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Abstract
Despite their many empirical successes, approximate value-function based ap-

proaches to reinforcement learning suffer from a paucity of theoretical guarantees
on the performance of the policy generated by the value-function. In this paper
we pursue an alternative approach: first compute the gradient of theaverage re-
ward with respect to the parameters controlling the state transitions in a Markov
chain (be they parameters of a class of approximate value functions generating a
policy by some form of look-ahead, or parameters directly parameterizing a set of
policies), and then use gradient ascent to generate a new set of parameters with
increased average reward. We call this method “direct” reinforcement learning be-
cause we are not attempting to first find an accurate value-function from which to
generate a policy, we are instead adjusting the parameters to directly improve the
average reward.

We present an algorithm for computing approximations to the gradient of the
average reward from a single sample path of the underlying Markov chain. We
show that the accuracy of these approximations depends on the relationship be-
tween the discount factor used by the algorithm and the mixing time of the Markov
chain, and that the error can be made arbitrarily small by setting the discount fac-
tor suitably close to1. We extend this algorithm to the case of partially observable
Markov decision processes controlled by stochastic policies. We prove that both
algorithms converge with probability 1.

1 Introduction

Function approximation is essential to avoid the curse of dimensionality associated
with large-scale dynamic programming and reinforcement learning problems. The
function that is approximated is invariably some measure of the value of a state or
of the values of state and action pairs (e.g.TD(�) [26], Q-learning [31], advantage
updating [2]). We will refer to these approaches generically asvalue functionbased.

The approximating architectures range from linear functions through to neural net-
works and decision trees. Once an approximate value function has been found, it is
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typically used to generate a policy in a greedy fashion by choosing in each state the
control (or action) with the highest value as given by the approximate value func-
tion. This approach has yielded some remarkable empirical successes in learning to
play games, including checkers [21], backgammon [29, 30], and chess [4]. Successes
outside of the games domain include job-shop scheduling [35], and dynamic channel
allocation [24].

While there are many algorithms for training approximate value functions (see [8,
27] for comprehensive treatments), with varying degrees of convergence guarantees, all
these algorithms—and indeed the approximate value function approach itself—suffer
from a fundamental limitation: the error they seek to minimize does not guarantee good
performance from the resulting policy.

More precisely, there exist infinite horizon Markov Decision Processes1 (MDPs)
with the following properties. For all� > 0 there is an approximate value functionV
with

max
i
jV (i)� V �(i)j = �; (1)

where themax is over all statesi andV �(i) is the true value of statei under the
optimal policy. However, the greedy policy based on this approximate value function
has expected discounted reward

� = �� � 2��

1� �
; (2)

where�� is the expected discounted reward of the optimal policy and� 2 [0; 1) is the
discount factor2. Thus, even accurate approximations to the optimal value function can
generate bad greedy policies if� is close to1.

Because Equation (2) also defines theworst expected discounted reward of any
greedy policy derived from an approximate value function satisfying (1), it has some-
times been used as amotivationfor using approximate value function techniques. How-
ever, there are two objections to this. The first is that most existing algorithms for train-
ing approximate value functions do not minimize the maximum norm betweenV and
V �, but typically somè 2 norm. Secondly, even if these algorithms did minimize the
maximum norm directly, the smallest achievable error� will be so large in many prob-
lems of practical interest that the bound (2) will be useless. Put another way, if we can
choose aV to make� arbitrarily small in (1), then we are not really in an approximate
value function setting in the first place.

The fact that the class of approximate value functions does not contain a value
function with small approximation error does not preclude it from containing a value
function whose greedy policy approaches or even equals the performance of the op-
timal policy. All that matters for the performance of the greedy policy is the relative
ordering the approximate value function assigns to the successor states in each state.
This motivates an alternative approach: instead of seeking to minimize (1) or an`2 vari-
ant, one should minimize some form of relative error between state values [2, 7, 32].

1See Section 2 for definitions.
2For a proof of (2) see [8, Proposition 6.1] or [34] or [23].
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While this idea is promising, the approach we take in this paper is even more direct:
search for a policy minimizing the expected discounted reward directly.

We can view the average reward (2) as a function�(�) of � 2 R
K , where� are

the parameters ofV . Provided the dependence of� on � is differentiable3, we can
computer�(�) and then take a small step in the gradient direction in order to increase
the average reward. Under general assumptions, such an approach will converge to a
local maximum of the average reward�.

Note that unlike this gradient-based approach, nearly all value function based ap-
proaches cannot guarantee policy improvement on each step. In particular, [32] anal-
yses anMDP for whichTD(�) converges to a value function that gives a suboptimal
policy, even when the initial value function gives the optimal policy. It also describes
some experimental results for backgammon in which the policy was observed to de-
grade during training.

The main contribution of this paper is an algorithm for computing an approxima-
tion, r��(�), to r�(�), from a single sample path of the underlying Markov chain.
The algorithm requires storage of only2K real numbers. The accuracy of the approx-
imation is controlled by a parameter� 2 [0; 1) of the algorithm (a discount factor)
and, in particular, the relationship between� and the mixing time of the Markov chain.
The approximationr��(�) has the property thatlim�!1r��(�) = r�(�). However,
the trade-off preventing the setting of� arbitrarily close to1 is that the variance of the
algorithm’s estimates increase as� ! 1.

We prove convergence with probability 1 of our algorithm and show that the same
algorithm computes the gradient for both average reward and discounted reward prob-
lems. We present algorithms for both general parameterized Markov chains and par-
tially observable Markov decision processes (POMDPs) controlled by parameterized
stochastic policies. In the latter case, our algorithm needs no knowledge of the under-
lying Markov decision process or the observation process. It only observes the rewards
and the observations.

