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Abstract

Despite their many empirical successes, approximate value-function based ap-
proaches to reinforcement learning suffer from a paucity of theoretical guarantees
on the performance of the policy generated by the value-function. In this paper
we pursue an alternative approach: first compute the gradient @ivéirage re-
ward with respect to the parameters controlling the state transitions in a Markov
chain (be they parameters of a class of approximate value functions generating a
policy by some form of look-ahead, or parameters directly parameterizing a set of
policies), and then use gradient ascent to generate a new set of parameters with
increased average reward. We call this method “direct” reinforcement learning be-
cause we are not attempting to first find an accurate value-function from which to
generate a policy, we are instead adjusting the parameters to directly improve the
average reward.

We present an algorithm for computing approximations to the gradient of the
average reward from a single sample path of the underlying Markov chain. We
show that the accuracy of these approximations depends on the relationship be-
tween the discount factor used by the algorithm and the mixing time of the Markov
chain, and that the error can be made arbitrarily small by setting the discount fac-
tor suitably close td. We extend this algorithm to the case of partially observable
Markov decision processes controlled by stochastic policies. We prove that both
algorithms converge with probability 1.

1 Introduction

Function approximation is essential to avoid the curse of dimensionality associated
with large-scale dynamic programming and reinforcement learning problems. The
function that is approximated is invariably some measure of the value of a state or
of the values of state and action pairs (€D () [26], Q-learning [31], advantage
updating [2]). We will refer to these approaches genericallyadise functiorbased.

The approximating architectures range from linear functions through to neural net-
works and decision trees. Once an approximate value function has been found, it is



typically used to generate a policy in a greedy fashion by choosing in each state the
control (or action) with the highest value as given by the approximate value func-
tion. This approach has yielded some remarkable empirical successes in learning to
play games, including checkers [21], backgammon [29, 30], and chess [4]. Successes
outside of the games domain include job-shop scheduling [35], and dynamic channel
allocation [24].

While there are many algorithms for training approximate value functions (see [8,
27] for comprehensive treatments), with varying degrees of convergence guarantees, all
these algorithms—and indeed the approximate value function approach itself—suffer
from a fundamental limitation: the error they seek to minimize does not guarantee good
performance from the resulting policy.

More precisely, there exist infinite horizon Markov Decision Procésg@g®Ps)
with the following properties. For all > 0 there is an approximate value functibh
with

max |V (i) — V*(i)| = e, (1)
where themax is over all stateg and V*(i) is the true value of staté under the

optimal policy. However, the greedy policy based on this approximate value function
has expected discounted reward
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n=mn -

(2)

wheren* is the expected discounted reward of the optimal policyaral[0, 1) is the
discount factat. Thus, even accurate approximations to the optimal value function can
generate bad greedy policiesiifis close tol.

Because Equation (2) also defines therst expected discounted reward of any
greedy policy derived from an approximate value function satisfying (1), it has some-
times been used aswotivationfor using approximate value function techniques. How-
ever, there are two objections to this. The first is that most existing algorithms for train-
ing approximate value functions do not minimize the maximum norm betweand
V*, but typically some> norm. Secondly, even if these algorithms did minimize the
maximum norm directly, the smallest achievable etraiill be so large in many prob-
lems of practical interest that the bound (2) will be useless. Put another way, if we can
choose & to makee arbitrarily small in (1), then we are not really in an approximate
value function setting in the first place.

The fact that the class of approximate value functions does not contain a value
function with small approximation error does not preclude it from containing a value
function whose greedy policy approaches or even equals the performance of the op-
timal policy. All that matters for the performance of the greedy policy is the relative
ordering the approximate value function assigns to the successor states in each state.
This motivates an alternative approach: instead of seeking to minimize (1Yewari-
ant, one should minimize some form of relative error between state values [2, 7, 32].

1See Section 2 for definitions.
2For a proof of (2) see [8, Proposition 6.1] or [34] or [23].



While this idea is promising, the approach we take in this paper is even more direct:
search for a policy minimizing the expected discounted reward directly.

We can view the average reward (2) as a functjf) of § ¢ R¥, wheref are
the parameters of. Provided the dependence gfon 6 is differentiablé, we can
computeVn(#) and then take a small step in the gradient direction in order to increase
the average reward. Under general assumptions, such an approach will converge to a
local maximum of the average rewayd

Note that unlike this gradient-based approach, nearly all value function based ap-
proaches cannot guarantee policy improvement on each step. In particular, [32] anal-
yses anMDP for which TD()) converges to a value function that gives a suboptimal
policy, even when the initial value function gives the optimal policy. It also describes
some experimental results for backgammon in which the policy was observed to de-
grade during training.

The main contribution of this paper is an algorithm for computing an approxima-
tion, Van(h), to Vn(6), from a single sample path of the underlying Markov chain.
The algorithm requires storage of or#¥k” real numbers. The accuracy of the approx-
imation is controlled by a parametér € [0, 1) of the algorithm (a discount factor)
and, in particular, the relationship betweggand the mixing time of the Markov chain.

The approximationjzn(6) has the property thatmg_,; Vzn(6) = Vn(6). However,
the trade-off preventing the setting 8farbitrarily close tal is that the variance of the
algorithm’s estimates increase @s— 1.

