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Abstract

In [2] we introducedGPOMDP, an algorithm for computing arbitrarily ac-
curate approximations to the performance gradient of parameterized partially ob-
servable Markov decision process@MDPS).

The algorithm’s chief advantages are that it requires only a single sample path
of the underlying Markov chain, it uses only one free paraméter[0, 1) which
has a natural interpretation in terms of bias-variance trade-off, and it requires no
knowledge of the underlying state. In addition, the algorithm can be applied to
infinite state, control and observation spaces.

In this paper we preseftONJPOMDP, a conjugate-gradient ascent algo-
rithm that usesGPOMDP as a subroutine to estimate the gradient direction.
CONJPOMDP uses a novel line-search routine that relies solely on gradient es-
timates and hence is robust to noise in the performance estif@id3OMDP,
an on-line gradient ascent algorithm basedddMOMDP is also presented.

The chief theoretical advantage of this gradient based approach over value-
function-based approaches to reinforcement learning is that it guarantees improve-
ment in the performance of the policy eterystep. To show that this advantage



is real, we give experimental results in whi€6fONJPOMDP was used to op-
timize a simple three-state Markov chain controlled by a linear function, a two-
dimensional “puck” controlled by a neural network, a call admission queueing
problem, and a variation of the classical “mountain-car” task. In all cases the al-
gorithm rapidly found optimal or near-optimal solutions.

1 Introduction

Function approximation is necessary to avoid the curse of dimensionality associated
with large-scale dynamic programming and reinforcement learning problems. The
dominant paradigm is to use the function to approximate the state (or state and ac-
tion) values. Most algorithms then seek to minimize some form of error between the
approximate value function and the true value function, usually by simulation (see [13]
and [4] for comprehensive overviews). While there have been a multitude of empir-
ical successes for this approach (see e.g [10, 14, 15, 3, 18, 11] to name but a few),
there are only weak theoretical guarantees on the performance of the policy generated
by the approximate value function. In particular, there is no guarantee that the policy
will improve as the approximate value function is trained (see [2, Section 1] for further
discussion).

Motivated by these difficulties, in [2] we introduce®OMDP, a new algorithm for
computing arbitrarily accurate approximations to the performance gradient of param-
eterized partially observable Markov decision procesB€sV[DP’s). Our algorithm
is essentially an extension of WilliamBEINFORCE algorithm [17] and similar more
recent algorithms[7, 5, 9, 8]. See [2, Section 1.1] for a more comprehensive discussion
of this related work.

More specifically, supposec RX are the parameters controlling the MDP. For
examplef could be the parameters of an approximate neural-network value-function
that generates a stochastic policy by some form of randomized look-aheéadoold
be the parameters of an approxim@téunction used to stochastically select conttols
Letn(#) denote the average reward of th@e MDP with parameter settingg GPOMDP
computes an approximatidnn(9) to Vn(¢) based on a single continuous sample path
of the underlying Markov chain. The accuracy of the approximation is controlled by
the parametef € [0, 1). It was proved in [2, Theorem 3] that

Vn(9) = lim Vin(6).
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The trade-off preventing us choosigarbitrarily close to 1 is that the variance of
GPOMDP’s estimates ofVjzn(6) increase with3. However, on the bright side, [2,
Theorem 4] showed that the approximation error is proportional to

1-p
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1Stochastic policies are not strictly necessary in our framework, but the policy must be “differentiable”
in the sense tha¥n(0) exists.




where), is the subdominant eigenvalue of the Markov chain underlyin@thelDP.
Thus for “rapidly mixing”POMDP’s (for which )\, is significantly less thai), esti-
mates of the performance gradient with acceptaidsandvariancecan be obtained.

Providedv;n(0) is a sufficiently accurate approximation'sf)(6)—in fact, Vzn ()
need only be withif0° of Vr(#)—adjustments to the parametérsf the form6 «

0 + vVan(#) for small step-sizey, will guarantee improvement in the average reward
n(#). In this case, gradient-based optimization algorithms uSipg¢) as their gra-

dient estimate will be guaranteed to improve the average rex@hdon each step.
Exceptin the case of table-lookup, most value-function based approaches to reinforce-
ment learning cannot make this guarantee. See [16] for some analysis in the case of
TD()) and a demonstration of performance degradation during the course of training
a neural network backgammon player.

In this paper we prese@lONJPOMDP, a conjugate-gradient ascent algorithm that
uses the estimates 8n(#) provided byGPOMDP. Critical to the successful opera-
tion of CONJPOMDP is a novel line search subroutine that reduces noise by relying
solely upon gradient estimates. We also presdaiitOMDP, an on-line variant of our
algorithm that updates the parameters at every time SfEEPOMDP is similar to
algorithms proposed in [7] and [9].

The two algorithms are applied to a variety of problems, beginning with a simple
3-state Markov decision process (MDP) controlled by a linear function for which the
true gradient can be exactly computed. We show rapid convergence of the gradient
estimate§/zn(6) to the true gradient, in this case over a large range of valug@s\dfith
this simple system we are able to illustrate vividly the bias/variance tradeoff associated
with the selection of3. We then useCONJPOMDP and OLPOMDP to find a good
policy for the MDP.CONJPOMDP reliably finds a near-optimal policy in less than
100 iterations of the Markov chain, an order of magnitude faster tHanOMDP.

Next we demonstrate the effectivenesslafNJPOMDP in training a neural net-
work controller to control a “puck” in a two-dimensional world. The task in this case
is to reliably navigate the puck from any starting configuration to an arbitrary target
location in the minimum time, while only applying discrete forces inttendy direc-
tions.