In a companion paper [5], we present the results of several experiments in which
the gradient estimatesr�� were used to optimize the performance of a variety of dif-
ferentMDPs andPOMDPs, including a simple three-state Markov chain controlled by
a linear function, a two-dimensional “puck” controlled by a neural network, and the
call admission problem treated in [19].

1.1 Related Work

The approach we take in this paper is closely related to certain direct adaptive control
schemes that are used to tune (deterministic) controllers for discrete time systems. A
number of authors [14, 12, 15] have presented algorithms for the approximate computa-
tion in closed loop of derivatives of a quadratic cost function with respect to controller
parameters. This information is then used to tune the controller. As for the algorithm
we present for controllingPOMDPs, these schemes do not require a precise model of
the system being controlled. However, they are designed for rather restricted classes of

3In general, agreedypolicy based onV (�) will give a non-differentiable�(�). Thus, in this paper we
only consider stochastic policies.
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systems and performance criteria.
For reinforcement learning problems, Williams’ [33]REINFORCE algorithm is

perhaps the first example of an algorithm that sought to optimize average reward (or
cost) for stochastic policies by following a gradient direction. Approaches that combine
both value function (orQ-function) estimation and gradient estimation include [25]
and more recently [1] and [28]. These approaches attempt to combine the advantages
of gradient estimation and value function approaches, although as yet there has been
little empirical or theoretical investigation of their properties.

Kimura et al. [17] extended Williams’ algorithm to the infinite horizon setting.
Their algorithm is identical to the one presented here, except that it uses a discounted
combination ofdifferentialrewards. In fact the use of differential rewards in this setting
does not affect the estimates of the algorithm. While the algorithm presented in [17]
provides estimates of the expectation under the stationary distribution of the gradient
of the discounted reward, we show that these are biased estimates of the gradient of
the expected discounted reward. This arises because the stationary distribution itself
depends on the parameters. The bias can be reduced by allowing the discount factor to
approach1.

Formulae for the gradient in a Markov process setting were given in [10]. These
formulae critically rely on estimates of thedifferential rewardof each state, as do the
algorithms given in [20]. One difficulty with estimating the differential reward is that
it relies on the existence of a single recurrent statei� for all parameter settings�. The
variance of the estimate of the differential reward of these algorithms is related to the
recurrence time fori�, which may well be very large for some parameter settings�.
(Think of the two-link “acrobot” problem [27,x11.3]: for poor parameter settings�
a recurrent statei� with short recurrent time will be the “hanging down” position.
However, for good parameter settings the pendulum will spend most of its time in the
upright position, making the recurrence time toi� very large.) It may be possible to
alleviate these problems by judicially altering the recurrent state as training proceeds,
but no algorithms along those lines have been presented.

Approximate algorithms for computing the gradient were also given in [20, 19],
one that sought to solve the aforementioned recurrence problem by demanding only
recurrence to one of a set of recurrent states, and another that abandoned recurrence
and used discounting, which is closer in spirit to our algorithm. However the latter
algorithm still used estimates of the differential reward. The fundamental technical
difference in this paper is that we make no use of the differential reward either in the
construction or analysis of our algorithms.

Another on-line algorithm for approximatingr�(�) was given in [11] (Algorithm 3c),
again based upon estimates of the differential reward. One difficulty with the algorithm
is that its memory requirements increase unboundedly with increasing accuracy of the
approximate gradient.

1.2 Organisation of the paper

The rest of this paper is organised as follows. In Section 2 we introduce reinforcement
learning problems as parameterizedMDPs and give definitions of two performance
measures: the expected discounted reward and the expected average reward. We then
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prove that as far as optimizing the parameters of the MDP is concerned, we can deal
with either performance measure.

Section 3 describes formally the gradient ascent approach to optimizing the perfor-
mance of a parameterized Markov chain, and gives a closed-form expression for the
gradient as a function of the gradient of the transition matrix. Since the expression for
the gradient involves the inversion of ann� n matrix wheren is the number of states
of the system, it is not useful for the kind of large systems tackled by approximate
reinforcement learning methods. Thus, in Section 4 we introduce the approximation
r�� to the true gradientr� and prove thatr� = lim�!1r��. We also show that the
quality of the approximation is controlled by the relationship between� and the mixing
time of the Markov chain.

Section 5 introducesMCG, an algorithm for estimatingr�� from a sample path
of a parameterized Markov chain. We prove convergence with probability one of
MCG. Section 6 introducesPOMDPG, an algorithm for estimating the gradient from
a sample path of aPOMDP that is controlled by a parameterized stochastic policy.
We prove convergence ofPOMDPG with probabilty one, and provide extensions to
control-dependent rewards and to infinite control and observation spaces. Section 7
contains some concluding remarks and suggestions for further research.

2 The Reinforcement Learning Problem

We model reinforcement learning in the standard way, as a Markov decision process
(MDP) with a finite state spaceS = f1; : : : ; ng, and a stochastic matrix4 P = [pij ]
giving the probability of transition from statei to statej. Each statei has an associated
rewardr(i). The matrixP belongs to a parameterized class of stochastic matrices,
P := fP (�) : � 2 RK g. Denote the Markov chain corresponding toP (�) by M(�).
Throughout, we assume that these Markov chains satisfy the following assumptions:

Assumption 1. Each P (�) 2 P has a unique stationary distribution�(�) :=
[�(�; 1); : : : ; �(�; n)]0 satisfying thebalance equations

�0(�)P (�) = �0(�) (3)

(throughout�0 denotes the transpose of�).

Assumption 2. The magnitudes of the rewards,jr(i)j, are uniformly bounded byR <
1 for all statesi.

