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1 Introduction

Volatility is central to the pricing of options as there is a one-to-one correspondence

between the price of an option and the volatility of the underlying asset. In the context of

Black and Scholes (1973), given the option price it is possible to obtain an estimate of the

volatility by inverting the pricing formula. The resulting estimate is generally referred to

as the implied volatility, which represents the market’s estimate of the underlying future

volatility over the life of the option. Options are essentially bets on volatility because

an accurate prediction of future volatility delivers important economic information to

traders. It is, therefore, not surprising that there is an extensive literature on predicting

volatility. Granger and Poon (2003), for instance, survey the extant literature and

broadly find that the market’s forecast embedded in implied volatility is the best forecast

of future volatility. However, this literature focuses mainly on predicting volatility of a

single asset (frequently the S&P 500 index) using time-series methods. I show that there

is important information in the cross-section of stock volatilities that leads to better

forecasts of future volatility than those contained in the individual implied volatility

itself. To the best of my knowledge, this is the first paper to study the predictability of

the cross-section of individual equity option implied volatilities.

I use a system of Fama and MacBeth (1973) cross-sectional regressions for my fore-

casting exercise. Since the at-the-money implied volatility is directly linked to the under-

lying volatility it carries similar statistical properties. In particular it is very persistent.

I estimate a mean-reversion cross-sectional model of implied volatility augmented with

variables that improve the forecasting power (average of the historical realized volatil-

ity). I find that a stock with an at-the-money implied volatility below the cross-sectional

average and below its own twelve months moving average, has a higher implied volatility

in the next month. Similarly, a stock with an at-the-money implied volatility above the

cross-sectional average and above its own twelve months moving average, has a lower

implied volatility in the next month. Thus, cross-sectional regressions indicate a high

degree of mean-reversion in implied volatilities.

I then study the economic implications of these forecasts through portfolio strategies.

Specifically, I use the out-of-sample predictions produced by the cross-sectional forecast-

ing model to construct a zero-cost trading strategy that involves a long position in a

portfolio of options with large positive forecasts of the change in implied volatility and

a short position in a portfolio of options with large negative forecasts. I study portfolios
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of calls, puts, and straddles and find that all these portfolios are quite profitable. After

controlling for transaction costs and liquidity characteristics of the options the average

monthly return to expiration of the straddles portfolio is as high as 8.8% with a monthly

Sharpe ratio of 0.271. The returns of the underlying asset show no pattern across dif-

ferent portfolios, suggesting that the straddles portfolio returns are manifestations of

superior volatility forecasts. The profitability of the long-short strategy is robust to dif-

ferent market conditions, to firm risk-characteristics, to various industry groupings, and

to options liquidity characteristics. Moreover the strategy returns cannot be explained

by CAPM or the Fama and French (1993) three-factor model augmented by the Carhart

(1997) momentum factor or covariance with aggregate volatility.1

Since option prices are directly related to volatility forecasts, one can view the volatil-

ity forecasts as being alternative estimates of option prices. A volatility forecast that

is higher than the implied volatility implies underpricing of the option, and a volatility

forecast that is lower than the implied volatility implies overpricing of the option. It

is interesting to explore the potential reasons for this success in identifying misspricing

of options. One possible explanation for the profitability of the trading strategies is

that the out-of-sample forecast produced by the model is a better estimate of future

realized volatility than is the market forecast, represented by the implied volatility. I

find evidence consistent with this hypothesis. Since the option’s value is related to the

underlying future volatility over the life of the option, this provides the underlying eco-

nomic rationale for the trading profits reported earlier. As a further robustness check,

I recompute the option prices by using my cross-sectional prediction of volatility rather

than the market implied volatility. I then compute the return of the trading strategy

using these modified prices. The profitability of the trading strategy completely disap-

pears suggesting that the modified price obtained from the volatility forecast is closer to

the ‘true’ price of the option. This provides further evidence of the economic importance

of my results.

The market for equity options is active and has been constantly growing over the

thirty years of its existence. The total volume of the equity options for the year 2004

was worth approximately 220 billion dollars. For comparison, the total volume of the

1Option payoffs are non-linearly related to payoffs of stocks. Therefore, a linear factor model is
unlikely to characterize the cross-section of option returns. I use a linear model merely to illustrate
that the option returns described in this paper are related to aggregate sources of risk in an obvious
way.
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S&P 500 index options was worth about 120 billion dollars.2 There is also evidence

that options traders are sophisticated investors: Easley, O’Hara, and Srinivas (1998)

and Pan and Poteshman (2005) show that options’ volume contains information about

future stock prices. Given the non-negligible size of the market and the quality of option

traders, it is useful to consider why it might be the case that option implied volatilities

are predictable. One reason may be that the economic agents do not use all available

information in forming expectations about future stock volatilities. In particular, they

ignore the information contained in the cross-sectional distribution of implied volatili-

ties and consider assets individually when forecasting their volatility. Stein (1955) shows

that a combination of two different estimators produces a substantial gain in terms of the

variance of the estimate. These shrinkage estimators are more efficient than the original

estimates. The cross-sectional forecasts obtained in this paper have similar character-

istics to those of shrinkage estimators, even though they are not formally constructed

using Bayesian shrinkage techniques. This intuition provides the underlying statistical

rationale for the trading profits reported earlier.

In a informationally efficient market, the implied volatility would be the best forecast

of future volatility. Therefore, if the implied volatility is used to construct the forecast

of future volatility, then the forecast should be no better than the implied volatility it-

self. To the contrary, the evidence presented in this paper suggests that the information

contained in the forecast (based on readily available data) allows one to construct prof-

itable trading strategies.3 In the stock market context, reversal strategies (Jegadeesh

(1990)) and momentum strategies (Jegadeesh and Titman (1993)) have been identified

by Fama (1998) as those posing the most serious challenge to market efficiency. This

paper extends this list by identifying the existence of similar strategies in the hitherto

unexplored area of options markets.

The rest of the paper is organized as follows. The next section discusses the data.

Section 3 contains a description of the implied volatility forecasting model and results

of the estimation. In Section 4, I study the economic content of the volatility forecasts

by analazying the performance of portfolios of options formed by sorting the forecasts.

I examine the relation between the forecast and future realized volatility in Section 5.

2These figures are taken from the Options Clearing Corporation 2004 annual report, which can be
found at http://www.optionsclearing.com/about/ann rep/ann rep pdf/annual rep 04.pdf

3Poteshman (2001) and Stein (1989) study the term structure of various estimates of implied volatil-
ity. Both these studies arrive at the conclusion that inefficiencies exist but do not explore their economic
magnitude.
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Section 6 concludes.

2 Data

The data on options are from the OptionMetrics Ivy DB database. The dataset con-

tains information on the entire US equity option market and includes daily closing bid

and ask quotes on American options as well as implied volatilities and deltas for the

period between January 1996 and June 2005. (The implied volatilities and deltas are

calculated using a binomial tree model a la Cox, Ross, and Rubinstein (1979).) Stock

options are traded at the American Stock Exchange, the Boston Options Exchange, the

Chicago Board Options Exchange, the International Securities Exchange, the Pacific

Stock Exchange, and the Philadelphia Stock Exchange.

I apply a series of data filters to minimize the impact of recording errors. First I

eliminate prices that violate arbitrage bounds. For calls, for example, I require that the

option price does not fall outside the interval (Se−τd − Ke−τr, Se−τd), where S is the

value of the underlying asset, K is the option’s strike price, d is the dividend yield, r is

the risk free rate, and τ is the time to expiration. Second I eliminate all observations for

which the ask is lower than the bid, or for which the bid is equal to zero, or for which the

spread is lower than the minimum tick size (equal to $0.05 for option trading below $3

and $0.10 in any other cases). More importantly, to mitigate the impact of stale quotes

I eliminate from the sample all the observations for which both the bid and the ask are

equal to the previuos day prices.

I construct time series of call, put and straddle returns for each stock in the sample.

At any point in time equity options have traded maturities corresponding to the two

near-term months plus two additional months from the January, February or March

quarterly cycles. In order to have continuous time series with constant maturity I require

the options to have expiration between 30 and 60 days (the second near-term month).

Since all the options expire on the Saturday immediately following the third Friday of

the expiration month, the criteria guarantees that all the option contracts selected have

exactly the same maturity. Among those I then select the contracts which are closest

to at-the-money (ATM). Since strike prices are spaced every $2.5 apart when the strike

price is between $5 and $25, $5 apart when the strike price is between $25 and $200,

and $10 apart when the strike price is over $200 it is not always possible to select option
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with exactly the desired moneyness. Options with moneyness lower than 0.95 or higher

than 1.05 are therefore eliminated from the sample. The returns are constructed using

as a reference price the average of the closing bid and ask quotes. Each month and

for each stock, an option with the desired characteristics of moneyness and maturity is

selected and the monthly return is computed using month beginning and month ending

prices. At the beginning of the next month a new option with the same characteristics is

selected and a new monthly return is calculated. Prices and returns for the underlying

stock are taken from CRSP.