In the third experiment, we useONJPOMDP to train a controller for the call
admission queueing problem treated in [8]. In this c&E&NJPOMDP finds near-
optimal solutions within about 2000 iterations of the underlying queue.

In the fourth and final experimer@ONJPOMDP is used to train a switched neural-
network controller for a two-dimensional variation on the classical “mountain-car” task
[13, Example 8.2].

The rest of this paper is organized as follows. In Section 2 we introduce the defi-
nitions needed to understag@®OMDP. In Section 3 we describeONJPOMDP, the
gradient-based line-search subroutine, and®OMDP. In Section 4 we present our
experimental results.



2 Thecrompr algorithm

A partially observable, Markov decision proceB®(MDP) consists of a state spase
observation spac¥ and a control spadé. For each state€ S there is a deterministic
rewardr(i). Although the results in [2] only guarantee convergence®MDP in the
case of finiteS (but rather arbitrary/ and)’), the algorithm can be applied regardless
of the nature of5 so we do not restrict the cardinality 6f ¢/ or ).

Consider first the case of discrefe i/ and). Each controk. € U/ determines a
stochastic matrixP(u) = [p;;(u)] giving the transition probability from staieto state
j(@i,j € S). For each staté € S, an observatio € ) is generated independently
according to a probability distributian(i) over observations iy. We denote the prob-
ability of y by v, (). A randomized policys simply a function, mapping observations
into probability distributions over the contrdls That is, for each observatigne ),
u(y) is a distribution over the controls id. Denote the probability under of control
u given observation by u.,(y).

For continuousS, Y andi/, p;;(u) becomes &ernelk;; (u) giving the probability
density of transitions froni to j, v(i) becomes a probability density function 9h
with v, (i) the density ay, andu(y) becomes a probability density function &rwith
1w (y) the density ate.

To each randomized policy there corresponds a Markov chain in which state
transitions are generated by first selecting an observatinrstatei according to the
distribution »(7), then selecting a contral according to the distributiop(y), and
finally generating a transition to stateiccording to the probability;; (u).

At present we are only dealing with a fixedMDP. To parameterize theOMDP
we parameterize the policies, so thanow becomes a functiop(d,y) of a set of
parameter§ € R¥, as well as of the observatign The Markov chain corresponding
to # has state transition matriR(¢) = [p;;(¢)] given by

DPij (0) = EyNV(i) Eu~u(9,y)pij (u) . (1)
The following technical assumptions are required for the operatiGiP6fMDP.

Assumption 1. The derivatives,

[8uu(9, y)]
ol k=1..K

existforallu € U,y € Y andd € RX .

‘8uu(0vy) ‘
00y,
[ (0, y) ]
k=1...K

are uniformly bounded bjg < oo, forall u € ¢,y € Y andf € RX.

Assumption 2. The ratios

Assumption 3. The magnitudes of the rewards(i)|, are uniformly bounded bi <
oo for all states:.



Assumption 4. EachP(6),6 € RE, has a unique stationary distribution().

Theaverage reward)(d) is simply the expected reward under the stationary distri-
bution=(0):

n(0) = Eior(o)r(i)- (2)

Because of Assumption 4, for any starting state(d) is also equal to the expected
long-term average of the reward,
1o = z) ,

1 T—1
Jim E (T 2 v
where the expectation is over sequences of stigtes. ,i;_, of the Markov chain
specified byP(0).

GPOMDP ([2, Algorithm 2] and reproduced in Algorithm 1) is an algorithm for
computing an approximatioy to V(). In [2, Theorem 7] we proved:

Jim Az = Vs(6),
whereVsn(0) (5 € [0, 1)) is an approximation t&/n(6) satisfying

Vin(9) = lim V5n(6),
B—1
[2, Theorem 3]. Note thatiPOMDP relies only upon a single sample path from the
POMDP. Also, it does not require knowledge of the transition probability marix
nor of the observation processit only requires knowledge of the randomized policy
.

We cannot sef arbitrarily close tol in GPOMDP, since the variance of the esti-
mateAr increases with increasingy Thusg has a natural interpretation in terms of a
bias-variance trade-off: small values®fjive lower variance in the estimatés;, but
higher bias in thatAr may be far fromVr(6), whereas values gf close tol yield
small bias but correspondingly larger variance. This bias/variance trade-off is vividly
illustrated in the experiments of Section 4.

3 Stochastic gradient ascent algorithms

In this section we introduce two algorithm& ONJPOMDP, a variant of the Polak-
Ribiere conjugate gradient algorithm (see e.g. [6, S5.5.2]),GOMDP, a fully
on-line algorithm that updates the parameteas each iteration of theOMDP.

3.1 TheconjypoMDP algorithm

CONJPOMDP, described in Algorithm 2, is a version of the Polak-Ribiere conjugate-
gradient algorithm that is designed to operate using only noisy (and possibly) biased



Algorithm 1 GPOMDP(3,T,6) — RE [2, Algorithm 2].

1

@ a R W

N

Given:
e 3€[0,1).
o T'> 0.

Parameterg € RE .

Randomized policy:(8, -) satisfying Assumptions 1 and 2.

POMDP with rewards satisfying Assumption 3, and which when controlled
by (6, -) generates stochastic matride&)) satisfying Assumption 4.

e Arbitrary (unknown) starting statg.