Ordinarily, a discussion of MDP’s would not be complete without some mention
of the actions available in each state and the space of policies available to the learner.
In particular, the parameters� would usually determine a policy (either directly or
indirectly via a value function), which would then determine the transition probabilities
P (�). However, for our purposes we do not carehowthe dependence ofP on� arises,
just that it satisfies Assumption 1 (and some differentiability assumptions that we shall
meet in the next section).

4A stochasticmatrixP = [pij ] haspij � 0 for all i; j and
Pn

j=1 pij = 1 for all i.
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Note that it is easy to extend these definitions to the case where the rewards also
depend on the parameters� or on the transitionsi ! j. It is straightforward to extend
our algorithms and results to these cases. See Section 6.1 for an illustration.

We first considerdiscounted rewardproblems. For� 2 [0; 1) and� 2 RK , define
the value of each statei 2 S by

J�(�; i) := lim
N!1

E�

"
NX
t=0

�tr(it)ji0 = i

#
; (4)

whereE� denotes the expectation over all sequencesi0; i1; : : : ; with transitions gen-
erated according toP (�). Write J�(�) = [J�(�; 1); : : : ; J�(�; n)]

0 or simplyJ� =
[J�(1); : : : ; J�(n)]

0 when the dependence on� is obvious.
The goal is to find a� 2 RK maximizing theexpected discounted reward:

��(�) :=
nX
i=1

�(�; i)J�(�; i) = �0J�: (5)

We also consideraverage rewardproblems. Define theaverage rewardby:

�(�) := lim
N!1

1

N

nX
i=1

�(�; i)E�

"
NX
t=1

r(it)ji0 = i

#
:

It can be shown (see [6]) that

�(�) =
nX
i=1

�(�; i)r(i)

= �0(�)r; (6)

wherer = [r(1); : : : ; r(n)]
0.

Somewhat surprisingly, for any� 2 [0; 1), optimizing the discounted reward (5)
is equivalent to optimizing the average reward (6), as the following theorem demon-
strates.

Theorem 1. For all � 2 RK and� 2 [0; 1),

��(�) =
�(�)

1� �
: (7)

Proof. Let ei = [0; 0; : : : ; 0; 1; 0; : : : ; 0]0 where the “1” is in the ith position. Then,
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suppressing� dependence, we have:

�� = �0J�

= lim
N!1

nX
i=1

�(i)

"
r(i) +

nX
i1=1

pii1

"
�r(i1) +

nX
i2=1

pi1i2

"
�2r(i2) + : : :

+
nX

iN=1

piN�1iN�
Nr(iN )

##
: : :

#

= lim
N!1

nX
i=1

�(i)
�
r(i) + �e0iPr + �2e0iP

2r + � � �+ �Ne0iP
Nr
�

= lim
N!1

�
�0r + ��0Pr + �2�0P 2r + � � �+ �N�0PNr

�

= lim
N!1

NX
t=0

�t�0r

=
�

1� �
;

where the third-last line follows from
P

i �(i)e
0
i = �0I and the penultimate line follows

from the balance equations (3).

3 Gradient Ascent for Parameterized Markov Chains

The approach taken to optimization of�(�) in this paper isgradient ascent. That is,
repeatedly computer�(�) with respect to the parameters�, and then take a step in the
uphill direction:�  � + r�(�), for some suitable step-size. From (7),

r��(�) = r�(�)
1� �

(8)

for any� 2 [0; 1), so findingr�(�) is equivalent to findingr��(�).
To ensure the existence of suitable gradients (and the boundedness of certain ran-

dom variables), we require that the parameterized class of stochastic matrices satisfies
the following additional assumption.

Assumption 3. The derivatives,

rP (�) :=
�
@pij(�)

@�k

�
i;j=1:::n;k=1:::K

exist for all� 2 RK . The ratios2
4
���@pij(�)@�k

���
pij(�)

3
5
i;j=1:::n;k=1:::K

are uniformly bounded byB <1 for all � 2 RK .
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Now, suppressing� dependencies, and since the rewardr does not depend on�, we
have:

r� = r�0r: (9)

(Think of equations like (9) as shorthand notation forK equations of the form

@�(�)

@�k
=

�
@�(�; 1)

@�k
; : : : ;

@�(�; n)

@�k

�
[r(1); : : : ; r(n)]

0

wherek = 1; : : : ;K. Alternatively, view the equations for each�k as stacked up “back
into the page” in a tensor-like fashion.) To computer�, first differentiate the balance
equations (3) to obtain

r�0(I � P ) = �0rP: (10)

The system of equations (10) is underconstrained becauseI � P is not invertible
(the balance equations show thatI � P has a left eigenvector with zero eigenvalue).
However,I � P + e�0, wheree = [1; 1; : : : ; 1]0, is invertible [16]. Sincer�0e =
r(�0e) = r(1) = 0, we can rewrite (10) as

r�0 = �0rP [I � P + e�0]
�1

: (11)

Hence,

r� = �0rP [I � P + e�0]
�1

r: (12)

Note that (11) is essentially a proof thatr� exists under our assumptions.
For MDP’s with a sufficiently small number of states, (12) could be solved exactly

to yield the precise gradient direction. However, in general, if the state space is small
enough that an exact solution of (12) is possible, then it will be small enough to derive
the optimal policy using policy iteration and table-lookup, and there would be no point
in pursuing a gradient based approach in the first place.

Thus, for problems of practical interest, (12) will be intractable and we will need to
find some other way of computing the gradient. One approximate technique for doing
this is presented in the next section.

4 Approximating the Gradient in Parameterized Markov
Chains

In this section, we show that the gradient can be split into two components, one of
which becomes negligible as a discount factor� approaches1.