After applying the above mentioned filters, the sample is composed by 81,296 monthly

observations. The average moneyness for calls and puts is very close to 1 while the

average maturity is approximately 47 days. There are 4249 stocks in the sample for

which is possible to construct at least one monthly return.

Summary statistics are reported in Table 1. Panel A shows that options returns are

highly volatile and exhibit positive skewness and excess kurtosis. Calls have a positive

mean return of 3.4%, respectively, while puts and straddles have a negative average

returns of –3.6% and –0.3%. The median returns are instead all negative and large.

I report summary statistics for the ATM implied volatility (IV ) and the annualized

realized volatility (RV ) of the underlying stocks in Panel B of Table 1. IV is computed

as the average of the implied volatilities extracted from the call and the put contracts

selected based on the maturity/moneyness filter. RV is computed as the standard

deviation of daily realized returns from the beginning to the month to the expiration

date (on average 47 days). IV and RV are close to each other and equal to 50.3% and

49.1% respectively. The overall distribution of RV is, however, more volatile and more

positively skewed than that of IV . The average monthly change in both measures of

volatility is very close to zero. Finally, IV surface exhibits a mild smirk — the 20%

OTM put implied volatility (SmL) is 3.1% higher than the ATM volatility, while the

20% OTM call implied volatility (SmR) is 0.5% lower than the ATM volatility.4

Changes in implied volatility can be quite drastic and usually correspond to events

of critical importance for the survival of a firm. For example the largest ∆IV in the

sample is equal to 86% and corresponds to the release of particularly negative quarter

loss for the fourth quarter of 1999 for UICI, a health insurance company. During the

4For a detailed discussion of the theoretical and empirical relation between the slope of the volatility
surface and the properties of the risk-neutral distribution see Bakshi, Kapadia, and Madam (2003), Das
and Sundaram (1999), Dennis and Mayhew (2002), and Toft and Prucyk (1997).
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month of December, UICI options went from trading at an ATM implied volatility of

31% to an IV of 117%. The stock price lost 56% of its value in the same month.

Many of the other large spikes in volatility happen during months of large declines in

stock prices. For example, the implied volatility of the stocks in the technology sector

jumped over 150% during the “burst” of the Nasdaq bubble in the spring of 2000.

Considering stocks individually, spikes in implied volatility also happen in occasion of

earnings announcements (Dubisnky and Johannes (2005)).

Individual equity options share some characteristics with index options, which have

been the primary subject of research. Figure 1 plots the time series of VIX (volatility

of S&P 500 index) and the time series of the cross-sectional average implied volatility

(IMP ). Naturally the level of IMP is much higher than that of VIX. Both series have

spikes that correspond to important events, such as the Russia crisis of September 1998.

The two variables are also highly correlated. The correlation coefficient of the changes

in VIX and IMP is 53% when IMP is computed using an equally-weighted average and

73% when a value-weighted average is instead used.

However, the two variables differ in an important way – The average stock im-

plied volatility is more persistent. The autocorrelation coefficient of the average implied

volatility is equal to 0.964; the same coefficient is 0.755 for VIX. This high degree of

persistence in stock implied volatility is the central feature of the forecasting model for

stock’s implied volatility that is developed later in the paper (see Section 3). Another

way in which the equity option market differs from the index option market is that the

asymmetric volatility effect of Black (1976) is less pronounced. The monthly correlation

between the underlying asset return and change in implied volatility is –0.52 for index

options and –0.32, on average, for individual stocks (see for example Dennis, Mayhew,

and Stivers (2005)).

3 Cross-Sectional Predictability of Volatility

Since options are essentially bets on volatility, a predictive model of the future implied

volatility will have economic significance. In this section, therefore, I start by construct-

ing a forecasting model for the options implied volatility.
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3.1 Forecasting Model

The bulk of the finance literature has focused on predicting the volatility of a single

asset using a time-series approach. I, on the other hand, use a cross-sectional regression

to forecast the distribution of future implied volatilities. This approach is similar to

Jegadeesh (1990) approach for identifying predictable patterns in the cross-section of

stock returns. I specify the forecasting model as follows:

∆ivi,t+1 = αt + βtivi,t + γtXi,t + εt+1

Xi,t = {ivi,t − ivi,t−12:t−1, ivi,t − rvi,t−12:t−1} (1)

where ivi,t is the natural logarithm of the ATM implied volatility for stock i measured

at the beginning of month t, ivi,t−12:t−1 is the natural logarithm of the twelve months

moving average of IVi, and rvi,t−12:t−1 is the natural logarithm of the twelve months

moving average of the realized volatility for stock i. The cross-sectional model avoids

the problem of determining the unconditional mean of each stock’s volatility, leaving a

much simpler task of estimating the conditional cross-sectional average.

The model is motivated primarily by the existing empirical evidence, both at the

aggregate and individual stock level, of a high degree of mean-reversion in volatility

(see Granger and Poon (2003) and Andersen, Bollerslev, Christoffersen, and Diebold

(2005) for comprehensive reviews). The twelve month average of implied volatility is

included because lags below the first could contain some valuable information. I include

an average rather than all the lags because the average is a conservative way of using all

available information: it involves estimating only one parameter, instead of the twelve

parameters corresponding to twelve lags and it does not lead to data loss when one of the

lags is missing. Finally, realized volatility is included as an additional regressor because

it could provide incremental information over implied volatility.

I choose to forecast the change in log volatility because that is the relevant variable

in constructing option strategies. This is though equivalent to forecast the log of future

volatility. To obtain the percentage change, in that case, it is necessary to subtract

the log of the actual value of implied volatility from the regression fitted value. An

alternative procedure would be to forecast the change in the level of future implied

volatility. I chose to forecast the change in log volatility because in this way I avoid the

problem of having to truncate the negative fitted values in the prediction of the level of
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volatility.

I proceed by estimating a Fama and MacBeth (1973) cross-sectional regression at each

date t (the beginning of the month). I tabulate averages of the cross-sectional estimates

and t-statistics adjusted for serial correlation in Table 2. I also report the average

adjusted R2 from the cross-sectional regression as a measure of in-sample performance

and the moments of the cross-sectional distribution of Root Mean Square Errors (RMSE)

as a measure of out-of-sample performance. I compute the root mean squared error

as RMSE(i) =
[

1
T

∑T
t=1(∆iv∗

i,t −∆ivi,t)
2
]0.5

, where ∆iv∗
i,t is the predicted value based

on the regression at time t − 1 and ∆ivi,t is the actual logarithmic change in implied

volatility. RMSE measures, for each stock i, the deviation of forecasts from actual

changes in volatility.

3.2 Cross-Sectional Regressions

Specification (1) in Table 2 shows that the future increase in volatility is negatively

related to the current level of volatility, which implies that stocks’ implied volatilities

reverts towards the cross-sectional mean: a high level of volatility today, compared to

the cross-sectional average, predicts a lower implied volatility in the future, or a negative

change. The estimated coefficient of –0.069 is highly statistically significant and implies

a cross-auto-correlation coefficient for the level of IV of 0.921 which is very close to the

estimate obtained from the time series of cross-sectional averages.

Specification (2) shows that the coefficient on the difference between the current level

of implied volatility and the twelve-month average is negative and largely significant,

suggesting that the mean reversion property of the individual time-series of implied

volatility is also an important factor in predicting the future change in IV . The richer

dynamic of model (2) leads to an higher average adj-R2 and a lower average RMSE. A

similar conclusion can be drawn from specification (3) wherein the difference between

the current level of implied volatility and the twelve-month moving average of realized

volatility is considered. The best forecasting model among the four considered is reported

in the fourth model wherein the two measures of past volatility are concurrently used as

a predictor. In this model the change in implied volatility is negatively related to the last

period IV and negatively related to both moving averages. The average adj-R2 is quite

large at 17.1%, and at times it is as high as 50%. Model (4) has also the lowest average
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RMSE, equal to 14.2%, confirming that the better in-sample performance, measured by

the adj-R2, is not due to data overfitting. The forecasts produced by this model are

used for the rest of the analysis in the paper.