We prove convergence with probability 1 of our algorithm and show that the same
algorithm computes the gradient for both average reward and discounted reward prob-
lems. We present algorithms for both general parameterized Markov chains and par-
tially observable Markov decision processe®){DPs) controlled by parameterized
stochastic policies. In the latter case, our algorithm needs no knowledge of the under-
lying Markov decision process or the observation process. It only observes the rewards
and the observations.

In a companion paper [5], we present the results of several experiments in which
the gradient estimateg;n were used to optimize the performance of a variety of dif-
ferentMDPs andPOMDPS, including a simple three-state Markov chain controlled by
a linear function, a two-dimensional “puck” controlled by a neural network, and the
call admission problem treated in [19].

1.1 Related Work

The approach we take in this paper is closely related to certain direct adaptive control
schemes that are used to tune (deterministic) controllers for discrete time systems. A
number of authors [14, 12, 15] have presented algorithms for the approximate computa-
tion in closed loop of derivatives of a quadratic cost function with respect to controller
parameters. This information is then used to tune the controller. As for the algorithm
we present for controllinOMDPs, these schemes do not require a precise model of
the system being controlled. However, they are designed for rather restricted classes of

3In general, agreedypolicy based ori/ () will give a non-differentiablen(9). Thus, in this paper we
only consider stochastic policies.



systems and performance criteria.

For reinforcement learning problems, Williams’ [3BEINFORCE algorithm is
perhaps the first example of an algorithm that sought to optimize average reward (or
cost) for stochastic policies by following a gradient direction. Approachesthat combine
both value function (oQ-function) estimation and gradient estimation include [25]
and more recently [1] and [28]. These approaches attempt to combine the advantages
of gradient estimation and value function approaches, although as yet there has been
little empirical or theoretical investigation of their properties.

Kimura et al. [17] extended Williams’ algorithm to the infinite horizon setting.
Their algorithm is identical to the one presented here, except that it uses a discounted
combination oflifferentialrewards. In fact the use of differential rewards in this setting
does not affect the estimates of the algorithm. While the algorithm presented in [17]
provides estimates of the expectation under the stationary distribution of the gradient
of the discounted reward, we show that these are biased estimates of the gradient of
the expected discounted reward. This arises because the stationary distribution itself
depends on the parameters. The bias can be reduced by allowing the discount factor to
approacH.

Formulae for the gradient in a Markov process setting were given in [10]. These
formulae critically rely on estimates of thiifferential rewardof each state, as do the
algorithms given in [20]. One difficulty with estimating the differential reward is that
it relies on the existence of a single recurrent st&t®r all parameter settings The
variance of the estimate of the differential reward of these algorithms is related to the
recurrence time foi*, which may well be very large for some parameter settthgs
(Think of the two-link “acrobot” problem [27§11.3]: for poor parameter settings
a recurrent staté* with short recurrent time will be the “hanging down” position.
However, for good parameter settings the pendulum will spend most of its time in the
upright position, making the recurrence timeitovery large.) It may be possible to
alleviate these problems by judicially altering the recurrent state as training proceeds,
but no algorithms along those lines have been presented.

Approximate algorithms for computing the gradient were also given in [20, 19],
one that sought to solve the aforementioned recurrence problem by demanding only
recurrence to one of a set of recurrent states, and another that abandoned recurrence
and used discounting, which is closer in spirit to our algorithm. However the latter
algorithm still used estimates of the differential reward. The fundamental technical
difference in this paper is that we make no use of the differential reward either in the
construction or analysis of our algorithms.

Another on-line algorithm for approximatingy; (6) was givenin [11] (Algorithm 3c),
again based upon estimates of the differential reward. One difficulty with the algorithm
is that its memory requirements increase unboundedly with increasing accuracy of the
approximate gradient.

1.2 Organisation of the paper

The rest of this paper is organised as follows. In Section 2 we introduce reinforcement
learning problems as parameterizd@Ps and give definitions of two performance
measures: the expected discounted reward and the expected average reward. We then



prove that as far as optimizing the parameters of the MDP is concerned, we can deal
with either performance measure.

Section 3 describes formally the gradient ascent approach to optimizing the perfor-
mance of a parameterized Markov chain, and gives a closed-form expression for the
gradient as a function of the gradient of the transition matrix. Since the expression for
the gradient involves the inversion of anx n matrix wheren is the number of states
of the system, it is not useful for the kind of large systems tackled by approximate
reinforcement learning methods. Thus, in Section 4 we introduce the approximation
Vi1 to the true gradien¥n and prove thaVyn = limg_,1 Vazn. We also show that the
quality of the approximation is controlled by the relationship betwgand the mixing
time of the Markov chain.

Section 5 introducesICG, an algorithm for estimatind/zn from a sample path
of a parameterized Markov chain. We prove convergence with probability one of
MCG. Section 6 introduceBOMDPG, an algorithm for estimating the gradient from
a sample path of 0MDP that is controlled by a parameterized stochastic policy.
We prove convergence &fOMDPG with probabilty one, and provide extensions to
control-dependent rewards and to infinite control and observation spaces. Section 7
contains some concluding remarks and suggestions for further research.