Theorem 2. For all � 2 RK and� 2 [0; 1),

r� = (1� �)r�0J� + ��0rPJ� : (13)
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Proof. Observe thatJ� satisfies theBellmanequations:

J� = r + �PJ� : (14)

(See, for example, [6]). Hence,

r� = r [�0r]

= r�0 [J� � �PJ� ] by (14)

= r�0J� � �r�0J� + ��0rPJ� by (10)

= (1� �)r�0J� + ��0rPJ� :

We shall see in the next section that the second term in (13) can be estimated from
a single sample path of the Markov chain. In fact, Theorem 1 in [17] shows that the
gradient estimates of the algorithm presented in that paper converge to(1� �)�0rJ� .
By the Bellman equations (14), this is equal to(1 � �)�(�0rPJ� + �0rJ�), which
implies(1� �)�0rJ� = ��0rPJ� . Thus the algorithm in [17] estimates the second
term in the expression forr�(�) given by (13).

The following theorem shows that the first term in (13) becomes negligible as�
approaches1. Notice that this is not immediate from Theorem 2, sinceJ� can become
arbitrarily large in the limit� ! 1.

Theorem 3. For all � 2 RK ,

r� = lim
�!1
r��; (15)

where

r�� := �0rPJ� : (16)

Proof. Propositions 1.2 and 2.5 in [6, chapter 4] show that

lim
�!1

(1� �)J� = e�: (17)

Hence, from Theorem 2,

r� = r�0e� + lim
�!1

��0rPJ�
= lim

�!1
�0rPJ� ;

sincer�0e = 0.

Theorem 3 shows thatr�� is a good approximation to the gradient as� approaches
1, but it turns out that values of� very close to1 lead to large variance in the estimates
of r�� that we describe in the next section. However, the following theorem shows
that1 � � need not be too small, provided the Markov chain has a shortmixing time.
From any initial state, the distribution over states of a Markov chain converges to the

9



stationary distribution, provided the assumption (Assumption 1) about the existence
and uniqueness of the stationary distribution is satisfied (see, for example, [18, Theo-
rem 15.8.1, p. 552]). The spectral resolution theorem [18, Theorem 9.5.1, p. 314] im-
plies that the distribution converges to stationarity at an exponential rate, and the time
constant in this convergence rate (the mixing time) depends on the eigenvalues of the
transition probability matrix. The existence of a unique stationary distribution implies
that the largest magnitude eigenvalue is1 and has multiplicity1, and the corresponding
left eigenvector is the stationary distribution. We order the eigenvalues in decreasing
order of magnitude, so that1 = �1 > j�2j > � � � > j�sj for some2 � s � n. It turns
out thatj�2j determines the mixing time of the chain.

The following theorem shows that if1�� is small compared to1�j�2j, the gradient
approximation described above is accurate. Since we will be using the estimate as a
direction in which to update the parameters, the theorem compares thedirectionsof the
gradient and its estimate. In this theorem,�2(A) denotes thespectral condition number
of a nonsingular matrixA, which is defined as the product of thespectral normsof the
matricesA andA�1,

�2(A) = kAk2kA�1k2;
where

kAk2 = max
x:kxk=1

kAxk;

andkxk denotes the Euclidean norm of the vectorx.

Theorem 4. Suppose that the transition probability matrixP (�) satisfies Assumption 1
with stationary distribution�0 = (�1; : : : ; �n), and hasn distinct eigenvectors. Let
S = (x1x2 � � �xn) be the matrix of right eigenvectors ofP corresponding, in order,
to the eigenvalues1 = �1 > j�2j � � � � � j�nj. Then the normalized inner product
betweenr� and�r�� satisfies

1� r� � �r��kr�k2 � �2

�
�1=2S

� kr(p�1; : : : ;p�n)k
kr�k

p
r0�r

1� �

1� �j�2j ; (18)

where� = diag(�1; : : : ; �n).

Notice thatr0�r is the expectation under the stationary distribution ofr(X)2.
As well as the mixing time (viaj�2j), the bound in the theorem depends on an-

other parameter of the Markov chain: the spectral condition number of�1=2S. If the
Markov chain is reversible (that is, the transition probability matrix is symmetric and
hence the eigenvectorsx1; : : : ; xn are orthogonal), this is equal to the ratio of the max-
imum to the minimum probability of states under the stationary distribution. However,
the eigenvectors do not need to be nearly orthogonal. In fact, the condition that the
transition probability matrix haven distinct eigenvectors is not necessary; without it,
the condition number is replaced by a more complicated expression involving spectral
norms of matrices of the form(P � �iI). We will elaborate on this further in [3].

Proof. The existence ofn distinct eigenvectors implies thatP can be expressed as
S�S�1, where� = diag(�1; : : : ; �n) (see [18, Theorem 4.10.2, p 153]). It follows
that for any polynomialf , we can writef(P ) = Sf(�)S�1.
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Now, Theorem 2 shows thatr� � �r�� = r�0(1� �)J� . But

(1� �)J� = (1� �)
�
r + �Pr + �2P 2r + � � � �

= (1� �)
�
I + �P + �2P 2 + � � � � r

= (1� �)S

 
1X
t=0

�t�t

!
S�1r

= (1� �)

nX
j=1

xiy
0
i

 
1X
t=0

(��j)
t

!
r;

where

S�1 =

2
64

y01
...
y0n

3
75 :

It is easy to verify thatyi is the left eigenvector corresponding to�i, and that we can
choosey1 = � andx1 = e. Thus we can write

(1� �)J� = (1� �)e�0r +

nX
j=2

xiy
0
i

 
1X
t=0

(1� �)(��j )
t

!
r

= (1� �)e� +
nX
j=2

xiy
0
i

�
1� �

1� ��i

�
r

= (1� �)e� + SMS�1r;

where

M = diag

�
0;