One interesting result from the estimation of the forecasting model is that the accu-

racy of the predictions, either in and out of sample, is negatively related to changes in

the aggregate level of volatility, as measured by VIX. The monthly correlation between

the time series of adj-R2 and changes in VIX is in fact equal to –0.38, while the cor-

relation between the time series of cross-sectional averages of square deviations of the

out of sample forecasts from the actual changes and changes in VIX is about 0.32. The

movements of the cross-section of implied volatilities are more difficult to forecast when

the aggregate volatility is increasing.

3.3 Portfolios Based on Cross-Sectional Forecasts

The regression model of the previous subsection indicates a high degree of predictability

in the cross-sectional distribution of changes in implied volatility. However, the RMSE of

the regression suggests that forecasts for individual stock volatility are still fairly noisy.

One way of using the information from the cross-sectional regressions while maximizing

the signal-to-noise ratio is to form portfolios. Specifically, for each month in the sample

I form decile portfolios by ranking the out-of-sample volatility forecasts. Portfolio 10

is predicted to have the highest (positive) percentage change in implied volatility while

portfolio 1 predicted to have the lowest (negative) percentage change in implied volatil-

ity. The advantage of forming portfolios is that a cardinal signal on predicted value is

transformed into a more precise ordinal signal on the ranking of predicted values.

I report the results of this analysis in Table 3. I the first panel, for each portfolio, I

report the average difference between IV and the cross-sectional average, ˆIV , and the

difference between the IV and the twelve month moving average, IV . The analysis

confirm that the predictability in implied volatility is related to both the cross-sectional

and the time-series mean reversion. For example, the average IV − IV for portfolio 1 is

15.0% and –11.8% for portfolio 10 – both are highly statistically significant, while the

average IV − ˆIV is 11.2% and –8.0%, respectively. The further the market estimate of

future volatility is from the past measures, the more accurate is the prediction for the

change in future volatility. I also report the mean of the out-of-sample predicted change

(in levels), ∆IV ∗ as well as of the actual change, ∆IV . The two averages are remarkably
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close. For example, the average forecast for portfolio 1 is –7.3% while the actual change

is –5.9%. Similarly the forecast for portfolio 10 is 3.9% while the actual change is 3.5%.

4 Economic Significance

Since changes in volatility are the most important determinant of option returns, the pre-

dictability uncovered in the previous section can potentially be economically significant

to investors. In this section I investigate this possibility by analyzing the performance

of portfolios of options formed on the basis of the implied volatility forecasts.

I compute a prediction of each stock’s future percentage change in volatility at the

beginning of each month in a real time fashion. I use implied and realized volatility

measures available at the beginning of the month and parameter estimates obtained from

the previous month to obtain predictions of expected changes of IV . I then form decile

portfolios by ranking these out-of-sample volatility forecasts. Portfolio 10 is predicted

to have the highest (positive) percentage change in implied volatility while portfolio

1 is predicted to have the lowest (negative) percentage change in implied volatility.

Equally-weighted monthly returns on calls, puts, straddles, and underlying stocks of

each portfolio are computed and the procedure is then repeated for every month in the

sample. On average the portfolios are composed of 134 different equities in each month.

Table 4 reports the results of this exercise. The pattern in the portfolio average

returns is in line with the predicted change in volatility. Portfolio 1, which corresponds

to the highest predicted decrease in volatility, has negative average returns equal to

–3.1%, –12.0%, and –7.2% for calls, puts, and straddles, respectively. The average

returns increase monotonically as one goes from portfolio 1 to 10. Portfolio 10, which

corresponds to stocks with large predicted increase in volatility, has average returns

equal to 8.8%, 5.6%, and 5.6% for calls, puts, and straddles, respectively. The call and

put portfolios are, however, characterized by very high volatility that ranges from 41%

to 53% per month. The volatility of the straddle portfolios is instead much lower and

between 12.3% and 17.5% per month.

I also report two measures related to the risk-return trade off for the portfolios:

Sharpe ratio (SR) and certainty equivalent (CE). CE is computed for a long position

in the portfolio and is constructed using a power utility with coefficient of relative risk

10



aversion equal to 3.5 For reference, the market, as proxied by the value-weighted CRSP

portfolio, has a Sharpe ratio of 0.103 and a CE of 0.45% per month. Because of the high

volatility and extreme minimum and maximum returns, which imply large high order

moments, all call and put portfolios have low SR and negative CE. Straddle portfolios,

on the other hand, have high Sharpe ratios and certainty equivalents.

The returns to a long-short strategy, that is long in portfolio 10 and short in portfolio

1, are noteworthy. The call and put strategies have high average returns and volatility

that is generally lower than the two originating portfolios leading to large monthly

Sharpe equal to 0.334 and 0.683 for calls and puts respectively. The very large minimum

returns, –107% however, lead to very low CE for the call long-short portfolio. The put

strategy has still a large negative minimum return, –50.3%, but a positive CE. In contrast

the long-short staddle strategy has an average return of 12.9% with a 13.2% monthly

standard deviation (the minimum monthly return in the sample is –21.6%). This leads

to a monthly Sharpe ratio of 0.977 and a certainty equivalent of 10.5% per month.

Please note that these option returns do not appear to be driven by directional expo-

sure to the underlying asset. When underlying stocks are sorted according to the same

portfolio classification, the returns of the stock portfolios do not exhibit any particular

trend in either the first or the second moment. Altogether the evidence confirms that the

ability to forecast volatility leads to predictability in option returns. The cross-section

of option returns appears to be very well explained by the cross-section of volatility fore-

casts. The long-short portfolio option return is statistically significant and economically

large.

Note also that the results do not appear to be driven by microstructure effects. Since

the returns are computed from the mid-point prices they are not affected by the bid-

ask bounce effect of Roll (1984). As an empirical validation I repeat the analysis using

option returns computed from the second, as opposed to the first, to the last trading

day of the month. In this case to eliminate stale quotes, I do not consider bid and ask

prices that do not change between the first and the second trading day of the month.

Untabulated results indicate that a very small fraction of the returns reported in Table 4

are due to the first day of trading. For example, the effect of skipping one day in the

return construction alters the straddles long-short strategy average return by 1.3%, from

12.9% to 11.6% respectively. As the second return corresponds to a holding period of 21

5CE is potentially a better measure of the risk-return trade off then SR because it takes into account
all the moments of the return distribution.
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instead of 22 days, everything else the same, the expected difference in the return should

be 0.6%. The unaccounted difference, 0.7%, is then due to the process of lagging by

one day the portfolio construction from the calculation of the signal (expected change

in volatility).

4.1 Robustness

I implement a series of robustness checks that are designed to help us understand the

profitability of these portfolios. The previous section shows that the straddle returns are

most clearly related to the source of predictability, that is changes in future volatility.

For this reason, I focus only on the straddle portfolios.6

4.1.1 Sub-Samples

I replicate the analysis of Table 4 by dividing the data into two sub-samples. The sub-

samples are formed by considering different states of the market and of the aggregate

volatility. The states are determined by the sign of the market value-weighted CRSP

portfolio returns and by the sign of the changes in the VIX index. Mean returns and

t-statistics are reported in Table 5. In Panel A the sample is divided according to the

size of the market return. The return difference between positive and negative market

periods is decreasing with the size of the predicted change in implied volatility. Portfolio

(1) performs better when the market is rising, while the opposite is true for portfolio

(10). For the long-short portfolio the spread between up and down market is equal to

–4.8% and marginally statistically significant.

Panel B of Table 5 shows how the portfolio returns differ in periods of increasing and

decreasing aggregate volatility (VIX). The conditional portfolio returns are higher in

months in which VIX is increasing. The return difference increases moving from portfolio

(1) to portfolio (10). The average return difference is virtually zero for portfolio (1) and

9.2% for portfolio (10). In seven of the ten cases this difference is significantly grater

than zero. The long-short strategy has returns of 17.6% in months of positive changes

in VIX and 8.5% in months of negative changes in VIX. The difference is economically

important at 9.2% per month (and statistically significant). Straddles have a positive

6Complete results for portfolios of calls and puts, which are qualitatively similar, can be obtained
from the author upon request.

12



return when volatility increases, so it is natural that the portfolios have a greater return

when aggregate volatility is moving up. What the result says however is that this seems

to be particularly the case for options with a positive forecasts or, in other terms, a

lower implied volatility.

Untabulated results for portfolios of calls and puts differ in only one dimension: the

call long-short portfolio has a much larger average return (19.5%) when the market is up

versus 10.7% when the market is down. The put long-short strategy is more profitable

(18.1%) when the market is down versus 9.7% when the market is up. This result, is

however, expected because the option prices move in accordance with the direction of

underlying asset. When aggregate volatility is considered as the reference state variable

I observe the same patterns: call portfolios are all negative when volatility is rising

while put portfolios are all negative when volatility is decreasing. This of course is

due to the negative correlation between the aggregate volatility and the stock market.