2 The Reinforcement Learning Problem

We model reinforcement learning in the standard way, as a Markov decision process
(MDP) with a finite state spacg = {1,...,n}, and a stochastic matfix° = [p;;]

giving the probability of transition from statdo statej. Each staté has an associated
rewardr(i). The matrixP belongs to a parameterized class of stochastic matrices,
P = {P(): § € RE}. Denote the Markov chain correspondingR¢d) by M (6).
Throughout, we assume that these Markov chains satisfy the following assumptions:

Assumption 1. Each P(#) € P has a unique stationary distributiom(6) :=
[7(8,1),...,m(0,n)] satisfying thebalance equations

' (0)P(6) = ='(6) ©)
(throughoutr’ denotes the transpose ©f.

Assumption 2. The magnitudes of the rewards(i)|, are uniformly bounded bi <
oo for all states:.

Ordinarily, a discussion of MDP’s would not be complete without some mention
of the actions available in each state and the space of policies available to the learner.
In particular, the parametefswould usually determine a policy (either directly or
indirectly via a value function), which would then determine the transition probabilities
P(6). However, for our purposes we do not chevthe dependence d@f oné arises,
just that it satisfies Assumption 1 (and some differentiability assumptions that we shall
meet in the next section).

4A stochastianatrix P = [p;;] hasp;; > 0 for all i, j andy>7_; pi; = 1foralli.



Note that it is easy to extend these definitions to the case where the rewards also
depend on the parameté®r on the transitions — j. It is straightforward to extend
our algorithms and results to these cases. See Section 6.1 for an illustration.

We first considediscounted rewargroblems. For € [0,1) and§ € R, define
the value of each statec S by

Ja(6,1) := lim Ey

N
> alr(iy)lio = z] , (4)

t=0
whereE, denotes the expectation over all sequenges, .. ., with transitions gen-
erated according t&(6). Write J, () = [J.(8,1),...,Ja(8,n)] or simply.J, =
[Ja(1),...,Jo(n)] when the dependence éris obvious.

The goal is to find & € RX maximizing theexpected discounted reward

n

Na(0) := Y 7(6,0)Ja(6,i) = 7' Ja. (5)

i=1

We also consideaiverage rewargroblems. Define thaverage rewardy:

N
> (i) lio = z] .

t=1

n

n(0) := lim %Zw((),i)Eg

N —o0 c
=1

It can be shown (see [6]) that

1
='(O)r, (6)

wherer = [r(1),...,r(n)]".

Somewhat surprisingly, for any € [0, 1), optimizing the discounted reward (5)
is equivalent to optimizing the average reward (6), as the following theorem demon-
strates.

Theorem 1. For all § € R anda € [0,1),

Na(0) = . (7)

Proof. Lete; = [0,0,...,0,1,0,...,0]" where the 1” is in the ith position. Then,



suppressing dependence, we have:

Na = lea

-, 3t

=1

r(i) + Z Diiy lar(il) + Z Diyis lazr(iz) +...

i1=1 ia=1

= A}gnoo Z (i) [r(i) + aejPr + a®e;P?r + --- + aN e[ PNr]

=1

= lim [#'r +an'Pr+ ' Pir 4+ -+ an'PNr]
N—o0

n
+ Y Pinaina™r(in)

in=1

N
= lim g aln'r
N—oo
=0

n
1—a’

where the third-last line follows frofy, 7 (i)e; = ' I and the penultimate line follows
from the balance equations (3). O

3 Gradient Ascent for Parameterized Markov Chains

The approach taken to optimization gf8) in this paper igradient ascent That is,
repeatedly compute’n(6) with respect to the parametetsand then take a step in the
uphill direction:0 < 6 + vVn(6), for some suitable step-size From (7),

_ V(o)

T 1l-a

Vna (6)

(8)

foranya € [0, 1), so findingVn(6) is equivalent to finding’n, (6).

To ensure the existence of suitable gradients (and the boundedness of certain ran-
dom variables), we require that the parameterized class of stochastic matrices satisfies
the following additional assumption.

Assumption 3. The derivatives,

Ipi; (0)
00,

VP(9) = {

:|i,j:1...n;k=1...K
exist for all§ € RX . The ratios

opi; (0)
905,

[ pi; ()

] i,j=1...n;k=1...K

are uniformly bounded bjg < oo for all § € RX .



Now, suppressing dependencies, and since the rewadbes not depend ah we
have:

Vn = Vr'r. 9)
(Think of equations like (9) as shorthand notation foequations of the form

one)  [om(6,1)  om(B,n)

= | g g (1), )]

wherek = 1,..., K. Alternatively, view the equations for eaéhas stacked up “back
into the page” in a tensor-like fashion.) To compWte, first differentiate the balance
equations (3) to obtain

Vr'(I - P) =«'VP, (10)

The system of equations (10) is underconstrained becaus® is not invertible
(the balance equations show that P has a left eigenvector with zero eigenvalue).
However,I — P + en’, wheree = [1,1,...,1]', is invertible [16]. SinceVr'e =
V(n'e) = V(1) = 0, we can rewrite (10) as

Vi =r'VP[[ - P+er] ", (11)
Hence,
Vn=n'VP[[-—P+er'] 'r. (12)

Note that (11) is essentially a proof tHatr exists under our assumptions.

For MDP’s with a sufficiently small number of states, (12) could be solved exactly
to yield the precise gradient direction. However, in general, if the state space is small
enough that an exact solution of (12) is possible, then it will be small enough to derive
the optimal policy using policy iteration and table-lookup, and there would be no point
in pursuing a gradient based approach in the first place.