. Setzy = 0andAg =0 (29, Ag € RX).
cfort=0toT —1do

Observey, (generated according id(i;))

Generate contral; according tqu (6, y;)

Observe r(i;+1) (where the next state;,,; is generated according to
Piyigqq (ut))

Setigys = fz + Tl

SetAt+1 =A; + T‘(Z-t+1)2t+1

: end for
10:
11:

AT — AT/T
returnAr




estimates of the gradient of the objective function (for example, the estilatgso-
vided byGPOMDP). The novel feature of ONJPOMDP is GSEARCH, a linesearch
subroutine that uses only gradient information to find the local maximum in the search
direction. The use of gradient information ensuessARCH is robust to noise in
the performance estimates. BatbNJPOMDP andGSEARCH can be applied to any
stochastic optimization problem for which noisy (and possibly) biased gradient esti-
mates are available.

The argument, to CONJPOMDP provides an initial step-size fakSEARCH.
When||GRAD(#)||? falls below the argumert CONJPOMDP terminates.

Algorithm2  CONJPOMDP(GRAD, 6, sq, €)
1: Given:

e GRAD: RE — RK: a (possibly noisy and biased) estimate of the gradient
of the objective function to be maximized.

e Starting parameters€ R (set to maximum on return).
e Initial step sizesy > 0.

e Gradient resolution.

2: g = h = GRAD()

3: while ||g||> > e do

4:  GSEARCH(GRAD,#, h, sg,€)
5. A = GRAD(9)

6 y=(A—-g)-A/lgll?
7. h=A+~h

8 if h-A < 0then

9: h=A

10. endif

11: g=A

12: end while

3.2 TheGSEARCH algorithm

The key to the successful operation ©ONJPOMDP is the linesearch algorithm
GSEARCH (Algorithm 3). GSEARCH uses only gradient information to bracket the
maximum in the directiofi*, and then quadratic interpolation to jump to the maximum.
We found the use of gradients to bracket the maximum far more robust than the
use of function values. To bracket the maximum using function values, three points
61,065,603, all lying in the directionf* from 6, must be found such that(6,) <
n(f2) andn(fs) < n(f2). Thus, we need to estimatégn[n(d;) — n(62)] (and
sign[n(63) — n(62)]). If we only have access to noisy estimates)() (for example,
estimates obtained by simulation), then regardless of the magnitude of the variance of
n(#), the variance ofign [n(0,) — n(#2)] approaches (the maximum possible) a5



approaches8,. Thus, to reliably bracket the maximum using noisy estimateg ®f
we need to be able to reduce the variance of the estimates fiyrerd 6, are close.
In our case this means running the simulation from which the estimates are derived for
longer and longer periods of time.

An alternative approach to bracketing the maximum in the dirediofrom 6
is to find two pointsf; andé, in that direction such thatRAD(6¢,) - 6* > 0 and
GRAD(#,) - * < 0. The maximum must then lie betweép andé,. The advan-
tage of this approach is that even if the estimai@AD(#) are noisy, the variance
of sign [GRAD(#;) - #*] (andsign [GRAD(6>) - 6*]) is independent of the distance be-
tweend; andf,, and in particular does not grow as the two points approach one another.
The disadvantage is that it is not possible to detect extreme overshooting of the max-
imum using only gradient estimates. However, with careful control of the line search
we did not find this to be a problem.

In Algorithm 3, lines 5-25 bracket the maximum by finding a parameter setting
6_ = 6y + s_6* such thatGRAD(f_) - 8* > —e¢, and a second parameter setting
01 = 0y + s+0* such thaGRAD(6) - * < e. The reason fot rather thard in these
expressions is to provide some robustness against errors in the estimate&s6).
It also prevents the algorithm “stepping 40" if there is no local maximum in the
directiong*. Note that we use the sam@s used iIlCONJPOMDP to determine when
to terminate due to small gradient (line 4G®NJPOMDP).

Provided that the signs of the gradients at the bracketing péinesndé, show
that the maximum of the quadratic defined by these points lies between them, line 27
will jump to the maximum. Otherwise the algorithm simply jumps to the midpoint
betweery_ andd, .

3.3 orpoMDP: updating the parametersé at every time step

CONJPOMDP operates by iteratively choosing “uphill” directions and then searching
for a local maximum in the chosen direction. If tA&AD argument taCONJPOMDP

is GPOMDP, the optimization will involve many iterations of the underlyir@MDP
between parameter updates.

An alternative approach, similar in spirit to algorithms described in [7, 9, 8], is to
adjust the parameter vector at every iteration of the underlgyDP. Algorithm 4,
OLPOMDP, presents one such algorithm along these lines. We are currently working
on a convergence proof for this algorithm.

4 Experiments

In this section we present several sets of experimental results. Throughout this sec-
tion, where we refer t&¢ONJPOMDP we meanCONJPOMDP with GPOMDP as its
GRAD argument.

In the first set of experiments, we consider a system in which a controller is used
to select actions for a 3-state Markov Decision Proc®83K). For this system we are



Algorithm 3  GSEARCH(GRAD, 6, 0*, so, €)
1: Given:

e GRAD: RE — RK: a (possibly noisy and biased) estimate of the gradient
of the objective function.

Starting paramete € R¥ (set to maximum on return).

Search directiod* € RX with GRAD(6y) - 6* > 0.

Initial step sizesy > 0.

Inner product resolutioa >= 0.