When volatility goes up the market is tanking which makes call returns negative and

put returns positive.

4.1.2 Stock Characteristics

Since options are derivative securities, it is reasonable to assume that option returns

depend on the same sources of risk that characterize stock returns. The absence of a

formal theoretical model for the cross-section of option returns further warrants consid-

ering stock-risk factor related explanations for option returns. I, therefore, investigate

how the long-short straddle returns are related to equity risk factors. I consider two-way

independent sorts - one based on volatility forecast and the second based on firm charac-

teristics. The characteristics chosen are beta, size, book-to-market and past return. The

first three of these are motivated by Fama and French (1992) while the last one is due

to evidence of momentum profits by Jegadeesh and Titman (1993).7 I sort stocks into

quintile portfolios, as opposed to decile, to keep the portfolios well populated. Break-

points for size, book-to-market, and momentum are obtained from Kenneth French’s

website.

Table 6 shows the results of these double sorts. The profits due to volatility pre-

dictability persists in any beta, size, book-to-market, and momentum portfolios indicat-

7See also Amin, Coval, and Seyhun (2004), who find a relation between index option prices and
momentum.
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ing that the “volatility effect” is not subsumed by other effects typical of the cross-section

of stock returns. The long-short portfolio strategy has statistically significant average re-

turns that range from 6.9% to 12.8% per month — Note that these are quintile portfolios.

Moreover the magnitude of the long-short portfolio returns seems to be related to the

firm characteristics: the average returns are higher for small market capitalization, high

book-to-market ratio and past loser stocks. Note that all these characteristics are also

related to volatility: anything else constant stocks with small size, high book-to-market

ratio, and poor past market performance tend to be high volatility stocks.

At the same time, the empirical regularities found in stock returns also migrate to

option returns. Stocks with high beta, small size, high book-to-market, and poor stock

market performance all have larger average straddle returns. However the magnitude of

the difference between the top and bottom portfolios is not always statistically signifi-

cant, and it is not large enough to explain the “volatility predictability” phenomenon.

Nonetheless it appears that the characteristics positively covary with the size of the

volatility forecasts. The return difference between portfolios of options with high and

low stock beta, small and large market capitalization, high and low equity book to mar-

ket, and negative and positive past stock performance tends to be positively related to

the implied volatility forecast. For example, the S–B size portfolio has an average return

of 7.6% per month in the top quintile of volatility forecasts and 3.9% per month in the

bottom quintile of ∆iv∗.

Figure 1 shows that the equity option market was particularly active during the

years of the “technology bubble.” It is, therefore, imperative to establish if the volatility

predictability is a phenomenon in only the technology industry. In unreported results, I

find this not to be the case. The long-short volatility strategy is quite profitable in each

industry. The highest average return (9.4% per month) is in the finance sector while the

lowest return (6.9%) is in the utilities industry.

I conclude that the option returns do covary with the same stock characteristics that

are found to be important for stock returns, but this covariance is not enough to explain

the portfolio returns based on the volatility predictability.
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4.2 Risk Adjusted Returns

I proceed by examining whether the profitability of the volatility option portfolios is

related to aggregate risk. I regress the straddle portfolio returns on various specifications

of a linear pricing model composed by the Fama and French (1993) three factors model,

the Carhart (1997) momentum factor, and changes in the aggregate implied volatility,

as measured by VIX. Estimated parameters for portfolio (1) (lowest predicted increase

in volatility), (10) (highest predicted increase in volatility) and (10-1) are reported in

Table 7. Of the five factors the momentum factor does not seem to play a very important

role. The loadings of the remaining factors, with the exception of the volatility changes,

are higher for portfolio (1) than they are for portfolio (10). There is however a lot

of noise in these estimates and the t-statistics tend to be quite low. On the contrary,

the linear factor specification does a much better job at explaining the returns of the

long-short portfolio. With the exception of momentum, the other factors have significant

loadings and the adjusted-R2 are quite large, especially considering that we are analyzing

a portfolio of options.

Note however that from the qualitative standpoint the results appear quite surpris-

ing. The signs of the estimated parameters do not suggest that the option returns, and

in particular the returns of the long-short strategy, are explainable in terms of remuner-

ation for risk. On the contrary, the return of portfolio (10-1) are negatively related to

movements in the three stock market factors and are positively related to the changes

in aggregate volatility. The long-short strategy appears therefore to be quite attractive,

even without considering the extremely large returns, because it also hedges the sources

of aggregate risk that are priced in the stock market. This is also captured by the fact

that the risk-adjusted return, α̂, is higher than the strategy average return.

4.3 Multiple Maturities and Horizons

The analysis conducted so far is based on the one-month prediction of the future change

in volatility and on the return of options with less than two month to maturity. On one

hand options on the same underlying but with different maturity do not always share

the same characteristics. On the other hand, the evidence that implied volatility follows

a persistent process (estimates of the half-life of volatility in general lay around the 6

months time period) suggests that the longer horizon predictability might be stronger
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than that at one-month horizon. In this section, therefore, I investigate to what extent

the maturity of the contracts and the horizon of the volatility forecasts impacts the

profitability of the long-short trading strategy. I consider three different maturities and

horizons: 1, 3 and 6 months.8 Summary statistics for the long-short straddle portfolios

are reported in Table 8. In the first panel I report summary statistics for straddles

portfolios with different maturities obtained by sorting the 1 month volatility forecasts

(same as Section 3). The three columns differ in the choice of the options used to form

the portfolios: in the first column (1-month) I only consider options that expire between

1 and 2 months (same as before), in the second options that expire between 3 and 4

months, and in the last options that expire between 6 and 7 months. All the returns are

then computed over the next month. As it was expected the table shows that prices of

longer-maturity options are less sensible to short-run changes in volatility. Consequently

the returns are smaller when longer maturity options are considered — Note however

that the Sharpe ratios do not decrease as much as the average returns, indicating that a

long-short portfolio of longer maturity options might not be always ignored, especially

when the volatility of the strategy is also of interest.

In the second panel, I instead report summary statistics for three long-short portfolios

constructed by ranking volatility forecasts over the different horizons and by computing

returns as buy and hold over the particular horizon. So for example the 6 months long-

short strategy is obtained by shorting 6 months ahead out-of-sample volatility forecasts.

Once it is determined which options go in the long and short portfolio, the options are

bought and sold and kept in the portfolio for 6 months. The procedure is repeated

each month, so that at any point in time there exist six long and six short portfolios.

Each of these six portfolios contains options which will mature at a different point in

time. The returns are realized at end of the month before expiration. Therefore the

six-month horizon portfolio has monthly return observations, but each is a six months

holding period return.

The first step in the procedure involves re-estimating the forecasting model (1) by

considering three and six months horizons change in volatility, defined as ∆ivt+3 =

log(IVt+3)− log(IVt) and ∆ivt+6 = log(IVt+6)− log(IVt). The estimates of these regres-

sions are not reported. As expected, the coefficient on IVt−1 becomes more negative with

8For convenience and to keep the notation of the table as simple as possible, I refer to 1, 3, and
6 months to maturity. These maturities are in reality more than what they are noted, because the
contracts expire on the third Friday of the following month, so that the proper notation would have to
be less than 2, 4, and 7 months.
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horizon, while the coefficients on moving average of past volatility become larger. The

average adj-R2 increases with the horizon, from 12.9% to 14.9% and 15.0%, respectively.

The average holding returns however do not increase with horizon.

This exercise serves as a reality check to understand whether the results of previous

sections are entirely driven by a short-run phenomenon, and hence controlling that

the volatility predictability extends to the entire term-structure of implied volatilities.

Combining the results of the two panels I conclude that the larger part of the returns

is realized in the first month and hence that the implied volatility predictability has

economic implications in the very short-term.

4.4 Trading Execution

There is a large body of literature that documents the finding that transaction costs in

the options market are quite large and are in part responsible for some pricing anomalies,

such as violations of the put-call parity relation.9 For this reason, it is essential to

understand to what degree these frictions prevent investor from exploiting the volatility

predictability uncovered in this paper. Therefore, in this section I discuss the impact

of transaction costs, measured by the bid-ask spread, and margin requirements on the

feasibility of the long-short strategy.

I consider the costs associated with executing the trades at prices inside the bid-ask

spread. The results reported so far are based on returns computed using the mid-

point price as a reference; however it might not be possible to trade at that price in

every circumstance. De Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002)

document that the effective spreads for equity options are large in absolute terms but

smaller relative to the quoted spreads. Typically in fact the ratio of effective to quoted

spread is less than 0.5. Moreover Chan, Chung, and Johnson (1995) study the intraday

behavior of option prices and document that spreads tend to increase at the end of the

day. Since transactions data is not available for the sample considered in this study,

I consider an effective spread equal to 75% of the quoted spread. Given the evidence

cited above, this transaction cost estimate should be a conservative measure of the real

execution costs.