Thus, for problems of practical interest, (12) will be intractable and we will need to
find some other way of computing the gradient. One approximate technique for doing
this is presented in the next section.

4 Approximating the Gradient in Parameterized Markov
Chains

In this section, we show that the gradient can be split into two components, one of
which becomes negligible as a discount fagt@pproaches.

Theorem 2. For all § € RE andj € [0,1),

Vn = (1—B)Vr'Js + Bx'VPJjs. (13)



Proof. Observe that/s satisfies th&ellmanequations:

Jg =r+ pPJs. (14)
(See, for example, [6]). Hence,
Vn =V [r'r]
= Vﬂ" [JB —ﬂPJB] by (14)
=Vnr'Js — BVr'Js + rn'VPJs by (10)

=(1-p)Vr'Js + pr'VPJjs.
O

We shall see in the next section that the second term in (13) can be estimated from
a single sample path of the Markov chain. In fact, Theorem 1 in [17] shows that the
gradient estimates of the algorithm presented in that paper convefbet@)n'V.J3.
By the Bellman equations (14), this is equal(lo— 3)3(n'VPJz + 7'V.J3z), which
implies(1 — g)7'VJz = pn'VPJs. Thus the algorithm in [17] estimates the second
term in the expression fov;(6) given by (13).

The following theorem shows that the first term in (13) becomes negligible as
approache$. Notice that this is not immediate from Theorem 2, sidgecan become
arbitrarily large in the limit3 — 1.

Theorem 3. For all § € RX,

Vi = lim Vjn, (15)
B—1

where
Vs :=n'VPJ;s. (16)
Proof. Propositions 1.2 and 2.5 in [6, chapter 4] show that

lim (1 — 3)Js = en. )

B—1

Hence, from Theorem 2,

Vn = Vr'en+ lim f7'VPJs

B—1
= lim 7'VPJ3,
B—1
sinceVz'e = 0. O
Theorem 3 shows thain is a good approximation to the gradientaapproaches

1, but it turns out that values df very close tal lead to large variance in the estimates
of Vin that we describe in the next section. However, the following theorem shows

thatl — 8 need not be too small, provided the Markov chain has a shixihg time
From any initial state, the distribution over states of a Markov chain converges to the



stationary distribution, provided the assumption (Assumption 1) about the existence
and uniqueness of the stationary distribution is satisfied (see, for example, [18, Theo-
rem 15.8.1, p. 552]). The spectral resolution theorem [18, Theorem 9.5.1, p. 314] im-
plies that the distribution converges to stationarity at an exponential rate, and the time
constant in this convergence rate (the mixing time) depends on the eigenvalues of the
transition probability matrix. The existence of a unique stationary distribution implies
that the largest magnitude eigenvalué and has multiplicityl, and the corresponding

left eigenvector is the stationary distribution. We order the eigenvalues in decreasing
order of magnitude, so that= Ay > |A2| > -+ > |As| for some2 < s < n. It turns

out that|\»| determines the mixing time of the chain.

The following theorem shows thatlif- 3 is small compared to—|\»|, the gradient
approximation described above is accurate. Since we will be using the estimate as a
direction in which to update the parameters, the theorem comparéis¢btonsof the
gradient and its estimate. In this theorem(A) denotes thepectral condition number
of a nonsingular matrix, which is defined as the product of tapectral norm®f the
matricesA andA !,

k2 (A) = [|All2]| A2,

where
|All2 = max [|Az|],

oz =1

and||z|| denotes the Euclidean norm of the vector

Theorem 4. Suppose that the transition probability mat#X ) satisfies Assumption 1
with stationary distributiont’ = (7y,... ,7,), and hasn distinct eigenvectors. Let
S = (z1z2 - --z,) be the matrix of right eigenvectors &f corresponding, in order,
to the eigenvalues = A; > |A\z2| > --- > |\,|. Then the normalized inner product
betweerVy and 3Vsn satisfies

V- BV o) IV A -5
1— 20 (' 2s WL /rry . @18
e < 2 (775) <l R W

wherell = diag(my,... , 7).

Notice thatr'IIr is the expectation under the stationary distribution (0¥ )2.

As well as the mixing time (vid\:|), the bound in the theorem depends on an-
other parameter of the Markov chain: the spectral condition numbBF GfS. If the
Markov chain is reversible (that is, the transition probability matrix is symmetric and
hence the eigenvectars, . . ., 2, are orthogonal), this is equal to the ratio of the max-
imum to the minimum probability of states under the stationary distribution. However,
the eigenvectors do not need to be nearly orthogonal. In fact, the condition that the
transition probability matrix have distinct eigenvectors is not necessary; without it,
the condition number is replaced by a more complicated expression involving spectral
norms of matrices of the forf® — \;I). We will elaborate on this further in [3].

Proof. The existence ofi distinct eigenvectors implies thd can be expressed as
SAS~!, whereA = diag(Ai,...,\,) (see [18, Theorem 4.10.2, p 153)). It follows
that for any polynomia, we can writef (P) = Sf(A)S—!.