2. =59

30 =~0)+s0”

4. A = GRAD(6)

5 if A-6* < 0then

6.  Step back to bracket the maximum:

7. repeat

8: Sy =S

9: Py = A - 0*

10: s=s/2

11: 0 =60y + so*

12: A = GRAD(#)

13:  until A-0* > —¢

14: S_ =S5

15 p_=A-0*

16: else

17:  Step forward to bracket the maximum:

18: repeat

19: S_ =S8

20: p_=A-0*

21: s =2s

22: 0 =6y + so*

23 A = GRAD(#)

24:  until A-0* <e

25: Sy =S

26 pyr=A-0*

27: end if

28: if p_ > 0andpy < 0then

20: g = S=P+—5+4P—
P+ —pP—

30: else

3 5=t

32: end if
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Algorithm 4 OLPOMDP(3, T, 6y) — RX.
1: Given:

e 5 €10,1).
e T'> 0.

e Initial parameter valueg, € R¥.

 Randomized parameterized policigs(6,-): § € R¥ } satisfying Assump-
tions 1 and 2.

e POMDP with rewards satisfying Assumption 3, and which when controlled
by (6, -) generates stochastic matride&)) satisfying Assumption 4.

e Step sizes,,t =0,1,... satisfyingd_ v = co andd_ 77 < oo.
e Arbitrary (unknown) starting statg.

2: Setzg =0 (20 € ]RK).
3 fort=0to7 —1do
. Observey; (generated according tgi;)).
Generate contral; according tqu (6, v;)
Observer(i;11) (Where the next statg, ; is generated accordingg,;, ., (u¢).

Vitu, (6,
Setry = far + e lln) tf(;;j;)
8: Set0t+1 =0 + 'Ytr(it+1)zt+1
9: end for

10: returnfr

N a ks
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able to compute the true gradient exactly using the matrix equation

Vn(0) = 7' (0)VP(8) [I — P(§) + en'(0)] ' r, 3)

whereP () is the transition matrix of the underlying Markov chain with the controller’s
parameters set #) 7'(6) is the stationary distribution correspondingf¢d) (written

as a row vector)enr’(6) is the matrix in which each row is the stationary distribution,
andr is the (column) vector of rewards (see [2, S2.1] for a derivation of (3)). Hence we
can compare the estimatés- generated byzPOMDP with the true gradientn,(0),

both as a function of the number of iteratiofisand as a function of the discount
parameter3. We also optimize the performance of the controller using the on-line
algorithm, OLPOMDP, and CONJPOMDP. CONJPOMDP reliably converges to a
near optimal policy with around 100 iterations of thi®P, while the on-line method
requires approximately 1000 iterations. This should be contrasted with training a linear
value-functiorfor this system using'D(1) [12], which can be shown to converge to a
value function whose one-step lookahead policy is suboptimal [16].

In the second set of experiments, we consider a simple “puck-world” problem in
which a small puck must be navigated around a two-dimensional world by applying
thrust in thex andy directions. We train a 1-hidden-layer neural-network controller
for the puck usingCONJPOMDP. Again the controller reliably converges to near
optimality.

In the third set of experiments we uS®NJPOMDP to optimize the admission
thresholds for the call-admission problem considered in [8].

In the final set of experiments we uS®NJPOMDP to train a switched neural-
network controller for a two-dimensional variant of the “mountain-car” task [13, Ex-
ample 8.2].

4.1 A three-state MDP

In this section we consider a three-stat®P, in each state of which there is a choice
of two actionsa; anda,. Table 1 shows the transition probabilities as a function of
the states and actions. Each stateas an associated two-dimensional feature vector
o(x) = (¢1(z), p2(z)) and reward-(xz) which are detailed in Table 2. Clearly, the
optimal policy is to always select the action that leads to stateith the highest
probability, which from Table 1 means always selecting aciign

This rather odd choice of feature vectors for the states ensures that a value func-
tion linear in those features and trained usiib(1)—while observing the optimal
policy—will implement a suboptimal one-step greedy lookahead policy itself (see [16]
for a proof). Thus, in contrast to the gradient based approach, for this syBigfh)
training a linear value function is guaranteed to produce a worse policy if it starts out
observing the optimal policy.

4.1.1 Training a controller

Our goal is to learn a stochastic controller for this system that implements an optimal
(or near-optimal) policy. Given a parameter vedtor (61, 6, 03,604), we generate a

11



Origin Destination State Probabilitigs
State | Action A B c

A al 0.0 0.8 0.2

A a2 0.0 0.2 0.8

B al 0.8 0.0 0.2

B a2 0.2 0.0 0.8

c al 0.0 0.8 0.2

c a2 0.0 0.2 0.8

Table 1: Transition probabilities of the three-state MDP

r(A) =0 p1(A) =12 hA) =3
(B) =0 ¢’1(B) = % ¢2(B) = %
r(C) =1 0 (C) =3 6(C)=2%

Table 2: Three-state rewards and features.

policy as follows. For any state, let
s1(7) 1= 0191 () + O2¢2()
s2(7) 1= 0301 () + 0102 ().
Then the probability of choosing actien in statex is given by
fra, (%) = 631(5)317_:232(@7
while the probability of choosing actian, is given by
es2(z)

Pas (T) = m =1~ 1o, (z).