9See for example Gould and Galai (1974), Figlewski (1989), Ho (1984), George and Longstaff (1993),
Ofek, Richardson, and Whitelaw (2004), Santa-Clara and Saretto (2005), and Swidler and Diltz (1992).
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Since transaction costs are very large in the option market, a real-world investor

would not choose to reverse his positions at the end of the month, but would wait to

unwind the strategy at the expiration date of the options. To account for this I compute

the return to expiration, which corresponds to an average holding period of 47 days.

The average return to expiration of the long-short strategy is equal to 16.1% when

the returns are computed from mid-point prices and 5.5% when transaction costs are

applied, suggesting that the volatility predictability originates some profitable oppor-

tunities. Moreover, to eliminate the concern that the results might come from options

that are extremely thinly traded I repeat the analysis by splitting the sample in different

liquidity groups which are obtained by ranking stocks on the base of the liquidity char-

acteristics of the options. For each stock I compute the average quoted bid-ask spread

of all the options series traded in the previous month as well as the daily average dollar

volume. I then sort stocks based on these characteristics and report average returns and

t-statistics for the long-short portfolio. In the top panel of Table 9 I tabulate results

for terciles (low, medium and high) obtained by sorting the average bid-ask spread; in

the bottom panel I separate stocks based on the options daily average dollar volume.

I report the average return computed from the mid-point price (MidP) and from the

bid and ask prices (EBA) adjusted for an effective bid-ask spread eqaul to 75% of the

quoted spread.

Altogether the results indicate that the large return of the long-short strategy does

not stem from very illiquid options: while it seems that options with large quoted spreads

tend to have a higher returns than options with small spreads (16.6% versus 13.3%) it

is not clear that the same result is supported by the volume portfolios. Moreover,

in both cases the highest average return is realized in the medium tercile portfolio.

Taking trasnaction costs into account the portfolio returns decrease substantially but

remain sizeble. For example in the case of the medium bid-ask spread portfolio the

average return is 8.6% after trading costs. Lagging the portfolio formation by one day,

as discussed in section 4, has a small impact on the portfolio returns suggesting that the

results are not due to micro-structure effects.

Santa-Clara and Saretto (2005) show that margin requirements on short-sale po-

sitions can be quite effective at preventing investors to take advantage of large profit

opportunities in the S&P 500 option market. However margins on short positions have

a smaller impact on trades that involve options with strike prices close to the money, as

it is the case of the strategy outlined in the previous section. The short side of the long-
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short strategy involves options with high IV and low (negative) expected percentage

change in IV . Therefore, these options have high prices and relatively high price-to-

underlying ratios. Margin requirements for these options are relatively low and should

not affect the execution of the strategy.

5 Cross-Sectional Forecast as a Shrinkage Estimator

If economic agents consider assets individually when forecasting their volatilities they

will not produce the most efficient predictions. It is in fact a principle of Bayesian

statistics that a way to improve the accuracy, defined as the expected square error, of

an estimate is to combine that estimate with some informative prior. The way the two

estimates, the original and the prior, are then combined is by shrinking towards the

prior the estimates that are very far from it. This type of estimators are referred to as

Shrinkage estimators.10

A possible explanation to the profitability of the trading strategies is that the forecast

produced by the cross-sectional model is a better estimate of future realized volatility

than the market forecast, represented by the implied volatility. The cross-sectional

estimate, CS from now on, is computed by adding up the out-of-sample prediction of

the change in the level of IV , ∆IV ∗
t = IVt × ∆iv∗

t , to the current level of implied

volatility. In other words CS is given by the combination of two different forecasts:

one produced by the market and another computed using the cross-sectional forecasting

model 1

CSt = IVt + ∆IV ∗
t︸ ︷︷ ︸

shrinkagefactor

Despite the way it is obtained, which is very different from the Bayesian approach,

∆IV ∗
t shares some property with the shrinkage factor of the Stein’s estimator. Indeed

it operates like a shrinkage factor in the sense that, as is evidenced in Table 3, it is

negative for high values of IV and it is positive for low values of IV . In the ten portfolios

10Shrinkage estimators were introduced by Stein (1955) and rely on the idea that a combination of
two different estimators might produce a substantial gain in terms of the variance of the estimate.
Efron and Morris (1977) present a non-technical discussion of the Stein’s estimator while Morris (1983)
offers a more rigorous presentation. For an example of application to the estimation of the variance
covariance matrix see Ledoit and Wolf (2003), while probably the most common finance application of
the shrinkage is the estimation of asset’s betas, see for example Karolyi (1992).
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constructed by ranking the out-of-sample log change in implied volatility, the average

adjustment factor , ∆IV ∗, is equal to –7.3% for the portfolio with the lowest predicted

change, and it is equal to 3.9% for the portfolio with the highest predicted change. Note

that respectively these portfolios have high, 64.8%, and low, 35.3%, current levels of

implied volatility. ∆IV ∗ is therefore effectively shrinking the tails of the distribution

towards the cross-sectional average. While in the classical Stein’s estimator this property

would be produced by explicitely operating on the cross-sectional average of implied

volatility, the informative prior, here we obtain it by filtering the data through the

estimated parameters of a cross-sectional regression. The analogy holds because of the

property of the liner regression. The estimated parameters are such that the regression

line fits through the cross-sectional average of the dependent variable, again the average

of the stocks’ IVs.

To offer more evidence in Panel A of Figure 2 I plot ∆IV ∗ versus the implied volatility

as of the beginning of September 2001.11 Similarly to the table, the figure shows that

∆IV ∗ tends to be negative for large values of the implied volatility, while the reverse

is true for small values of IV . As a result the cross-sectional distribution of CS is less

dispersed than that of IV in most of the months in the sample. In Panel B of Figure

2 I plot the tails of the non-parametric kernel density of the cross-sectional distribution

of IV and CS. The left and right tails are plotted on the left and right hand-side,

respectively. The “shrinkage” of the distribution of IV is quite apparent: the left tail of

CS lays in fact at the right of the left tail of IV , while the opposite pattern is shown in

the figure on the right. This is not an exception in the sample. Indeed in about 82% of

the months the left tail of the cross-sectional distribution of CS lays to the right of the

corresponding distribution of IV . Similarly in 92% of the months the right tail of CS

is instead to the left of the right tail of IV . The range of CS, defined as the interval

between the min and the max, lays within the range of the distribution of IV in 85% of

the months. Moreover, the same range is on average 8.8% smaller than the range of the

implied volatility distribution.

Having shown that CS has similar characteristics to the shrinkage estimator provides

the underlying statistical rationale for the trading profits reported earlier. In the rest of

the section I therefore rationalize the economic aspect of the reported predictability by

investigating the relation between the two volatility forecasts, IV and CS, and the future

11The choice of the date is completely casual and corresponds to when I started the PhD program at
UCLA.
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realized volatility. In particular, using an approach similar to the study of Christensen

and Prabhala (1998),12 I test the hypothesis that CS is a better predictor, than the

market forecast IV , of the future realized volatility. I run a horse race between CS and

IV by estimating the following regression model

FVt,t+k = α + βXt + εt (2)

where FV is the future realized volatility over the life of the option, and X is either

the cross-sectional forecast, the implied volatility, or the past realized volatility, which is

included as a benchmark case. The dependent variable is the realized volatility of daily

returns over the life of the option. So, for example, if the implied volatility is extracted

from a couple of options with 47 days to expiration I compute the annualized daily

standard deviation of returns over those 47 days. The underlying hypothesis is that if

the forecast is unbiased the parameters α and β should be equal to 0 and 1 respectively.

In evaluating which volatility measure is a better forecast of realized volatility I will

then follow three criteria: which one has a smaller forecast error, in this case measured

by the constant; which measure has a slope which closer is to one; and finally which

forecasting model has the higher average adj-R2.

Table 10 reports the estimation results. In the first panel I report results of the

time series analysis wherein I estimate the coefficients of Equation 2 for each stock

using the entire available sample. The analysis delivers a pair of estimated parameters

(α̂, β̂)i=1:N for each stock. I tabulate the cross-sectional mean of the coefficients as well

as the standard deviation of the cross-sectional distribution (in parenthesis). In the

second panel I tabulate the results of the analysis when Equation 2 is estimated cross-

sectionally. Following Fama and MacBeth (1973) a cross-sectional regression is estimated

at each date, and then coefficients are averaged through time. Average parameters and

t-statistics corrected for serial dependence are shown in the table. Invariably both panels

offer the same evidence: CS is a better predictor of future realized volatility. In both

the time-series and the cross-sectional approach model (1) has a smaller α̂, a larger β̂

and a higher average adj-R2. For example in the time series regression in 64% of the

cases the constant from model (1) is closer to zero than the constant from model (2).