10



Now, Theorem 2 shows th&ty — fV3n = Va'(1 — () Js. But

(1-B)Js=(1-p)(r+BPr+p*Pr+--)
=(1-B)(I+BP+BP +--)r

=(1-ps (Z ﬁw> §7'r
t=0
=1-9 =i (Z(Mt> r,

t=0

where

St =
Yn

It is easy to verify thay; is the left eigenvector correspondingXg and that we can
choosey; = m andx; = e. Thus we can write

(1= 8)Js = (1= Ber'r + > wy; (Z(l - 5)(ﬂ>\j)t> r

j=2 t=0

=(1—-pBen+SMS~'r,

where -3 1_8
M = di . — )
diag (0, W ,1_6)%)
It follows from this and Theorem 2 that
L V- BN V- (V= Va'(1 - ) Js)
2 - 2
IVl IVl
_Vn-Vr'(1—-p)Js
IVnll?
_ V-V (1= PBen+ SMS~'r)
IVnl|?
_ Vn-Va'SMS'r
IVnl|?
|Vr'SMS e
- 1Vl ’

by Cauchy-Schwartz’ inequality. Sindér’ = V (\/F) I1'/2, we can apply Cauchy-

11



Schwartz’ inequality again to obtain

V- 8% _ |v (va) [ I /zsrs 1]
IVall> — 1Vl

We use spectral norms to bound the second factor in the numerator. It is clear from

the definition that the spectral norm of a product of nonsingular matrices satisfies

|AB||2 < ||4]l2||B]|2, and that the spectral norm of a diagonal matrix is given by
|| diag(dy,. .. ,dn)||2 = max; |d;]. It follows that

1

(19)

[m2sars 1| =

H1/25MS*1H*1/2H1/27~H
< [m s, s~z e o
< ks (HWS) \/Wll_;mi2|
Combining with Equation (19) proves (18). O

5 Estimating the Gradient in Parameterized Markov
Chains

Algorithm 1 introducesMCG (Markov Chain Gradient), an algorithm for estimating

the approximate gradienfzn from a single on-line sample path, i;,... from the

Markov chainl/ (6). MCG requires on\2K reals to be stored, whefé€ is the dimen-
sion of the parameter space.

Theorem 5. Under Assumptions 1, 2 and 3, theCG algorithm starting from any

initial stateiy will generate a sequena®y, Aq,...,A,,... satisfying
lim Ay = Vanp wp.l (20)
t—o0

Proof. Let Xy, X1, ... denote the random process correspondindft@). By As-
sumption 1{X;} is asymptotically stationary, and we can write

w'VPJy = m(i)Vpi(0)J5(j)

1,3

_ Z (i)pi; (0) vp;; ]J(g) T5(7)
=S Pr(X; = i) Pr(Xp 1 = j|X; = i)vﬁi{éf)w (t+ DIXess =),

1,3

(21)

where the first probability is with respect to the stationary distribution.Apd- 1) is
the process

o0

Jt+1)= Y (X

s=t+1

12



Algorithm 1 TheMCG (MarkovChainGradient) algorithm
1: Given:

e Parametef € RX .

e Parameterized class of stochastic matriges {P(6): § € RX } satisfying
Assumptions 3 and 1.

e 5 €]0,1).
e Arbitrary starting statéy.

e State sequenc®,ii,... generated byl/(6) (i.e. the Markov chain with
transition probabilities (9)).

e Reward sequenc€iy),r(i1), . .. satisfying Assumption 2.

: Setzg = 0andAg =0 (Z(), Ag € ]RK).
: for each staté,, visiteddo

Vpitit+1(0)
z =Pz I e—
t+1 = Bz + Piriees (0

A1 = A+ 711 [F(ier) 201 — A
end for

(S R

The fact thatE(J (¢t + 1)|X¢+1) = J3(Xi+1) for all X;4; follows from the bound-
edness of the magnitudes of the rewards (Assumption 2) and Lebesgue’s dominated
convergence theorem. We can rewrite Equation (21) as

Vpi; (8)
pi;(6)

RVPTs = 3B [ () L+ 1)
i
wherey;(-) denotes the indicator function for state

1 if Xt = ’L.,
0 otherwise

Xi(X¢) := {

and the expectation is again with respect to the stationary distribution. \Whés
chosen according to the stationary distribution, the pro€&s$ is ergodic. Since the
process Z;} defined by

Zy = xi(Xe)x; (Xt+1)%éé§)J(t +1)

is obtained by taking a fixed function dfX;}, {Z;} is also stationary and ergodic
(see [9, Proposition 6.31)). Sin#e%‘ is bounded by Assumption 3, from the

13



ergodic theorem we have (almost surely):

-« Vpi;(9)
'VYPJs = lim — (X)) x (X 1
T VPJ3 2 Jim E Xi(Xe)x; (Xig1) i) J(t+1)
o 1« vatXtJrl(a)
_TIE]%OTE — L T (E41)

—0 PXi X141 (0)

T—1 T 00
= lim l Z Vpx, X, (0) [Z Bs—tflr(Xs)+ Z Bs—t—lr(Xs)

T—oo T —o PXi X141 (0) s=t+1 s=T+1
(22)

Concentrating on the second term in the right-hand-side of (22), observe that:

%Z VpXtXt+1 Z gs=t=1p.

i—0 pXtXt+1( ) o T+1

VPX1X1+1 s—t—1

< B |r(X5)]
pXtXt+1( szT;l

S_i Z Bs t—1

T =0 s=T+1

_ BR —1 BT t

_T < 1-3

B BRB (1—BT)