1� �

1� ��2
; : : : ;

1� �

1� ��n

�
:

It follows from this and Theorem 2 that

1� r� � �r��kr�k2 = 1� r� � (r� �r�
0(1� �)J�)

kr�k2

=
r� � r�0(1� �)J�

kr�k2

=
r� � r�0 �(1� �)e� + SMS�1r

�
kr�k2

=
r� � r�0SMS�1r

kr�k2

�
r�0SMS�1r


kr�k ;

by Cauchy-Schwartz’ inequality. Sincer�0 = r
�p

�0
�
�1=2, we can apply Cauchy-

11



Schwartz’ inequality again to obtain

1� r� � �r��kr�k2 �

r�p�0� �1=2SMS�1r


kr�k : (19)

We use spectral norms to bound the second factor in the numerator. It is clear from
the definition that the spectral norm of a product of nonsingular matrices satisfies
kABk2 � kAk2kBk2, and that the spectral norm of a diagonal matrix is given by
k diag(d1; : : : ; dn)k2 = maxi jdij. It follows that�1=2SMS�1r

 = �1=2SMS�1��1=2�1=2r


�
�1=2S


2

S�1��1=2

2

�1=2r
 kMk2

� �2

�
�1=2S

�p
r0�r

1� �

1� �j�2j :

Combining with Equation (19) proves (18).

5 Estimating the Gradient in Parameterized Markov
Chains

Algorithm 1 introducesMCG (MarkovChainGradient), an algorithm for estimating
the approximate gradientr�� from a single on-line sample pathi0; i1; : : : from the
Markov chainM(�). MCG requires only2K reals to be stored, whereK is the dimen-
sion of the parameter space.

Theorem 5. Under Assumptions 1, 2 and 3, theMCG algorithm starting from any
initial statei0 will generate a sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1: (20)

Proof. Let X0; X1; : : : denote the random process corresponding toM(�). By As-
sumption 1,fXtg is asymptotically stationary, and we can write

�0rPJ� =
X
i;j

�(i)rpij(�)J�(j)

=
X
i;j

�(i)pij(�)
rpij(�)
pij(�)

J�(j)

=
X
i;j

Pr(Xt = i) Pr(Xt+1 = jjXt = i)
rpij(�)
pij(�)

E(J(t + 1)jXt+1 = j);

(21)

where the first probability is with respect to the stationary distribution andJ(t + 1) is
the process

J(t+ 1) =

1X
s=t+1

�s�t�1r(Xs):
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Algorithm 1 TheMCG (MarkovChainGradient) algorithm
1: Given:

� Parameter� 2 RK .

� Parameterized class of stochastic matricesP = fP (�) : � 2 RK g satisfying
Assumptions 3 and 1.

� � 2 [0; 1).

� Arbitrary starting statei0.

� State sequencei0; i1; : : : generated byM(�) (i.e. the Markov chain with
transition probabilitiesP (�)).

� Reward sequencer(i0); r(i1); : : : satisfying Assumption 2.

2: Setz0 = 0 and�0 = 0 (z0;�0 2 RK ).
3: for each stateit+1 visiteddo

4: zt+1 = �zt +
rpitit+1 (�)

pitit+1 (�)

5: �t+1 = �t +
1

t+1 [r(it+1)zt+1 ��t]
6: end for

The fact thatE(J(t + 1)jXt+1) = J�(Xt+1) for all Xt+1 follows from the bound-
edness of the magnitudes of the rewards (Assumption 2) and Lebesgue’s dominated
convergence theorem. We can rewrite Equation (21) as

�0rPJ� =
X
i;j

E

�
�i(Xt)�j(Xt+1)

rpij(�)
pij(�)

J(t+ 1)

�
;

where�i(�) denotes the indicator function for statei,

�i(Xt) :=

(
1 if Xt = i;

0 otherwise;

and the expectation is again with respect to the stationary distribution. WhenXt is
chosen according to the stationary distribution, the processfXtg is ergodic. Since the
processfZtg defined by

Zt := �i(Xt)�j(Xt+1)
rpij(�)
pij(�)

J(t+ 1)

is obtained by taking a fixed function offXtg, fZtg is also stationary and ergodic

(see [9, Proposition 6.31]). Since
���rpij (�)pij(�)

��� is bounded by Assumption 3, from the

13



ergodic theorem we have (almost surely):

�0rPJ� =
X
i;j

lim
T!1

1

T

T�1X
t=0

�i(Xt)�j(Xt+1)
rpij(�)
pij(�)

J(t+ 1)

= lim
T!1

1

T

T�1X
t=0

rpXtXt+1
(�)

pXtXt+1
(�)

J(t+ 1)

= lim
T!1

1

T

T�1X
t=0

rpXtXt+1
(�)

pXtXt+1
(�)

"
TX

s=t+1

�s�t�1r(Xs) +

1X
s=T+1

�s�t�1r(Xs)

#
:

(22)

Concentrating on the second term in the right-hand-side of (22), observe that:����� 1T
T�1X
t=0

rpXtXt+1
(�)

pXtXt+1
(�)

1X
s=T+1

�s�t�1r(Xs)

�����
� 1

T

T�1X
t=0

����rpXtXt+1
(�)

pXtXt+1
(�)

����
1X

s=T+1

�s�t�1 jr(Xs)j

� BR

T

T�1X
t=0

1X
s=T+1

�s�t�1

=
BR

T

T�1X
t=0

�T�t

1� �

=
BR�

�
1� �T

�
T (1� �)

2

! 0 asT !1;

whereR andB are the bounds on the magnitudes of the rewards andjrpij j
pij

from
Assumptions 2 and 3. Hence,

�0rPJ� = lim
T!1

1

T

T�1X
t=0

rpXtXt+1
(�)

pXtXt+1
(�)

TX
s=t+1

�s�t�1r(Xs) (23)

Unrolling the equation for�T in theMCG algorithm shows it is equal to

1

T

T�1X
t=0

rpitit+1(�)
pitit+1(�)

TX
s=t+1

�s�t�1r(is);

hence�T ! �0rPJ� w.p.1 as required.
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6 Estimating the Gradient in Partially Observable Markov
Decision Processes

Algorithm 1 applies to any parameterized class of stochastic matricesP (�) for which
we can compute the gradientsrpij(�). In this section we consider the special case
of P (�) that arise from a parameterized class of randomized policies controlling a
partially observable Markov decision process (POMDP). The ‘partially observable’
qualification means we assume that these policies have access to an observation process
that depends on the state, but in general they may not see the state.