The proportion of times the CS slope is closer to one is instead 65%. Finally in 73% of

12There are several articles in the finance literature study the relation between implied volatility and
future realized volatility. Among many others we find Day and Lewis (1992), Canina and Figlewski
(1993), Fleming (1998), Lamoureux and Lastrapes (1993), and Jiang and Tian (2005).
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the cases the adjusted-R2 is greater.13 In the Fama-MacBeth regression the estimated

intercept in model (1) is very small, –0.007, and not statistically different from zero,

while the slope estimated coefficient is 1.011 and not statistically different from 1. In

this context inference about the differences in the estimated coefficients form across

models is directly possible. The mean difference of the constants (–0.035) is statistically

significant from zero with a t-statistic, corrected for serial dependence, of –9.7. Similarly

the mean difference in the slopes (0.080) has a t-statistic of 12.6.

Having shown that the cross-sectional forecast CS is a better prediction of future

realized volatility, I investigate if it leads to informationally efficient option prices. In

particular, I price the options involved in the portfolio strategies previously discussed

by plugging the CS estimate into the Black and Scholes (1973) model and show that

the trading strategy is no longer profitable. For each of the decile groups obtained by

sorting the out-of-sample volatility forecasts, I compute the portfolio returns using as

initial prices the values obtained by inserting CS into the Black and Scholes formula. I

use the LIBOR rate as the interest rate, while the dividend yield is calculated from the

last dividend paid by the firm. Summary statistics, average and t-statistic, are reported

in Table 11. Note that the ten portfolio average returns are not statistically different

form zero; the average return of portfolio (1) goes from –6.7% to 2.2% while the return

of portfolio (10) goes from 8.4% to 1.8%. The result suggests that the cross-sectional

forecast CS works better for the high portfolios, for which even the magnitude of the

average returns is very close to zero. This suggests that the modified price obtained

from the volatility forecast is closer to the ‘true’ price of the option.

6 Conclusion

In this paper I document the existence of predictability in the cross-sectional distribution

of equity option implied volatilities. Various implications of the efficient market hypoth-

esis have already been examined in context of option markets. However, differently from

these papers, I document that the predicatibility found in this paper is economically

significant to investors.

13In general, standard inference on the cross-sectional distribution of estimated parameters is not
easily available, because the estimates are likely to be cross-correlated. If we assume that the estimates
are not cross-correlated standard inference applies: both the difference in the constant from model (1)
and (2), 0.023, and the difference in the slope, 0.052, are highly statistically significant with t-statistics
of –7.1 and 7.9, respectively.
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One possibility is that the cross-sectional predictability stems from the fact that

economic agents do not use all available information in forming expectations about

future stock volatilities. I show that a better prediction of the future realized volatility

can be constructed using the cross-sectional forecasting model.

The verdict about what generates this behavior on the part of the economic agents

is left for future research. In particular two possibilities appear as leading candidates:

behavioral biases in the process in which information is incorporated into option prices,

as suggested by Poteshman (2001) and Stein (1989) for example, or the existence of

premia in the equity option market for exposure to aggregate risks such as volatility,

Ang, Hodrick, Xing, and Xiaoyan (2005), and liquidity, Pedersen and Acharya (2005).
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Figure 1: VIX vs. IMP

In this figure I plot the time-series of VIX and the time-series of the average implied volatility, IMP.
VIX data is obtained from the CBOE. Options and stocks closing prices were sampled monthly between
January 1996 and June 2005. The data is provided by the Ivy DB database from OptionMetrics. All
options are American.
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Figure 2: Emprical Distribution of CS

In Panel A I plot ∆IV ∗ versus the implied volatility as of the beginning of September 2001. In Panel
B I plot the tails of the non-parametric kernel density of the cross-sectional distribution of IV and CS,
where

CSt = IVt + (IVt × ∆iv∗t )︸ ︷︷ ︸
∆IV ∗

t

The data is provided by the Ivy DB database from OptionMetrics. All options are American.
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Table 1: Summary Statistics

This table reports summary statistics of call, put, and straddle returns as well as the level and change of
the ATM implied volatilities, the smiles, the level and change of the realized volatilities. I report average,
standard deviation, minimum, maximum, skewness, kurtosis. Options and stocks closing prices were
sampled monthly between January 1996 and June 2005. The data is provided by the Ivy DB database
from OptionMetrics. All options are American.

mean median std min max skew kurt

Call 0.034 -0.370 1.185 -0.995 26.097 2.976 24.649

Put -0.036 -0.400 1.065 -0.994 23.857 2.565 16.334

Strad -0.003 -0.176 0.524 -0.896 12.030 2.912 23.045

IV 0.503 0.447 0.239 0.124 2.019 1.162 4.484

∆IV -0.002 -0.003 0.087 -0.868 0.774 0.334 10.589

SmL 0.031 0.002 0.054 -0.494 0.706 1.675 8.600

SmR -0.005 0.000 0.035 -0.413 0.614 1.312 17.749

RV 0.491 0.410 0.307 0.029 3.510 1.969 9.313
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Table 2: Volatility Predictability

In this table I report results of the estimation of the following forecasting model for the change in
implied volatility:

∆ivi,t+1 = αt + βtivi,t + γtXi,t + εt+1

Xi,t = {ivi,t − ivi,t−12:t−1, ivi,t − rvi,t−12:t−1}

where IVi,t is the ATM implied volatility for stock i measured at the beginning of month t, ∆ivi,t =
log(IVi,t+1)− log(IVi,t), ivi,t−12:t−1 is the natural logarithm of the twelve months moving average of IVi

and rvi,t−12:t−1 is the logarithm of the twelve months moving average of the realized volatility for stock
i, RVi,t−1, measured as the standard deviation of daily returns realized during month t − 1. Averages
of the cross-sectional estimates as well as Fama-MacBeth t-statistics adjusted for serial dependency are
reported. Options and stocks closing prices were sampled monthly between January 1996 and June
2005. The data is provided by the Ivy DB database from OptionMetrics. All options are American.

(1) (2) (3) (4)

ivt -0.069 -0.038 -0.057 -0.044
[-12.27] [-5.90] [-10.07] [-7.18]

ivt − ivt−12,t−1 -0.290 -0.191
[-34.08] [-16.66]

ivt − rvt−12,t−1 -0.234 -0.121
[-22.72] [-10.79]

R2 0.048 0.154 0.144 0.171
{0.05} {0.07} {0.07} {0.07}

RMSE × 100
mean 15.287 14.378 14.478 14.271
median 14.279 13.381 13.485 13.325
std {8.57} {8.04} {7.98} {7.96}

obs 398 398 398 398
{94} {94} {94} {91}
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Table 3: Forecast and Future Implied Volatility

In this table, for each of the decile groups obtained by sorting the out-of-sample volatility forecasts
(predicted logarithmic changes), I report the mean and the t-statistic for the difference between the
level of IV and the cross-sectional mean of implied volatility, ˆIV , and the difference between IV and
the twelve months moving average of past implied and realized volatilities, IV . In the second panel I
report the mean and the t-statistic of the out-of-sample predicted change (in levels), ∆IV ∗ as well as
of the actual change, ∆IV . Options and stocks closing prices were sampled monthly between January
1996 and June 2005. The data is provided by the Ivy DB database from OptionMetrics. All options
are American.

∆iv∗ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

IVt − ˆIV t 0.112 0.065 0.034 0.010 -0.005 -0.025 -0.037 -0.053 -0.064 -0.080
t-stat [13.27] [9.68] [6.24] [2.28] [-1.66] [-7.71] [-8.43] [-8.28] [-7.67] [-8.00]

IVt − IV t−12:t−1 0.150 0.060 0.027 0.006 -0.011 -0.022 -0.037 -0.048 -0.066 -0.118
t-stat [15.42] [8.04] [4.07] [0.93] [-1.91] [-3.91] [-6.88] [-8.96] [-12.51] [-21.63]

∆IV ∗
t+1 -0.073 -0.034 -0.019 -0.010 -0.002 0.004 0.010 0.016 0.024 0.039

t-stat [-19.04] [-11.31] [-7.05] [-3.72] [-0.89] [1.83] [4.23] [6.61] [9.05] [13.47]

∆IVt+1 -0.059 -0.026 -0.013 -0.003 0.000 0.006 0.010 0.014 0.020 0.035
t-stat [-11.39] [-5.52] [-3.13] [-0.85] [0.07] [1.56] [2.70] [4.45] [5.99] [10.29]
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Table 4: Conditional Portfolio Returns

In this table,for each of the decile groups obtained by sorting the out-of-sample volatility forecasts
(predicted percentage changes), I report summary statistic of the portfolios of call, put, and straddle
returns: mean, standard deviation, minimum, maximum, Sharpe ratio (SR) and certainty equivalent
(CE). CE is computed from a utility function with constant relative risk aversion parameter of 3. In
the last column I report results for a zero-cost portfolio which is long in the options with the highest
predicted increase in volatility and short in the highest decreases. Options and stocks closing prices
were sampled monthly between January 1996 and June 2005. The data is provided by the Ivy DB
database from OptionMetrics. All options are American.