- TP

— 0asT — oo,

where R and B are the bounds on the magnitudes of the rewards%@jé—‘ from
Assumptions 2 and 3. Hence,

1= Vpx,x
m'VPJs = lim = : ‘“ gty (23)
Unrolling the equation foA in the MCG algorithm shows it is equal to
vatu+1 t— 1
T Ly e (0 Z B (i),
t=0 s=t+1

henceAr — 7'V P.Jz w.p.1 as required. O

14



6 Estimating the Gradientin Partially Observable Markov
Decision Processes

Algorithm 1 applies to any parameterized class of stochastic matfig@sfor which
we can compute the gradier@;;(6). In this section we consider the special case
of P(#) that arise from a parameterized class of randomized policies controlling a
partially observable Markov decision process (POMDP). The ‘partially observable’
gualification means we assume that these policies have access to an observation process
that depends on the state, but in general they may not see the state.

Specifically, assume that there &econtrols/ = {1,..., N} andM observations
Y ={1,...,M}. Eachu € U determines a stochastic matdX«) which does not
depend on the parametérsFor each staté € S, an observationy € ) is generated
independently according to a probability distributiefi) over observations iiy. We
denote the probability of observatignby v, (i). A randomized policys simply a
functiony mapping observations € ) into probability distributions over the controls
U. That s, for each observatign u(y) is a distribution over the controls id. Denote
the probability undep. of controlu given observation by p..(y).

To each randomized poligy(-) and observation distributiar(-) there corresponds
a Markov chain in which state transitions are generated by first selecting an observation
y in states according to the distribution(7), then selecting a contral according to
the distributioru(y), and then generating a transition to statecording to the proba-
bility p;;(u). To parameterize these chains we parameterize the policies, gorbet
becomes a function(d, y) of a set of parametefsc RX as well as the observatign
The Markov chain corresponding fchas state transition matrjx;;(6)] given by

Pij(0) = Eynv(i) Bunpu(o,4)Pij (1) (24)
Equation (24) implies
Vpii(0) = D vy (pi; (W) Viu (8, ) (25)
u’y

Algorithm 2 introduces the OMDPG algorithm (forPartially Observablévl arkov
DecisionProcessGradient), a modified form of Algorithm 1 in which updates f
are based op,, (9, y;), rather tharp;,;, ., (#). Note that Algorithm 2 does not require
knowledge of the transition probability matrik, nor of the observation processit
only requires knowledge of the randomized policy

For convergence of Algorithm 2 we need to replace Assumption 3 with a similar
bound on the gradient qf:

Assumption 4. The derivatives,

Opu(0,y)
a0,

existforallu € U,y € Y andd € RE . The ratios

‘8uu(9,y) ‘
00y,
tu(0,y)
y=1...M;u=1...N;k=1...K
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Algorithm 2 ThePOMDPG algorithm.
1: Given:

e Parameterized class of randomized polic{gg?, -) : § € R¥ } satisfying
Assumption 4.

e Partially observable Markov decision process which when controlled by the
randomized policieg (6, -) corresponds to a parameterized class of Markov
chains satisfying Assumption 1.

e 3€[0,1).
e Arbitrary (unknown) starting statg.

e Observation sequenag,y;,... generated by th@OMDP with controls
up,u1, ... generated randomly accordingg®d, y.).

e Reward sequenadiy), r(i1), ... satisfying Assumption 2, wheig, i1, . . .
is the (hidden) sequence of states of the Markov decision process.

. Setzy = 0 andA = 0 (29, Ag € R).
. for each observatiog, controlu,;, and subsequent rewar(i; ) do
_ Vb, (0,y1)
21 = Ba+ S0
App1 =2 + t% [P (G441) 2241 — A¢]
end for

@ a A Wb

are uniformly bounded bjg,, < oo for all § € R .

Theorem 6. Under Assumptions 1, 2 and 4, Algorithm 2 starting from any initial state

io Will generate a sequencaly, Ay, ..., A, ... satisfying
lim Ay = Vanp wp.l (26)
t—o0

Proof. The proof follows the same lines as the proof of Theorem 5. In this case,

w'VPJs = w(i)Vpi;(6)Js(j)

1,3

> w(@)pij(w)vy (1) Vi (8,y)J5(j) from (25)

,7,Y,u
. Vi, (0,y .
= 3wl ()22 ED 60,4750,
i pu(6,y)
= > EZ,
,5,Y,u

where the expectation is with respect to the stationary distributiofiXof, and the
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procesq Z,} is defined by

vﬂu(aa y)
(6, y)

whereU; is the control process arid is the observation process. The result follows
from the same arguments used in the proof of Theorem 5. O

Z; = xi(Xe)xj (X)) xu(U) xy (Y2) J(t+1),

6.1 Control dependent rewardsr(u, 1)

There are many circumstances in which the rewards may themselves depend on the
controlsu. For example, some controls may consume more energy than others and so
we may wish to add a penalty term to the reward function in order to conserve energy.
The simplest way to deal with this is to define for each stdite expected rewars(:)

by
f(l) = EyNV(i)EuNH(Q,y)T(uai)a (27)

and then redefindg in terms ofr:

N
T . .: 1. E t, . . — . 2
J3(8,1) i Eq ;B 7(i¢) |10 z] , (28)
where the expectation is over all trajectorigsi1, . . . . The performance gradient then

becomes
Vn =Vr'r+ 7' Vr,
which can be approximated by
Vsn =" [VPJs + VF],

due to the fact thaf; satisfies the Bellman equations (14) withreplaced by-.
For POMDPG to take account of the dependence @i the controls, one simply
replaces its fifth line by

v:U’ut+1 (05 yt-‘rl) ) _ At:|

1
App1 =0 + — [T(Ut+1,it+1) <Zt+1 +
Mgy (07 yt+1)

t+1

It is straightforward to extend the proofs of Theorems 3, 4 and 6 to this setting.