The ratios—£2i-"2 ‘:"((? needed by Algorithms 1 and 4 are given by,

z 632(90)

vu/:al(i)) — 681(w) g © [¢1( ) ¢2($), _¢1 (x)a _¢2(Jf)] (4)
2 sl(z)

Vitay (2) _ [—61(2), —d2(2), b1 (2), o ()] )

Hor(@) €1 4 o)

4.1.2 Gradient estimates

With a parameter vectdof § = [1,1, —1, —1], estimates\r of V7, were generated
usingGPOMDP, for various values of” andj € [0,1). To measure the progress of

20ther initial values of the parameter vector were chosen with similar results. Notd that-1, —1]
generates a suboptimal policy.

12
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Figure 1: Angle between the true gradi@ng and the estimaté - for the three-state
Markov chain, for various values of the discount paramgteA - was generated by
Algorithm 1. Averaged over 500 independent runs. Note the higher variance aflarge
for the larger values of. Error bars are one standard deviation.

Ar towards to the true gradieRtp, Vi was calculated from (3) and then for each value
of T'theanglebetweem\r andVn and the relative errouA”TV;nﬁ’7H were recorded. The
angles and relative errors are plotted in Figures 1, 2 and 3.

The graphs illustrate a typical trade-off for th@ OMDP algorithm: small values
of 8 give higher bias in the estimates, while larger valueg afive higher variance
(the bias is only shown in Figure 3 for the norm deviation because it was too small to
measure for the angular deviation). That said, the bias introduced by hawng is
very small for this system. In the worst cage= 0.0, the final gradientlirectionis
indistinguishable from the true direction while the relative deviaﬁ&'ﬁ%TH is only

vl
7.7%.

4.1.3 Training via conjugate-gradient ascent

CONJPOMDP with GPOMDP as the GRAD” argumentwas used to train the parame-
ters of the controller described in the previous section. Following the low bias observed
in the experiments of the previous section, the argumerftGPOMDP was set td).

After a small amount of experimentation, the argumegtande of CONJPOMDP

were set tal00 and0.0001 respectively. None of these values were critical, although
the extremely large initial step-sizey) did considerably reduce the time required for

13
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Figure 2. A plot of% for the three-state Markov chain, for various values of
the discount parametet. A was generated by Algorithm 1. Averaged over 500
independent runs. Note the higher variance at |dtder the larger values of. Error

bars are one standard deviation.

the controller to converge to near-optimality.

We tested the performance @ONJPOMDP for a range of values of the argument
T to GPOMDP from 1 to 4096. SinceGSEARCH only usesGPOMDP to determine
thesignof the inner product of the gradient with the search direction, it does not need
to runGPOMDP for as many iterations a8ONJPOMDP does. ThusGSEARCH de-
termined its owr{” parameter t&:POMDP as follows. Initially, (somewhat arbitrarily)
the value off" within GSEARCH was set tal /10 the value used iIRONJPOMDP (or
1 if the value iInCONJPOMDP was less than 10 GSEARCH then calledGPOMDP
to obtain an estimatAr of the gradient direction. I -6* < 0 (6* being the desired
search direction) thef was doubled an@:SEARCH was called again to generate a
new estimateAdr. This procedure was repeated unil- - * > 0, or T' had been
doubled four times. I\ - #* was still negative at the end of this proceSSEARCH
searched for a local maximum in the directie*, and the number of iteratioris
used byCONJPOMDP was doubled on the next iteration (the conclusion being that
the directior?* was generated by overly noisy estimates flGROMDP).

Figure 4 shows the average reway®) of the final controller produced by
CONJPOMDP, as a function of the total number of simulation steps of the under-
lying Markov chain. The plots represent an average & independent runs of
CONJPOMDP. Note that).8 is the average reward of the optimal policy. The param-

14
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Figure 3: Graph showing the final bias in the estimate (as measured ‘V‘fv_ﬁf”)
as a function ofs for the three-state Markov chainl\7 was generated by Algorithm

1. Note both axes are log scales.

eters of the controller were (uniformly) randomly initialized in the rahge.1,0.1]
before each call t& ONJPOMDP. After each call taCONJPOMDP, the average re-
ward of the resulting controller was computed exactly by calculating the stationary
distribution for the controller. From Figure 4, optimality is reliably achieved using
approximately 100 iterations of the Markov chain.

4.1.4 Training directly on-line with OLPOMDP

The controller was also trained on-line using Algorithm@LPOMDP) with fixed
step-sizes; = c with ¢ = 0.1,1, 10, 100. Reducing step-sizes of the forp = ¢/t

were tried, but caused intolerably slow convergence. Figure 5 shows the performance
of the controller (measured exactly as in the previous section) as a function of the total
number of iterations of the Markov chain, for different values of the stepesidée
graphs are averages over 100 runs, with the controller's weights randomly initialized in
the rangg—0.1, 0.1] at the start of each run. From the figure, convergence to optimal is
about an order of magnitude slower than that achieved®yJPOMDP, for the best
step-size of: = 1.0. Step-sizes much greater that 10.0 failed to reliably converge

to an optimal policy.
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Figure 4: Performance of the 3-state Markov chain controller train€tdtdyJPOMDP

as a function of the total number of iterations of the Markov chain. The performance
was computed exactly from the stationary distribution induced by the controli@r.

is the average reward of the optimal policy. Averaged over 500 independent runs. The
error bars were computed by dividing the results into two separate bins depending on
whether they were above or below the mean, and then computing the standard deviation
within each bin.
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Figure 5: Performance of the 3-state Markov chain controller as a function of the num-
ber of iteration steps in then-line algorithm, Algorithm 4, for fixed step sizes of
0.1,1, 10, and100. Error bars were computed as in Figure 4.