Specifically, assume that there areN controlsU = f1; : : : ; Ng andM observations
Y = f1; : : : ;Mg. Eachu 2 U determines a stochastic matrixP (u) which does not
depend on the parameters�. For each statei 2 S, an observationy 2 Y is generated
independently according to a probability distribution�(i) over observations inY . We
denote the probability of observationy by �y(i). A randomized policyis simply a
function� mapping observationsy 2 Y into probability distributions over the controls
U . That is, for each observationy, �(y) is a distribution over the controls inU . Denote
the probability under� of controlu given observationy by �u(y).

To each randomized policy�(�) and observation distribution�(�) there corresponds
a Markov chain in which state transitions are generated by first selecting an observation
y in statei according to the distribution�(i), then selecting a controlu according to
the distribution�(y), and then generating a transition to statej according to the proba-
bility pij(u). To parameterize these chains we parameterize the policies, so that� now
becomes a function�(�; y) of a set of parameters� 2 RK as well as the observationy.
The Markov chain corresponding to� has state transition matrix[pij(�)] given by

pij(�) = Ey��(i)Eu��(�;y)pij(u): (24)

Equation (24) implies

rpij(�) =
X
u;y

�y(i)pij(u)r�u(�; y): (25)

Algorithm 2 introduces thePOMDPG algorithm (forPartially ObservableMarkov
DecisionProcessGradient), a modified form of Algorithm 1 in which updates ofzt
are based on�ut(�; yt), rather thanpitit+1(�). Note that Algorithm 2 does not require
knowledge of the transition probability matrixP , nor of the observation process�; it
only requires knowledge of the randomized policy�.

For convergence of Algorithm 2 we need to replace Assumption 3 with a similar
bound on the gradient of�:

Assumption 4. The derivatives,
@�u(�; y)

@�k

exist for allu 2 U , y 2 Y and� 2 RK . The ratios2
4
���@�u(�;y)@�k

���
�u(�; y)

3
5
y=1:::M ;u=1:::N ;k=1:::K
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Algorithm 2 ThePOMDPG algorithm.
1: Given:

� Parameterized class of randomized policies
�
�(�; �) : � 2 RK	 satisfying

Assumption 4.

� Partially observable Markov decision process which when controlled by the
randomized policies�(�; �) corresponds to a parameterized class of Markov
chains satisfying Assumption 1.

� � 2 [0; 1).

� Arbitrary (unknown) starting statei0.

� Observation sequencey0; y1; : : : generated by thePOMDP with controls
u0; u1; : : : generated randomly according to�(�; yt).

� Reward sequencer(i0); r(i1); : : : satisfying Assumption 2, wherei0; i1; : : :
is the (hidden) sequence of states of the Markov decision process.

2: Setz0 = 0 and�0 = 0 (z0;�0 2 RK ).
3: for each observationyt, controlut, and subsequent rewardr(it+1) do
4: zt+1 = �zt +

r�ut (�;yt)

�ut (�;yt)

5: �t+1 = �t +
1

t+1 [r(it+1)zt+1 ��t]
6: end for

are uniformly bounded byB� <1 for all � 2 RK .

Theorem 6. Under Assumptions 1, 2 and 4, Algorithm 2 starting from any initial state
i0 will generate a sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1: (26)

Proof. The proof follows the same lines as the proof of Theorem 5. In this case,

�0rPJ� =
X
i;j

�(i)rpij(�)J�(j)

=
X
i;j;y;u

�(i)pij(u)�y(i)r�u(�; y)J�(j) from (25)

=
X
i;j;y;u

�(i)pij(u)�y(i)
r�u(�; y)
�u(�; y)

�u(�; y)J�(j);

=
X
i;j;y;u

EZ 0t;

where the expectation is with respect to the stationary distribution offXtg, and the
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processfZ 0tg is defined by

Z 0t := �i(Xt)�j(Xt+1)�u(Ut)�y(Yt)
r�u(�; y)
�u(�; y)

J(t+ 1);

whereUt is the control process andYt is the observation process. The result follows
from the same arguments used in the proof of Theorem 5.

6.1 Control dependent rewardsr(u; i)

There are many circumstances in which the rewards may themselves depend on the
controlsu. For example, some controls may consume more energy than others and so
we may wish to add a penalty term to the reward function in order to conserve energy.
The simplest way to deal with this is to define for each statei the expected reward�r(i)
by

�r(i) = Ey��(i)Eu��(�;y)r(u; i); (27)

and then redefineJ� in terms of�r:

�J�(�; i) := lim
N!1

E�

"
NX
t=0

�t�r(it)ji0 = i

#
; (28)

where the expectation is over all trajectoriesi0; i1; : : : . The performance gradient then
becomes

r� = r�0�r + �0r�r;
which can be approximated by

r�� = �0
�rP �J� +r�r

�
;

due to the fact that�J� satisfies the Bellman equations (14) with�r replaced byr.
ForPOMDPG to take account of the dependence ofr on the controls, one simply

replaces its fifth line by

�t+1 = �t +
1

t+ 1

�
r(ut+1; it+1)

�
zt+1 +

r�ut+1(�; yt+1)

�ut+1(�; yt+1)

�
��t

�
:

It is straightforward to extend the proofs of Theorems 3, 4 and 6 to this setting.

