with
probability 1, and on expectation after O(1=(1 �)) steps). Incidentally, our
simple transformation can also be applied to William's Reinforce algorithm
to get it to output unbiased estimates in �nite time, but its variance may still
be unbounded.

To see that this new algorithm still has bounded variance, note that each ra
is the sum of a geometrically distributed number of individually bounded terms,

27

so each ra also has bounded variance, and hence our �nal estimator also has
bounded variance (again assuming a bound on the derivative of ��).

Figure 3 gives the step-by-step details of this proposal, with an additional
parameterH0 that represents a slight improvement over what we have described
so far. Setting H0 = 0 gives the algorithm we have just described. The param-
eter H0 is a modi�cation that tries to reduce the estimator's variance. When
we modi�ed EstimateTreeGradient to get this new algorithm, we added a
source of variance in that the ra's are now sums of d0 reward terms from the
\undiscounted" POMDP, where d0 is geometrically distributed. The variability
in d0, the number of terms we are summing, adds another source of variability
to our �nal estimate. Our modi�cation is that, with the H0 \execution depth"
parameter, we will always take at least H 0 discounted steps from sd, after which
we take a further, geometrically distributed number of steps. But now, the
contribution of the geometrically distributed number of steps is discounted by
H

0

, and therefore contributes less to the variance. So, with H0 set on the order
of 1=(1�) or of the �-horizon time, we incur a time penalty of an additional
expected H0 steps per run, but can have a signi�cantly smaller variance in our
estimator.

Finally, we close this section by very briey addressing a number of issues
relating to practical applications of these algorithms (perhaps the most pressing
of which is the lack of mention of exploration), consider possible further mod-
i�cations to the algorithm, and relate it also to William's Reinforce and to
Kimura et. al.'s algorithm.

Exploration. We have presented a reinforcement learning algorithm that can
perform stochastic gradient ascent to optimize V �0(s0), but which does not seem
to need to do any exploration. Is there any magic here? It turns out that, even
though we have bounded the variance of our gradient estimators, the gradient
itself may still be exponentially small in H. To see this, imagine a trajectory
tree where only one of the leaves gives a reward; if we were choosing actions at
random, it would take us O(2H) tries just to �nd this node. Thus, our reinforce-
ment learning algorithm may be best applied mainly to domains where not too
much exploration is needed for the (for instance, if there are many intermediate
rewards), or if we are somehow able to initialize �0 to a \good" strategy, in which
case this algorithm may be used to improve upon it from there. A particularly
intriguing example is if we were to, by other means, estimate the Q-function (or
value function) as Q̂�(s; a), using some smooth function approximator param-
eterized by �. Then adding a inverse-temperature parameter �, we may de�ne
a stochastic policy (��;�(s))j = exp(�Q̂�(s; aj))=

P
i exp(�Q̂�(s; ai)), and then

do gradient ascent on V �(�;�) (s0) with parameters (�; �).

Deterministic strategies. For learning deterministic strategies, the main
algorithm we had suggested was local greedy search with lazy tree construction.

28

Function: EstimateValueGradient(�; �0; s0; ;G;H0)
Input: strategy class �, current parameters �0, start state s0, discount generative model
G, execution depth H0.
Output: A row vector that is an unbiased estimate of d

d� j�=�0V
�� (s0).

1. Set s to be the root (s0) node in the (to be lazily built) tree.

2. With probability 1� , jump to step 4.

3. Let a be an action chosen randomly by the stochastic policy ��0 applied to the
history at node s. Take action a from s, setting s to be the action-a child of s.
Goto step 2.

4. Set node sd = s, and let hd be the history at s.

5. For each action a 2 fa1; : : : ; akg
5.1 Set ra := 0.
5.2 (Using G,) execute action a from state sd, getting some resulting reward R

and child-node s0. Set ra := ra + R.
5.3 For i = 1 to H0,

5.3.1 (Using G), take a random step according to ��0 applied to the history
at s, letting R be the reward and s0 the action's corresponding child node.

5.3.2 Set ra := ra + iR, and s := s0.
5.4 With probability 1� , jump to 5.6.
5.5 (UsingG) Take a random step from s according to ��0 , getting some resulting

reward R and next-state s0. Set ra := ra + H
0

R, and s := s0. Goto step 5.4.
5.6 end. (of for-loop)

6. Output

1

1�

kX
j=1

raj
d

d�

����
�=�0

(��(sd))j (34)

Figure 3: Algorithm for �nding an unbiased estimate of d

d�
j�=�0V

�� (s0).

29

But to avoid local maxima, it may also be worthwhile embedding our class of
deterministic strategies in a larger, smoothly parameterized class of stochastic
strategies, and then do the search in that larger, smoother space, for example
with our stochastic gradient ascent algorithm. Then, a standard trick from
the neural network literature called the soft-barrier can be used to re-constrain
ourselves to deterministic strategies (if so desired): Rather than doing gradient
ascent on V �� (s0), we do gradient ascent on V �� (s0)� �E[H(�(h))] where H is
the entropy function and the expectation is over an appropriate distribution of
histories (say choose h = hd, the history at sd, on each step of the algorithm).
This way, we penalize strategies that have entropy or randomness in their choices
of actions. By letting � slowly increase from 0 to 1, we have an increasing
bias towards deterministic strategies. (Note we do not recommend learning a
stochastic strategy ��, and then making it deterministic by picking the most
likely action (under ��) at each step; this may work for some problems, but
seems to us much more di�cult to justify.)