4.2 Puck World

In this section, experiments are described in whithNJPOMDP and OLPOMDP
were used to train 1-hidden-layer neural-network controllers to navigate a small puck
around a two-dimensional world.

4.2.1 The World

The puck was a unit-radius, unit-mass section of a cylinder constrained to move in the
plane in a region 100 units square. The puck had no internal dynamics (i.e rotation).
Collisions with the region’s boundaries were inelastic with a (tunable) coefficient of
restitutione (set to0.9 for the experiments reported here). The puck was controlled
by applying a 5 unit force in either the positive or negativdirection, and a 5 unit
force in either the positive or negativedirection, giving four different controls in
total. The control could be changed evépl0 of a second, and the simulator operated
at a granularity oft /100 of a second. The puck also had a retarding force due to air
resistance 0f.005 x speed. There was no friction between the puck and the ground.
The puck was given a reward at each decision pdifit@ of a second) equal to
—d whered was the distance between the puck and some designated target point. To
encourage the controller to learn to navigate the puck to the target independently of
the starting state, the puck state was reset every 30 (simulated) seconds to a random
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location and random andy velocities in the range-10, 10], and at the same time the
target position was set to a random location.

Note that the size of the state-space in this example is essentially infinite, being
of the order of2PRECISION where PRECISION is the floating point precision of the
machine (4 bits).

4.2.2 The controller

A one-hidden-layer neural-network with six input nodes, eight hidden nodes and four
output nodes was used to generate a probabilistic policy in a similar manner to the
controller in the three-state Markov chain example of the previous section. Four of the
inputs were set to the raw andy locations and velocities of the puck at the current
time-step, the other two were the differences between the puckly location and

the target’sc andy location respectively. The location inputs were scaled to lie between
—1 and1, while the velocity inputs were scaled so that a speethafnits per second
mapped to a value df. The hidden nodes computedanh squashing function, while

the output nodes were linear. Each hidden and output node had the usual additional
offset parameter. The four output nodes were exponentiated and then normalized as in
the Markov-chain example to produce a probability distribution over the four controls
(&5 units thrust in ther direction,£5 units thrust in they direction). Controls were
selected at random from this distribution.

4.2.3 Conjugate gradient ascent

We trained the neural-network controller usiil@NJPOMDP with the gradient esti-
mates generated lyPOMDP. After some experimentation we chose= 0.95 and

T = 1,000,000 as the parametersONJPOMDP supplied toGPOMDP. GSEARCH

used the same value gfand the scheme discussed in Section 4.1.3 to determine the
number of iterations with which to caliPOMDP.

Due to the saturating nature of the neural-network hidden nodes (and the expo-
nentiated output nodes), there was a tendency for the network weights to converge to
local minima at “infinity”. That is, the weights would grow very rapidly early on in
the simulation, but towards a suboptimal solution. Large weights tend to imply very
small gradients and thus the network becomes “stuck” at these suboptimal solutions.
We have observed a similar behaviour when training neural networks for pattern clas-
sification problems. To fix the problem, we subtracted a small quadratic penalty term
v/|0|]? from the performance estimates and hence also a small corr@gipfrom the
gradient calculatiohfor 6;.

We used a decreasing schedule for the quadratic penalty weidatrived at
through some experimentation). was initialized to0.5 and then on every tenth it-
eration of CONJPOMDP, if the performance had improved by less than 10% from
the value ten iterations age, was reduced by a factor of 10. This schedule solved
nearly all the local minima problems, but at the expense of slower convergence of the
controller.

SWhen used as a technique for capacity control in pattern classification, this technique goes by the name
“weight decay”. Here we used it to condition the optimization problem.
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Figure 6: Performance of the neural-network puck controller as a function of the num-
ber of iterations of the puck world, when trained us®@NJPOMDP. Performance
estimates were generated by simulating fad00, 000 iterations. Averaged over 100
independent runs (excluding the four bad runs in Figure 7).

A plot of the average reward of the neural-network controller is shown in Figure 6,
as a function of the number of iterations of (h@MDP. The graph is an average over
100 independent runs, with the parameters initialized randomly in the fa:gk 0.1]
at the start of each run. The bad runs shown in Figure 7 were omitted from the average
because they gave misleadingly large error bars.

Note that the optimal performance (within the neural-network controller class)
seems to be around8 for this problem, due to the fact that the puck and target lo-
cations are reset evey) simulated seconds and hence there is a fixed fraction of the
time that the puck must be away from the target. From Figure 6 we see the final per-
formance of the puck controller is close to optimal. In only 4 of the 100 runs did
CONJPOMDP get stuck in a suboptimal local minimum. Three of those cases were
caused by overshooting @SEARCH (see Figure 7), which could be prevented by
adding extra checks tOONJPOMDP.

Figure 8 illustrates the behaviour of a typical trained controller. For the purpose of
the illustration, only the target location and puck velocity were randomized every 30
seconds, not the puck location.

4.3 Call Admission Control

In this section we report the results of experiments in widioiNJPOMDP was applied
to the task of training a controller for the call admission problem treated in [8, Chapter
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Figure 7: Plots of the performance of the neural-network puck controller for the four
runs (out of 100) that converged to substantially suboptimal local minima.
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Figure 8: lllustration of the behaviour of a typical trained puck controller.
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Call Type 1 2 3
Bandwidth Demand b 1 1 1

Arrival Rate al|l8|16 |14
Average Holding Time h | 0.6 | 0.5 | 0.4
Reward r 1 2 4

Table 3: Parameters of the call admission control problem.