∆iv∗ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (10-1)

CALL
mean -0.031 0.033 0.017 0.023 0.040 0.054 0.042 0.039 0.051 0.088 0.118
std 0.415 0.474 0.438 0.448 0.448 0.453 0.478 0.452 0.451 0.486 0.354
min -0.801 -0.811 -0.744 -0.849 -0.795 -0.708 -0.750 -0.825 -0.791 -0.752 -1.071
max 1.237 1.125 1.441 1.228 1.106 1.288 1.400 1.464 1.165 1.617 1.252
SR -0.081 0.062 0.032 0.045 0.083 0.112 0.081 0.079 0.106 0.174 0.334
CE -0.301 -0.306 -0.278 -0.316 -0.286 -0.239 -0.284 -0.275 -0.271 -0.223 -0.651

PUT
mean -0.120 -0.084 -0.060 -0.052 -0.038 -0.049 -0.012 -0.006 0.002 0.056 0.176
std 0.418 0.474 0.479 0.494 0.496 0.493 0.499 0.514 0.514 0.537 0.291
min -0.760 -0.737 -0.672 -0.716 -0.730 -0.753 -0.700 -0.762 -0.706 -0.684 -0.503
max 1.825 2.182 2.586 2.709 2.626 2.486 2.454 2.918 3.059 2.959 1.134
SR -0.294 -0.183 -0.132 -0.110 -0.084 -0.105 -0.030 -0.018 -0.002 0.099 0.605
CE -0.358 -0.376 -0.313 -0.320 -0.317 -0.322 -0.286 -0.299 -0.265 -0.232 0.068

STRADDLE
mean -0.072 -0.023 -0.024 -0.013 -0.003 0.004 0.011 0.009 0.019 0.056 0.129
std 0.123 0.139 0.148 0.146 0.145 0.147 0.156 0.159 0.157 0.175 0.132
min -0.315 -0.267 -0.280 -0.268 -0.254 -0.290 -0.234 -0.245 -0.288 -0.196 -0.216
max 0.491 0.561 0.722 0.754 0.778 0.700 0.808 0.895 0.969 0.927 0.486
SR -0.616 -0.187 -0.184 -0.107 -0.038 0.006 0.050 0.037 0.103 0.304 0.977
CE -0.093 -0.049 -0.051 -0.039 -0.028 -0.022 -0.018 -0.020 -0.010 0.022 0.105

STOCK
mean 0.008 0.012 0.011 0.012 0.010 0.013 0.008 0.007 0.009 0.007 -0.001
std 0.086 0.088 0.078 0.074 0.071 0.067 0.066 0.058 0.059 0.056 0.062
min -0.245 -0.237 -0.209 -0.227 -0.235 -0.198 -0.196 -0.194 -0.201 -0.181 -0.265
max 0.227 0.193 0.276 0.263 0.187 0.170 0.120 0.115 0.121 0.140 0.178
SR 0.056 0.101 0.099 0.121 0.099 0.145 0.079 0.077 0.102 0.076 -0.009
CE -0.004 -0.000 0.002 0.004 0.002 0.006 0.001 0.002 0.004 0.002 -0.007
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Table 5: Straddle Portfolio Returns in Subsamples

In this table I report summary statistic for decile portfolios of straddle returns: mean and t-statistic.
In the last column I report results for a zero-cost portfolio which is long in the options with the highest
predicted increase in volatility and short in the highest decreases. I report results for different states
of the stock market, up and down market, and for periods of increasing and decreasing aggregate
volatility. A test on the difference of the means in also reported. The market is proxied by the value-
weighted CRSP market portfolio while aggregate volatility is measured by VIX. Options and stocks
closing prices were sampled monthly between January 1996 and June 2005. The data is provided by
the Ivy DB database from OptionMetrics. All options are American.

∆iv∗ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (10-1)

up market
mean -0.059 -0.010 -0.018 -0.011 0.001 0.004 0.011 0.001 0.012 0.048 0.108
t-stat [-4.15] [-0.59] [-1.01] [-0.66] [0.04] [0.23] [0.63] [0.06] [0.74] [2.62] [6.32]

down market
mean -0.087 -0.039 -0.032 -0.012 -0.005 0.006 0.013 0.026 0.034 0.070 0.156
t-stat [-4.18] [-1.79] [-1.27] [-0.49] [-0.18] [0.26] [0.47] [0.92] [1.17] [2.13] [8.06]

up - down
mean 0.027 0.029 0.014 0.001 0.005 -0.002 -0.001 -0.025 -0.022 -0.021 -0.048
t-stat [1.08] [1.03] [0.47] [0.04] [0.17] [-0.07] [-0.03] [-0.75] [-0.65] [-0.56] [-1.87]

up volatility
mean -0.073 -0.014 -0.016 0.012 0.025 0.038 0.045 0.052 0.062 0.104 0.176
t-stat [-3.61] [-0.64] [-0.71] [0.54] [1.09] [1.67] [1.85] [2.02] [2.50] [3.44] [9.00]

down volatility
mean -0.073 -0.033 -0.033 -0.037 -0.026 -0.027 -0.021 -0.029 -0.018 0.012 0.085
t-stat [-5.39] [-1.87] [-1.79] [-2.09] [-1.58] [-1.53] [-1.15] [-1.73] [-1.05] [0.76] [5.67]

up - down
mean -0.000 0.019 0.017 0.049 0.052 0.065 0.066 0.081 0.080 0.092 0.092
t-stat [-0.00] [0.70] [0.57] [1.70] [1.81] [2.26] [2.17] [2.63] [2.64] [2.69] [3.72]
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Table 6: Straddle Returns by Volatility Forecast and Stock Characteristics

In this table I report the mean returns and t-statistics of quintile straddle portfolios obtained by
independently sorting stocks based on the forecast of the log change in volatility and risk-based firm
characteristics: beta, market size, and book-to-market ratio. Options and stocks closing prices were
sampled monthly between January 1996 and June 2005. The data is provided by the Ivy DB database
from OptionMetrics. All options are American.

∆iv∗ L=1 2 3 4 H=5 H-L L=1 2 3 4 H=5 H-L

BETA mean t-stat
L=1 -0.054 -0.024 -0.003 0.001 0.047 0.101 -3.42 -1.14 -0.17 0.07 2.67 6.05
2 -0.060 -0.040 -0.013 -0.023 0.018 0.078 -4.33 -2.54 -0.80 -1.33 1.01 4.78
3 -0.051 -0.051 -0.032 0.005 0.023 0.074 -3.18 -3.24 -2.05 0.28 1.19 4.51
4 -0.055 -0.018 0.007 0.010 0.033 0.088 -3.38 -1.04 0.41 0.52 1.56 4.76
H=5 -0.031 0.021 0.036 0.058 0.085 0.116 -1.76 0.87 1.59 2.58 3.32 5.17
H-L 0.023 0.044 0.039 0.057 0.038 1.27 1.85 1.64 2.55 1.41

SIZE mean t-stat
S=1 -0.038 -0.006 0.003 0.043 0.088 0.126 -2.03 -0.21 0.12 1.41 2.37 3.23
2 -0.030 0.007 0.023 0.058 0.066 0.096 -2.18 0.35 1.11 2.42 3.17 4.79
3 -0.035 -0.011 0.035 0.035 0.059 0.094 -2.42 -0.72 2.24 1.82 3.29 7.20
4 -0.049 -0.003 0.006 0.022 0.039 0.088 -3.30 -0.20 0.36 1.21 2.32 5.85
B=5 -0.077 -0.050 -0.026 -0.025 0.012 0.089 -5.34 -3.54 -1.69 -1.60 0.70 6.53
S-B 0.039 0.044 0.029 0.068 0.076 1.87 1.70 1.17 2.19 2.23