6.2 Extensions to infinite state, observation, and control spaces

The convergence proof for Algorithm 2 relied on finite state (S), observation (Y) and
control (U) spaces. However, it should be clear that with no modification Algorithm 2
can be applied immediately toPOMDPs with countably or uncountably infiniteS and
Y , and countableU . In addition, with the appropriate interpretation ofr�=�, it can
be applied to uncountableU . Specifically, ifU is a subset ofRN then�(y; �) will
be a probabilitydensityfunction onU with �u(y; �) the density atu. Theorem 6 can
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be extended to show that the estimates produced by this algorithm converge almost
surely tor��. In fact, we can prove a more general result that implies both this case of
densities on subsets ofRN as well as the finite case of Theorem 6. We allowU andY
to be general spaces satisfying the following topological assumption. (For definitions
see, for example, [13].)

Assumption 5. The control spaceU has an associated topology that is separable,
Hausdorff, and first-countable. For the corresponding Borel�-algebraB generated
by this topology, there is a�-finite measure� defined on the measurable space(U ;B).
We say that� is thereference measurefor U .

Similarly, the observation spaceY has a topology, Borel�-algebra, and reference
measure satisfying the same conditions.

In the case of Theorem 6, whereU andY are finite, the associated reference mea-
sure is the counting measure. ForU = R

N andY = R
M , the reference measure

is Lebesgue measure. We assume that the distributions�(i) and�(�; y) are abso-
lutely continuous with respect to the reference measures, and the corresponding Radon-
Nikodym derivatives (probability masses, in the finite case; densities in the Euclidean
case) satisfy the following assumption.

Assumption 6. For everyy 2 Y and � 2 R
K , the probability measure�(�; y) is

absolutely continuous with respect to the reference measure forU . For everyi 2 S, the
probability measure�(i) is absolutely continuous with respect to the reference measure
for Y .

Let � be the reference measure forU . For all u 2 U , y 2 Y , � 2 R
K , and

k 2 f1; : : : ;Kg, the derivatives

@

@�k

d�(�; y)

d�
(u)

exist and the ratios ��� @
@�k

d�u(�;y)
d� (u)

���
d�u(�;y)

d� (u)

are bounded byB� <1.

With these assumptions, we can replace� in Algorithm 2 with the Radon-Nikodym
derivative of� with respect to the reference measure onU . In this case, we have the
following convergence result. This generalizes Theorem 6, and also applies to densities
� on a Euclidean spaceU .

Theorem 7. Suppose the control spaceU and the observation spaceY satisfy Assump-
tion 5 and let� be the reference measure on the control spaceU . Consider Algorithm 2
withr�ut(�; yt)=�ut(�; yt) replaced by

rd�(�;yt)
d� (ut)

d�(�;yt)
d� (ut)

:
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Under Assumptions 1, 2 and 6, this algorithm, starting from any initial statei0 will
generate a sequence�0;�1; : : : ;�t; : : : satisfying

lim
t!1

�t = r�� w.p.1:

The proof needs the following topological lemma. For definitions see, for exam-
ple, [13, pp. 24–25].

Lemma 1. Let (X; T ) be a topological space that is Hausdorff, separable, and first-
countable. LetB be the Borel�-algebra generated byT . Then the measurable space
(X;B) has a sequenceS1;S2; : : : � B of sets that satisfies the following conditions:

1. EachSi is a partition ofX (that is,X =
SfS : S 2 Sig and any two distinct

elements ofSi have empty intersection).

2. For all x 2 X , fxg 2 B and

1\
i=1

fS 2 Si : x 2 Sg = fxg:

Proof. SinceX is separable, it has a countable dense subsetS = fx1; x2; : : : g. Since
X is first-countable, each of thesexi has a countable neighbourhood base,Ni. Now,
construct the partitionsSi using the countable setN =

S1
i=1Ni as follows. LetS0 =

X and, fori = 1; 2; : : : , define

Si = fS \Ni : S 2 Si�1g [ fS \ (X �Ni) : S 2 Si�1g :

Clearly, eachSi is a measurable partition ofX . SinceX is Hausdorff, for each pair
x; x0 of distinct points fromX , there is a pair of disjoint open setsA andA0 such that
x 2 A andx0 2 A0. SinceS is dense, there is a pairs; s0 from S with s 2 A and
s0 2 A0. Also,N contains neighbourhoodsNs andNs0 with Ns � A andNs0 � A0.
SoNs andNs0 are disjoint. Thus, for sufficiently largei, x andx0 fall in distinct
elements of the partitionSi. Since this is true for any pairx; x0, it follows that

1\
i=1

fS 2 Si : x 2 Sg � fxg:

The reverse inclusion is trivial. The measurability of all singletonsfxg follows from
the measurability ofSx :=

S
ifS 2 Si : S \ fxg = �g and the fact thatfxg =

X � Sx.

We shall use Lemma 1 together with the following result to show that we can ap-
proximate expectations of certain random variables using a single sample path of the
Markov chain.