7).

4.3.1 The Problem

The call admission control problem treated in [8, Chapter 7] models the situation in
which a telecommunications provider wishes to sell bandwidth on a communications
link to customers in such a way as to maximize long-term average reward.

Specifically, the problem is a queuing problem. There are three different types of
call, each with its own call arrival rate(1), «(2), a(3), bandwidth demand{(1), b(2),

b(3) and average holding timk(1), h(2), h(3). The arrivals are Poisson distributed
while the holding times are exponentially distributed. The link has a maximum band-
width of 10 units. When a call arrives and there is sufficient available bandwidth, the
service provider can choose to accept or reject the call (if there is not enough available
bandwidth the call is always rejected). Upon accepting a call of typéhe service
provider receives a reward ofm) units. The goal of the service provider is to maxi-
mize the long-term average reward.

The parameters associated with each call type are listed in Table 3. With these
settings, the optimal policy (found by dynamic programming in [8]) is to always accept
calls of type 2 and 3 (assuming sufficient available bandwidth) and to accept calls of
type 1 if the available bandwidth is at least 3. This policy has an average reward of
0.804, while the “always accept” policy has an average reafd).784.

4.3.2 The Controller

As in [8], the controller had three parametérs= (61, 6-,65), one for each type of
call. Upon arrival of a call of typen, the controller chooses to accept the call with
probability

() = m if b+ b(m) < 10,
0 otherwise,

whereb is the currently used bandwidth. This is the class of controllers studied in [8].

4There is some discrepancy between our average rewards and those quoted in [8]. This is probably due
to a discrepancy in the way the state transitions are counted, which was not clear from the discussion in [8].
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Figure 9: Performance of the call admission controller trained®¥XJPOMDP as a
function of the total number of iterations of the queue. The performance was computed
by simulating the controller for 100,000 iterations. The average reward of the globally
optimal policy is0.804, the average reward of the optimal policy within the class is
0.8, and the plateau performance@®NJPOMDP is 0.784. The graphs are averages
from 100 independent runs.

4.3.3 Conjugate gradient ascent

CONJPOMDP was used to train the above controller, WitROMDP generating the
gradient estimates from a range of valuessoénd 7. The influence of3 on the
performance of the trained controllers was marginal, so wg set).0 which gave the
lowest-variance estimates. We used the same valiiefof calls toGPOMDP within
CONJPOMDP and withinGSEARCH, and this was varied betwedn and 10, 000.
The controller was always started from the same parameter séttings, 8, 8) (as
was done in [8]). The value of this initial policy &691. The graph of the average
reward of the final controller produced WYONJPOMDP as a function of the total
number of iterations of the queue is shown in Figure 9. A performan0e78ft was
reliably achieved with less th&900 iterations of the queue.

Note that the optimal policy is not achievable with this controller class since it is
incapable of implementing any threshold policy other than the “always accept” and “al-
ways reject” policies. Athough not provably optimal, a parameter settilg ef 7.5
and any suitably large values 6f andf; (we choseéd, = 03 = 15) generates some-
thing close to the optimal policy within the controller class, with an average reward of
0.8. Figure 10 shows the probability of accepting a call of each type under this policy,
as a function of the available bandwidth.

The controllers produced blyONJPOMDP with 5 = 0.0 and sufficiently largg”
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Figure 10: Probability of accepting a call of each type under the call admission policy
with near-optimal parametefs = 7.5,6> = 63 = 15. Note that calls of type 2 and 3
are essentially always accepted.

are essentially “always accept” controllers with an average reward®t, within 2%
of the optimum achievable in the class. To produce policies even nearer to the optimal
policy in performanceCONJPOMDP must keepd; close to its starting value o,
and hence the gradient estimatg: = (A1, A», A3) produced byGPOMDP must
have a relatively small first component. Figure 11 shows a plot of normalizeds a
function of 3, for " = 1, 000, 000 (sufficiently large to ensure low variancedxy) and
the starting parameter settidg= (8, 8, 8). From the figureA,; starts at a high value
which explains whyCONJPOMDP produces “always accept” controllers fér= 0.0,
and does not become negative uptirs 0.93, a value for which the variance i
even for moderately lardE is relatively high.

A plot of the performance of ONJPOMDP for g = 0.9 and = 0.95 is shown
in Figure 12. Approximately half of the remaining 2% in performance can be obtained
by settings = 0.9, while for 3 = 0.95 a sulfficiently large choice fof' gives most
of the remaining performance. For this problem, there is a huge difference between
gaining 98% of optimal performance, which is achieved foe= 0.0 and less than
2000 iterations of the queue, and gaining 99% of the optimal which reqlire$).9
and of the order of 500,000 queue iterations. A similar convergence rate and final
approximation error to the latter case were reported for the on-line algorithms in [8,
Chapter 7], although the results of only one run were given in each case.
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Figure 12: Performance of the call admission controller trained®@yJPOMDP as a
function of the total number of iterations of the queue. The performance was calculated
by simulating the controller for 1,000,000 iterations. The graphs are averages from 100
independent runs.
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Figure 13: The classical “mountain-car” task is to apply forward or reverse thrust to
the car to get it over the crest of the hill. The car starts at the bottom and does not have
enough power to drive directly up the hill.

4.4 Mountainous Puck World

The “mountain-car” task is a well-studied problem in the reinforcement learning liter-
ature [13, Example 8.2]. As shown in Figure 13, the task is to drive a car to the top
of a one-dimensional hill. The car is not powerful enough to accelerate directly up the
hill against gravity, so any successful controller must learn to “oscillate” back and forth
until it builds up enough speed to crest the hill.