6.2 Extensions to infinite state, observation, and control spaces

The convergence proof for Algorithm 2 relied on finite sta$, observation¥) and
control (/) spaces. However, it should be clear that with no modification Algorithm 2
can be applied immediately ®OMDPs with countably or uncountably infinitg and

Y, and countablé/. In addition, with the appropriate interpretation6f:/u, it can

be applied to uncountablé. Specifically, ifi/ is a subset oR™ then u(y, §) will

be a probabilitydensityfunction onZ/ with p.,(y,8) the density at.. Theorem 6 can
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be extended to show that the estimates produced by this algorithm converge almost
surely toVan. In fact, we can prove a more general result that implies both this case of
densities on subsets &Y as well as the finite case of Theorem 6. We allévand)

to be general spaces satisfying the following topological assumption. (For definitions
see, for example, [13].)

Assumption 5. The control spacé/ has an associated topology that is separable,
Hausdorff, and first-countable. For the corresponding Beredlgebra B generated
by this topology, there is a-finite measure\ defined on the measurable spdtg B).
We say tha is thereference measufer U/.

Similarly, the observation spa¢e has a topology, Borefr-algebra, and reference
measure satisfying the same conditions.

In the case of Theorem 6, wheleand are finite, the associated reference mea-
sure is the counting measure. Rér= RN and) = RM, the reference measure
is Lebesgue measure. We assume that the distributidfsand u.(0,y) are abso-
lutely continuous with respect to the reference measures, and the corresponding Radon-
Nikodym derivatives (probability masses, in the finite case; densities in the Euclidean
case) satisfy the following assumption.

Assumption 6. For everyy € Y andf € R, the probability measurg(8,y) is
absolutely continuous with respect to the reference measuté.fBor everyi € S, the
probability measure (i) is absolutely continuous with respect to the reference measure
for ).

Let A\ be the reference measure ft. Forallu € U,y € ), 0 € RX, and
ke {1,..., K}, the derivatives

0 du(8,y)
oo W

exist and the ratios
8 duw(8,y)
0% Pt (u)

duy (6,
u d(}\ y) (u)
are bounded by3,, < cc.
With these assumptions, we can replada Algorithm 2 with the Radon-Nikodym
derivative ofy with respect to the reference measurelfnin this case, we have the

following convergence result. This generalizes Theorem 6, and also applies to densities
w1 on a Euclidean space.

Theorem 7. Suppose the control spatkand the observation spagésatisfy Assump-
tion 5 and let\ be the reference measure on the control sgac€onsider Algorithm 2
With Vi, (6, y¢) / 1w, (6, y:) replaced by

v du(d@;\yt) (Ut)
0,y: .
00 ()
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Under Assumptions 1, 2 and 6, this algorithm, starting from any initial siateill
generate a sequenck,, Ay, ..., A,... satisfying

tlirglo Ay =Van wp.l

The proof needs the following topological lemma. For definitions see, for exam-
ple, [13, pp. 24-25].

Lemma 1. Let (X, T) be a topological space that is Hausdorff, separable, and first-
countable. Lef3 be the Boreb-algebra generated by . Then the measurable space
(X, B) has a sequenc8, S-, ... C B of sets that satisfies the following conditions:

1. Eachs; is a partition of X (thatis, X = |J{S: S € S;} and any two distinct
elements of; have empty intersection).

2. Forallz € X, {z} € Band

ﬁ{Se&:xGS}:{m}.

i=1

Proof. SinceX is separable, it has a countable dense subset{z, z»,...}. Since
X is first-countable, each of these has a countable neighbourhood basg, Now,
construct the partitions; using the countable séf = |J;°, NV; as follows. LetS, =
X and, fori = 1,2, ..., define

Si:{SﬂNi:SESi_l}U{Sﬂ(X—Ni):SESi_l}.

Clearly, eachS; is a measurable partition of. SinceX is Hausdorff, for each pair
x, 2" of distinct points fromX, there is a pair of disjoint open setisand A’ such that
xz € Aandz’ € A'. SinceS is dense, there is a pairs’ from S with s € A and
s' € A'. Also, N contains neighbourhood$, and Ny with N, C A andNy C A’.
So N, and Ny are disjoint. Thus, for sufficiently large = andz' fall in distinct
elements of the partitiof;. Since this is true for any pair, z’, it follows that

ﬁ{Se&:xGS}g{m}.

i=1

The reverse inclusion is trivial. The measurability of all singlet¢ma$ follows from
the measurability of5, := (J,{S € S;: SN {z} = ¢} and the fact tha{z} =
X -S,. O

We shall use Lemma 1 together with the following result to show that we can ap-
proximate expectations of certain random variables using a single sample path of the
Markov chain.