BM mean t-stat
L=1 -0.053 -0.015 -0.002 0.004 0.034 0.087 -3.94 -1.03 -0.11 0.26 2.33 6.69
2 -0.051 -0.043 -0.010 0.013 0.036 0.087 -3.26 -2.96 -0.62 0.73 2.14 6.63
3 -0.056 -0.018 0.016 0.024 0.043 0.100 -3.81 -0.91 0.98 1.17 2.15 5.77
4 -0.062 -0.024 -0.026 0.018 0.066 0.128 -3.95 -1.27 -1.32 0.84 2.70 5.91
H=5 -0.046 0.016 0.041 0.052 0.054 0.101 -2.28 0.65 1.50 1.66 2.02 3.55
H-L 0.007 0.032 0.042 0.048 0.020 0.33 1.33 1.57 1.68 0.79

MOM mean t-stat
D=1 -0.034 -0.002 0.035 0.036 0.074 0.107 -2.19 -0.15 1.72 1.70 3.15 4.82
2 -0.057 -0.010 -0.006 0.010 0.048 0.105 -4.13 -0.65 -0.34 0.58 2.64 6.75
3 -0.053 -0.044 -0.018 0.005 0.026 0.079 -3.35 -2.93 -1.27 0.29 1.47 4.11
4 -0.047 -0.025 0.017 -0.007 0.022 0.069 -2.95 -1.55 0.79 -0.41 1.26 4.30
U=5 -0.055 -0.028 0.015 0.022 0.033 0.088 -3.07 -1.46 0.84 1.04 1.86 4.80
U-D -0.021 -0.026 -0.020 -0.014 -0.041 -1.12 -1.43 -0.86 -0.64 -1.78
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Table 7: Risk-Adjusted Straddle Returns

In this table I report the estimation results from regressing the straddle portfolio returns on a linear
pricing model composed by the Fama and French three factors model, the Carhart momentum factor,
and changes in the aggregate implied volatility, as measured by VIX. I run the regression for portfolio
(1) (lowest predicted logarithmic increase in volatility), (10) (highest predicted logarithmic increase in
volatility) and (10-1). Options and stocks closing prices were sampled monthly between January 1996
and June 2005. The data is provided by the Ivy DB database from OptionMetrics. All options are
American.

∆iv∗ (1) (10) (10-1)

const -0.068 -0.075 -0.069 0.073 0.053 0.071 0.141 0.129 0.140
[-3.94] [-5.78] [-4.07] [3.24] [2.95] [3.42] [11.98] [9.68] [12.82]

MKT -0.465 -0.355 -1.209 -0.737 -0.745 -0.382
[-0.82] [-0.70] [-1.74] [-1.18] [-2.75] [-1.33]

SMB 0.195 0.216 -1.341 -1.250 -1.536 -1.466
[0.50] [0.56] [-2.70] [-2.56] [-4.74] [-4.63]

HML -0.700 -0.704 -1.971 -1.987 -1.271 -1.283
[-1.32] [-1.35] [-3.26] [-3.54] [-3.66] [-3.63]

MOM -0.195 -0.219 0.079 -0.025 0.274 0.194
[-1.05] [-1.14] [0.31] [-0.09] [1.35] [0.88]

∆V IX 0.166 0.280 1.259 1.209 1.093 0.929
[0.38] [0.85] [2.02] [2.81] [3.59] [3.65]

adj − R2 0.019 -0.007 0.015 0.130 0.076 0.179 0.222 0.104 0.274
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Table 8: Straddle Holding Period Returns at Different Horizons

In this table I report summary statistic for decile portfolios of straddle returns constructed using fore-
casts over 1,3 and 6 month horizon. I tabulate mean, standard deviation, minimum, maximum, Sharpe
ratio (SR) and certainty equivalent (CE). CE is computed from a utility function with constant relative
risk aversion parameter of 3. In the last column I report results for a zero-cost portfolio which is long in
the options with the highest predicted increase in volatility and short in the highest decreases. Options
and stocks closing prices were sampled monthly between January 1996 and June 2005. The data is
provided by the Ivy DB database from OptionMetrics. All options are American.

1 month 3 month 6 month

maturity

mean 0.129 0.059 0.036
std 0.132 0.069 0.073
min -0.216 -0.138 -0.178
max 0.486 0.222 0.237
SR 0.977 0.843 0.494
CE 0.105 0.051 0.028

horizon

mean 0.129 0.149 0.150
std 0.132 0.196 0.319
min -0.216 -0.575 -1.115
max 0.486 0.623 0.944
SR 0.977 0.762 0.471
CE 0.105 0.078 -0.347
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Table 9: Impact of Liquidity and Transaction Costs

In this Table I report average returns and t-statistics for the long-short portfolio when the sample is
split in different liquidity groups which are obtained by ranking stocks on the base of the liquidity
characteristics of the options. For each stock I compute the average quoted bid-ask spread of all the
options series traded in the previous month as well as the daily average dollar volume. I the sort
stocks based on these options liquidity characteristics. I report the average return computed from the
mid-point price (MidP) and from the effective bid-ask spread (EFP), estimated to be equal to 75% of
the quoted spread. The same set of results is also tabulated for the case when the portfolio formation
is lagged by one day (skip 1 day). Options and stocks closing prices were sampled monthly between
January 1996 and June 2005. The data is provided by the Ivy DB database from OptionMetrics. All
options are American.

(10–1) no skip skip 1 day

MidP EBA MidP EBA
BA Spread
low 0.136 0.072 0.128 0.065

[3.68] [1.95] [3.54] [1.81]

med 0.183 0.086 0.170 0.074
[4.98] [2.43] [4.71] [2.12]

high 0.166 0.029 0.154 0.017
[4.91] [0.91] [4.65] [0.54]

MidP EBA MidP EBA
Volume
low 0.141 0.014 0.133 0.005

[4.32] [0.45] [4.11] [0.16]

med 0.184 0.088 0.169 0.073
[5.55] [2.77] [5.17] [2.34]

high 0.163 0.086 0.154 0.078
[4.03] [2.16] [3.85] [2.00]
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Table 10: Forecasts of Future Realized Volatility

In this Table I report the estimation results of different forecasting models for the future realized
volatility. The dependent variable is the realized volatility of daily returns over the life of the option.
So, for example, if the implied volatility is extracted from a couple of options with 47 days to expiration I
compute the annualized daily standard deviation of returns over those 47 days. The forecasting variables
are the cross-sectional estimate (CS), the market implied volatility (IV ), and the past realized volatility
(RV ). In the first panel I report results of a time series analysis wherein I run a forecasting regression
for each stock; I tabulate the cross-sectional mean of the estimated coefficients as long as the standard
deviation of the cross-sectional distribution. This value is tabulated in parenthesis. In the second
panel I tabulate results of a Fama-MacBeth regression, t-statistics corrected for serial dependence are
in brackets. Options and stocks closing prices were sampled monthly between January 1996 and June
2005. The data is provided by the Ivy DB database from OptionMetrics. All options are American.

const CS IV RV adj-R2

time-series regression

(1) 0.041 0.907 0.404
(0.20) (0.41)

(2) 0.064 0.854 0.365
(0.21) (0.41)

(3) 0.264 0.437 0.224
(0.20) (0.32)

cross-sectional regression

(1) -0.007 1.011 0.647
[-0.68] [42.43]

(2) 0.028 0.931 0.628
[2.48] [36.38]

(3) 0.125 0.725 0.522
[11.50] [33.45]
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Table 11: Pricing Options using CS

In this Table, for each of the decile groups obtained by sorting the out-of-sample volatility forecasts,
I report summary statistic of the straddle portfolio returns. In the first Panel I tabulate the returns
computed from the market prices (precisely as in Table 4). In the second Panel I report statistics for
the portfolios when the returns are computed using as initial prices the values obtained by inserting
the cross-sectional prediction of implied volatility (CS) into the Black and Scholes formula. I used the
LIBOR rate as the interest rate, while the dividend yield is calculated based on the last dividend paid
by the firm. t-statistics corrected for serial dependence are in brackets. Options and stocks closing
prices were sampled monthly between January 1996 and June 2005. The data is provided by the Ivy
DB database from OptionMetrics. All options are American.

∆iv∗ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

market prices

mean -0.067 -0.038 -0.018 -0.017 -0.002 0.013 0.019 0.021 0.041 0.084
t-stat [-5.46] [-2.90] [-1.27] [-1.23] [-0.16] [0.83] [1.18] [1.31] [2.41] [4.23]

prices based on CS

mean 0.022 0.013 0.017 0.006 0.011 0.016 0.012 0.003 0.008 0.018
t-stat [1.58] [1.08] [1.40] [0.44] [0.81] [1.14] [0.84] [0.22] [0.56] [1.04]
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