A weaker simulator. Throughout Section 4 and this Appendix, we had as-
sumed a generative model that allows us to sample a next-state/next-observation
pair starting from any state. What if, as in Section 5, our generative model only
allows us to \reset" to s0 and to take Monte Carlo runs from there, but could not
reset to any intermediate state? Recall that, after reaching sd in our algorithm,
we iterated through all k actions, and then our �nal output in (34) is a value
that is a sum of k terms, with one term corresponding to each Monte Carlo run
from s0. If we have only the weaker simulator, we are able to try only one Monte
Carlo run from sd. To handle this, we may randomly choose one action, take
just that one Monte Carlo run, and then return k times the one term (within
the summation) corresponding to the chosen action. It is then immediate that
this still gives a bounded-variance unbiased estimator. Incidentally, if we have
an estimate of the Q-function at sd, this can also be used to reduce the variance
resulting from the randomization of the action's choice.

A random walk? Williams and Kimura et. al. had some nice ideas regarding
this. Using the weaker simulator described in the previous paragraph, we uni-
formly chose a random action upon reaching sd, and then gave that one term
in the sum a multiplier of k. Alternatively, we may choose our action at sd
according to the distribution given by ��0(hd) also, so that at every step we
are taking a random walk according to ��0 . Then, to keep our estimator un-
biased, we would multiply by 1=(��0(hd))j if action aj was chosen, making the
algorithm's �nal output

1

1�

1

(��0(hd))j
raj

d(��(hd))j
d�

����
�=�0

(35)

This should be compared with (34). Unfortunately, the 1=(��0(hd))j multiplier

30

may be arbitrarily large, and so our estimator may have arbitrarily large or
even in�nite variance (and examples are easy to construct). This (minus the
undiscounted POMDP idea to make the algorithm terminate in �nite time,
rather than only converge only asymptotically) is essentially Kimura et. al.'s
algorithm. (Actually, they also had a second version, and some interesting
ideas regarding eligibility traces, that we will mention shortly.) Particularly if
used with the method we described earlier to learn deterministic strategies, this
would seem disastrous, as we are driving most of the (��0(hd))j to zero. But
fortunately, we found a simple, additional condition to ensure bounded variance;

namely if
��� 1
(��0 (hd))j

d(��(hd))j
d�

��� were bounded, then there would be no problems.

As a simple example, if the �� were a neural network with a sigmoid activation
function at the output (that, say, represents probability of taking action a1)
in a two-action POMDP, then probability of taking action a1 is (��(hd))1 =
�(f�(hd)) for some f�, and its derivative is �(f�(hd))(1��(f�(hd))f

0
�(hd). Notice

how the �(�) term therefore cancels the 1=(��0(hd))1 = 1=�(�) term, and so
we are no longer worried about the estimator blowing up (making appropriate
assumptions about f). A similar argument may be made about softmax (which
generalizes sigmoids to many outputs) activation functions for representing k-
action stochastic strategies.

Eligibility traces. Related to the last point, if we are taking just one random
walk, then it seems that we might as well try letting every node on the random
walk be sd, to get rid of one more source of variance in our estimate. That is,
rather than choosing a single depth d at random and then picking a single node
sd at that depth, we might as well enumerate over as many d as we can, letting
each node on our random walk be sd in turn, and then taking the appropriate
weighted average. Reinforce and Kimura et. al.'s algorithm have a nice
way of doing this and of e�ciently taking care of the bookkeeping, by making

use of eligibility traces. If indeed
��� 1
(��0 (hd))j

d(��0 (hd))j
d�

��� were bounded, then

their eligibility trace ideas (coupled with the the undiscounted POMDP ideas
to ensure �nite termination) could give another viable gradient ascent algorithm.

C Appendix

In this Appendix we give a transformation of an POMDP with multiple (but
�nite) actions to a POMDP with binary actions. This reduction can be used to
immediately extend our results for binary action POMDPs to multiple actions
POMDPs.

Consider a multiple action POMDP M = (S;A; s0; P;R;Q), where S is the
set of states, A is the set of actions, s0 is the start state, P is the transition
probability distribution, R is the reward function and Q is the observable dis-

31

tribution. For simplicity we assume that A = f0; 1gk. GivenM we de�ne a new
POMDP M 0 = (S0; A0; s00; P

0; R0; Q0), which we call the equivalent POMDP of
M .