Lemma 2. Let (X, B) be a measurable space satisfying the conditions of Lemma 1,
and letS;, Sq, ... be a suitable sequence of partitions as in that lemma. lbé a
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probability measure defined on this space. Edie an absolutely integrable function
on X. For an eventS, define

Js fdp
f(s) = .
="
For eachz € X andk = 1,2,..., let Si(x) be the unique element &}, containing

2. Then for almost alk in X,
lim f(Si(2)) = f(a).
K — 00

Proof. Clearly, the signed finite measupalefined by

- /E fdu (29)

is absolutely continuous with respectipand Equation (29) defingsas the Radon-
Nikodym derivative ofp with respect tqu. This derivative can also be defined as

RN
(@) =l G @)

See, for example, [22, Section 10.2]. By the Radon-Nikodym Theorem [13, Theo-
rem 5.5.4, p. 134], these two expressions are equalg.e. ( O

Proof. (Theorem 7.)From the definitions,

Vsn = ﬂ'VPJg

—ZZ ())Vpij (0)J5(5)- (30)

i=1 j=1

For everyy, u is absolutely continuous with respect to the reference measirence
for anyi andj we can write

pij (8 / [ it O ) an ) dvtiy o)

Since\ andv do not depend off anddu(8,y)/d) is absolutely integrable, we can
differentiate under the integral to obtain

Vpss (0 / / ) 8O 1y axu) i),

To avoid cluttering the notation, we shall ysé¢o denote the distribution(6, y) oni,
andv to denote the distribution(:) on Y. With this notation, we have

th] //pz] dy d/j'd’/
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Now, letp be the probability measure @hx i/ generated by, andv. We can write (30)

as

d
Va1 = 1) J5 (7 "vﬁd
BN ZT"(Z) 5(J) Pij =gy @p-

i.j yxu ax
Using the notation of Lemma 2, we define

PoS =Ty

1 vk
V) =i [ P dp
S ax

for a measurable s&t C ) x /. Notice that, for a given, j, andS,
pij(S) = Pr(Xev1 = j|Xe =i, (y,u) € 5)

v du

V(S) =E ( i*

dX

X =1, (}/t;Ut) S S) .

LetS,Ss, ... be a sequence of partitions Bfx ¢/ as in Lemma 1, and lef;(y, u)
denote the element &, containing(y, u). Using Lemma 2, we have

v du ,
| mogBdo= [ lim g (Su0) ¥ (Selo ) doly)
yxu iy yxu k—oo

= Jim 3 [ 2y V(S)dp

k—o00
SeSy

where we have used Assumption 6 and the Lebesgue dominated convergence theorem
to interchange the integral and the limit. Hence,

Von = lim 3% a(i)p(S)pi;(S)J5()V(S)
i,j SESk
= lim Y Pr(X; =i)Pr((Y;,U}) € S)Pr(Xpp1 = j|X; =i, (V;,Up) € S)
k— o0 i
dun

E(J(t+1)|[Xip =j)E ( aa

dun
= dm 2 B

dX

X, =i, (Y,,Up) € S>

v du
Xi(Xe)xs (Y, Up)xj (Xia) J (¢ + 1)d—du>‘] ;
04,8 dx
where probabilities and expectations are with respect to the stationary distribudfon
X, and the distributions oi;, U;. Now, the random process inside the expectation
is asymptotically stationary and ergodic. From the ergodic theorem, we have (almost

surely)

T—1 d
o v
Vo = lim lim - % t;) Xi(Xe)xs (Yo, U)X (Xeg) I ( + l)g-
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Itis easy to see that the double limit also exists when the order is reversed, so

T-1 du
Ven = lim = Z lim sz Xy XS(Yt,Ut)XJ(XtH)J(t+1)ﬁ
i,4,S dXx

v du(f. Yt)(U)

. t
_T]gnooTZ d,u(HYt t) J(t+1).

The same argument as in the proof of Theorem 5 shows that the tafl$ ef 1) can

be ignored when

vdu(;):Yt) (Uy)
du(;),\iﬂ) Uy

and|r(X;)| are uniformly bounded. It follows thatr — 7'V P.Jz w.p.1, as required.
o

7 Conclusion

We have presented a general algorittvtC(G) for computing arbitrarily accurate ap-
proximations to the performance gradient of a parameterized Markov chain. The accu-
racy of the approximation was shown to be controlled by the size of the subdominant
eigenvalue|(\»|) of the transition probability matrix of the Markov chain. We showed
how the algorithm could be modified to apply to partially observable Markov deci-
sion processes controlled by parameterized stochastic policies, with both discrete and
continuous control, observation and state spaces. For the finite state case, we proved
convergence with probability 1 of both algorithms.

There are many avenues for further research. Continuous time results should follow
as extensions of the results presented here M&& andPOMDPG algorithms can be
applied to countably or uncountably infinite state spaces; convergence results are also
needed in these cases. In this paper we only prove convergence with probability 1. It
should be possible to derive rates of convergence, for example as a funciienh of

In the companion paper [5], we present experimental results showing rapid con-
vergence of the estimates generatedPl®MDPG to the true gradientn. We give
on-line variants of the algorithms of the present paper, and also variants of gradient
ascent that make use of the estimate§ypf. We present experimental results showing
the effectiveness of these algorithms in a variety of problems, including a three-state
MDP, a nonlinear physical control problem, and a call-admission problem.
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