Lemma 2. Let (X;B) be a measurable space satisfying the conditions of Lemma 1,
and letS1;S2; : : : be a suitable sequence of partitions as in that lemma. Let� be a
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probability measure defined on this space. Letf be an absolutely integrable function
onX . For an eventS, define

f(S) =

R
S
f d�

�(S)
:

For eachx 2 X andk = 1; 2; : : : , let Sk(x) be the unique element ofSk containing
x. Then for almost allx in X ,

lim
k!1

f(Sk(x)) = f(x):

Proof. Clearly, the signed finite measure� defined by

�(E) =

Z
E

fd� (29)

is absolutely continuous with respect to�, and Equation (29) definesf as the Radon-
Nikodym derivative of� with respect to�. This derivative can also be defined as

d�

d�
(x) = lim

k!1

�(Sk(x))

�(Sk(x))
:

See, for example, [22, Section 10.2]. By the Radon-Nikodym Theorem [13, Theo-
rem 5.5.4, p. 134], these two expressions are equal a.e. (�).

Proof. (Theorem 7.)From the definitions,

r�� = �0rPJ�

=

nX
i=1

nX
j=1

�(i)rpij(�)J�(j): (30)

For everyy, � is absolutely continuous with respect to the reference measure�, hence
for anyi andj we can write

pij(�) =

Z
Y

Z
U

pij(u)
d�(�; y)

d�
(u) d�(u) d�(i)(y):

Since� and� do not depend on� andd�(�; y)=d� is absolutely integrable, we can
differentiate under the integral to obtain

rpij(�) =
Z
Y

Z
U

pij(u)rd�(�; y)
d�

(u) d�(u) d�(i)(y):

To avoid cluttering the notation, we shall use� to denote the distribution�(�; y) onU ,
and� to denote the distribution�(i) onY . With this notation, we have

rpij(�) =
Z
Y

Z
U

pij
rd�

d�
d�
d�

d� d�:
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Now, let� be the probability measure onY�U generated by� and�. We can write (30)
as

r�� =
X
i;j

�(i)J�(j)

Z
Y�U

pij
rd�

d�
d�
d�

d�:

Using the notation of Lemma 2, we define

pij(S) =

R
S pij d�

�(S)
;

r(S) = 1

�(S)

Z
S

rd�
d�
d�
d�

d�;

for a measurable setS � Y � U . Notice that, for a giveni, j, andS,

pij(S) = Pr (Xt+1 = j jXt = i; (y; u) 2 S )

r(S) = E
 
rd�

d�
d�
d�

�����Xt = i; (Yt; Ut) 2 S
!
:

Let S1;S2; : : : be a sequence of partitions ofY � U as in Lemma 1, and letSk(y; u)
denote the element ofSk containing(y; u). Using Lemma 2, we haveZ

Y�U

pij
rd�

d�
d�
d�

d� =

Z
Y�U

lim
k!1

pij (Sk(y; u)) r (Sk(y; u)) d�(y; u)

= lim
k!1

X
S2Sk

Z
S

pij(S)r(S) d�;

where we have used Assumption 6 and the Lebesgue dominated convergence theorem
to interchange the integral and the limit. Hence,

r�� = lim
k!1

X
i;j

X
S2Sk

�(i)�(S)pij(S)J�(j)r(S)

= lim
k!1

X
i;j;S

Pr(Xt = i) Pr((Yt; Ut) 2 S) Pr (Xt+1 = j jXt = i; (Yt; Ut) 2 S )

E (J(t+ 1)jXt+1 = j)E

 
rd�

d�
d�
d�

�����Xt = i; (Yt; Ut) 2 S
!

= lim
k!1

X
i;j;S

E

"
�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)

rd�
d�
d�
d�

#
;

where probabilities and expectations are with respect to the stationary distribution� of
Xt, and the distributions onYt; Ut. Now, the random process inside the expectation
is asymptotically stationary and ergodic. From the ergodic theorem, we have (almost
surely)

r�� = lim
k!1

lim
T!1

1

T

X
i;j;S

T�1X
t=0

�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)
rd�

d�
d�
d�

:
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It is easy to see that the double limit also exists when the order is reversed, so

r�� = lim
T!1

1

T

T�1X
t=0

lim
k!1

X
i;j;S

�i(Xt)�S(Yt; Ut)�j(Xt+1)J(t+ 1)
rd�

d�
d�
d�

= lim
T!1

1

T

T�1X
t=0

rd�(�;Yt)
d� (Ut)

d�(�;Yt)
d� (Ut)

J(t+ 1):

The same argument as in the proof of Theorem 5 shows that the tails ofJ(t + 1) can
be ignored when �����r

d�(�;Yt)
d� (Ut)

d�(�;Yt)
d� (Ut)

�����
andjr(Xt)j are uniformly bounded. It follows that�T ! �0rPJ� w.p.1, as required.

7 Conclusion

We have presented a general algorithm (MCG) for computing arbitrarily accurate ap-
proximations to the performance gradient of a parameterized Markov chain. The accu-
racy of the approximation was shown to be controlled by the size of the subdominant
eigenvalue (j�2j) of the transition probability matrix of the Markov chain. We showed
how the algorithm could be modified to apply to partially observable Markov deci-
sion processes controlled by parameterized stochastic policies, with both discrete and
continuous control, observation and state spaces. For the finite state case, we proved
convergence with probability 1 of both algorithms.

There are many avenues for further research. Continuous time results should follow
as extensions of the results presented here. TheMCG andPOMDPG algorithms can be
applied to countably or uncountably infinite state spaces; convergence results are also
needed in these cases. In this paper we only prove convergence with probability 1. It
should be possible to derive rates of convergence, for example as a function ofj�2j.

In the companion paper [5], we present experimental results showing rapid con-
vergence of the estimates generated byPOMDPG to the true gradientr�. We give
on-line variants of the algorithms of the present paper, and also variants of gradient
ascent that make use of the estimates ofr��. We present experimental results showing
the effectiveness of these algorithms in a variety of problems, including a three-state
MDP, a nonlinear physical control problem, and a call-admission problem.
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