We start by describing the components of M 0. Since M 0 is limited to binary
actions, we set A0 = f0; 1g. Intuitively, in the transformation we divide a single
k-bit action in M to k single bit actions in M 0. In M 0 we wait till we have all
the k bits of the action, while recording them in the state information. For this
reason we set S0 = S �B where B = [k�1i=0 f0; 1g

i. A state s 2 S is matched to
a state [s; �] 2 S0. The new start state s00 = [s0; �].

The new transition function P 0 is constructed following our idea that each
k-bit action in M is mapped to a sequence of k single bit actions in M 0. The
transition function is constructed such that it enables us to store the single bit
actions in M 0 until we have all k bits. This part of the transition function is
deterministic. Once we have all the k bits, we perform the same transition as
in M . More formally, let x 2 B be a string such that jxj � k � 2. For any
b 2 f0; 1g and any s 2 S we have that P 0[s;x];b([s; xb]) = 1 (and zero for any state

other than [s; xb]). This implies that until we have all the k bits of the action we
store them in the state information, and make deterministic transitions. Once
we have a string of length k�1, when we perform another action inM 0 we have
completely speci�ed a k-bit action in M , and we can execute it. Formally, let
y 2 B be a string such that jyj = k � 1. For any b 2 f0; 1g and any s 2 S we
have that P 0[s;y];b([s

0; �]) = Ps;yb(s0).

Our construction of P 0 ensures that there is a matching between execu-
tions in M and M 0 (when considering in M 0 executions that end in some [s; �]).
This matching is not only a one-to-one mapping, but also the two matched
trajectories have the same transition probabilities. (The transition probabil-
ity of a trajectory is the product of all the local transition probabilities, i.e.,Q
Psi;ai(si+1).)

The reward function R0 is set to zero in `transient' states, and to R at states
that match states in S. More precisely, R0[s;y];b = Rs;yb, where y 2 f0; 1gk�1,

and R0[s;x];b = 0, where x 2 f0; 1gi and i � k � 2.

The observable function is set such that it gives no information at `transient'
states. More formally, Q0(�j[s; x]) = 1 for any x 6= � and Q0(oj[s; �]) = Q(ojs).

It is easy to see that there is a matching between the trajectories generated
in M and M 0, and the trajectories have the same transition probabilities. Let
t0 be a trajectory in M 0. We can decompose t0 to sequences of the form,

([s; �]; b1; 0; o); ([s; b1]; b2; 0; �); : : :; ([s; b1 � � �bk�1]; bk; r; �):

Each such sequence we map to (s; b1 � � � bk; r; o) in M . By mapping each such
sequence we map the trajectory t0 to a trajectory t in M . It is easy to see that
the transition probability of t in M and of t0 in M 0 is identical. Also note that

32

the inverse mapping, from trajectories t in M to trajectories t0 in M 0, is unique.
When we refer to this mapping we say that t and t0 are matched.

Lemma C.1 For any POMDP M = (S;A; s0; P;R;Q) there exists an POMDP
M 0 = (S0; A0; s00; P

0; R0; Q0) such that A0 = f0; 1g, jS0j � 2jSj � jAj, and there
is a matching between trajectories in M and in M 0 such that the transition
probability of matched trajectories is identical. (We say that M 0 is equivalent to
M .)

We have showed that for a POMDP with multiple actions there exists an
equivalent POMDP that uses only binary actions. Now we need to show that we
can also transform the strategy from one POMDP to the other POMDP. Given
a strategy � for M we construct an equivalent strategy �0 on M 0. If � executes
action b1 � � �bk 2 A after observing trajectory h, then �0 executes a sequence
of k actions b1 to bk, after observing trajectory h0, where h0 is the trajectory
matched to h. We call �0 the strategy that is equivalent to �.

Lemma C.2 Let M and M 0 be equivalent POMDPs. Let � and �0 be equivalent
strategies. Let t be any trajectory in M and t0 its matched trajectory in M 0. The
probability of t under � in M is identical to the probability of t0 under �0 in M 0.

Now we need to show that the return can also be maintained. Here we
show that it holds for two important return criteria: the undiscounted bounded
horizon return and the discounted in�nite horizon return. We modify the pa-
rameters so that the return of matched trajectories is identical.

For the bounded horizon return we have a parameter H which is the horizon
in M . When running M 0 we use a horizon parameter of H 0 = kH. It is easy to
see that matched trajectories have identical return.

For in�nite horizon discounted return we have a parameter for the dis-
counting in M . For M 0 we de�ne 0 = 1=k. Again it is easy to see that the
ratio between the return of matched trajectories is (0)k�1 (because the �rst
reward is delayed by k�1 steps). If desired this di�erence can be be eliminated
by rescaling R0 by a k�1 factor.

Lemma C.3 For any strategy class � let �0 include all the strategies �0 which
are equivalent to some � 2 �. Let M and M 0 be equivalent POMDPs. For
any � 2 � and its equivalent strategy �0 2 �0 the expected return of � in M is,
possibly up to a multiplicative constant, identical to the expected return of �0 in
M 0, when the return function is either undiscounted �nite horizon or discounted
in�nite horizon.

We would like to note that the transformation can be applied also in the
average-return undiscounted in�nite horizon case.

33