In this section we describe a variant of the mountain car problem based on the puck-
world example of Section 4.2. With reference to Figure 14, in our problem the task is to
navigate a puck out of a valley and onto a plateau at the northern end of the valley. As
in the mountain-car task, the puck does not have sufficient power to accelerate directly
up the hill, and so has to learn to oscillate in order to climb out of the valley. Once
again we were able to reliably train near-optimal neural-network controllers for this
problem, usingCONJPOMDP and GSEARCH, and with GPOMDP generating the
gradient estimates.

4.4.1 The World

The world dimensions, physics, puck dynamics and controls were identical to the flat
puck world described in Section 4.2, except that the puck was subject to a constant
gravitational force ofl0 units, the maximum allowed thrust wasinits (instead 05),

and the height of the world varied as follows:

heigh = m(5- i
ightz,y) =1 - [1 — cos (ﬂﬂ otherwise
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Figure 14: In our variant of the mountain-car problem the task is to navigate a puck out
of a valley and onto the northern plateau. The puck starts at the bottom of the valley
and does not have enough power to drive directly up the hill.

With only 3 units of thrust, a unit mass puck can not accelerate directly out of the
valley.

Every 120 (simulated) seconds, the puck was initialized with zero velocity at the
bottom of the valley, with a random location. The puck was given no reward while
in the valley or on the southern plateau, and a rewaid0f- s> while on the northern
plateau, where was the speed of the puck. We found the speed penalty helped to
improve the rate of convergence of the neural network controller.

4.4.2 The controller

After some experimentation we found that a neural-network controller could be reli-
ably trained to navigate to the northern plateau, or to stay on the northern plateau once
there, but it was difficult to combine both in the same controller (this is not so sur-
prising since the two tasks are quite distinct). To overcome this problem, we trained a
“switched” neural-network controller: the puck used one controller when in the valley
and on the southern plateau, and then switched to a second neural-network controller
while on the northern plateau. Both controllers were one-hidden-layer neural-networks
with nine input nodes, five hidden nodes and four output nodes. The nine inputs were
the normalized[¢1, 1]-valued)z, y andz puck locations, the normalized y andz
locations relative to center of the northern wall, andithg andz puck velocities. The

four outputs were used to generate a policy in the same fashion as the controller of
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Figure 15: Performance of the neural-network puck controller as a function of the num-
ber of iterations of the mountainous puck world, when trained usiotyJPOMDP.
Performance estimates were generated by simulating, fff0, 000 iterations. Aver-
aged over 100 independent runs.

Section 4.2.2.

4.4.3 Conjugate gradient ascent

The switched neural-network controller was trained using the same scheme discussed
in Section 4.2.3, except this time the discount fag¢tovas set td).98.

A plot of the average reward of the neural-network controller is shown in Figure 15,
as a function of the number of iterations of thR& MDP. The graph is an average
over 100 independent runs, with the neural-network controller parameters initialized
randomly in the rangé-0.1,0.1] at the start of each run. In this case no run failed
to converge to near-optimal performance. From the figure we can see that the puck’s
performance is nearly optimal after about 40 million total iterations of the puck world.
Although this figure may seem rather high, to put it in some perspective note that a
random neural-network controller takes about 10,000 iterations to reach the northern
plateau from a standing start at the base of the valley. Thus, 40 million iterations is
equivalent to only about 4,000 trips to the top for a random controller.

Note that the puck converges to a final average performance around 75, which
indicates it is spending at least 75% of its time on the northern plateau. Observation
of the puck’s final behaviour shows it behaves nearly optimally in terms of oscillating
back and forth to get out of the valley.
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5 Conclusion

This paper showed how to use the performance gradient estimates generated by
the GPOMDP algorithm from [2] to optimize the average reward of parameterized
POMDPs. The optimization relies on the use@EARCH, a robust line-search algo-
rithm that uses gradient estimates, rather than value estimates to bracket the maximum.
CONJPOMDP andGSEARCH were found to perform well on four quite distinct prob-
lems: optimizing a controller for a three-staté®P, optimizing a neural-network con-
troller for navigating a puck around a two-dimensional world, optimizing a controller
for a call admission problem, and optimizing a switched neural-network controller in a
variation of the classical mountain-car task. We also presemté&dMDP, an on-line
version of CONJPOMDP.

For the three-stateIDP and the call admission problems we were able to provide
graphic illustrations of how the bias and variance of the gradient estimigigsan
be traded against one another by varythbetweerD (low variance, high bias) and
(high variance, low bias).

Relatively little tuning was required to generate these results. In addition, the
controllers operated on direct and simple representations of the state, in contrast to
the much more complex representations usually required of value-function based ap-
proaches.

An interesting avenue for further research would be an empirical comparison of
value-function based methods and the algorithms of this paper in domains where the
former are known to produce good results.

Despite the success afONJPOMDP/GSEARCH in the experiments described
here, the on-line algorith®LPOMDP has advantages in other settings. In particular,
when it is applied to multi-agent reinforcement learning, both gradient computations
and parameter updates can be performed for distinct agents without any communication
beyond the global distribution of the reward signal. This idea has led to a biologically
plausible parameter optimization procedure for spiking neural networks (see [1]), and
we are currently investigating the application of the on-line algorithm in multi-agent
reinforcement learning problems.
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