How to Compute This Fast?

- Performing the **same** operations on **many** data items
 - Example: SAXPY

```c
for (I = 0; I < 1024; I++) {
    Z[I] = A*X[I] + Y[I];
}
```

```
L1:  ldf  [X+r1] -> f1  // I is in r1
    mulf f0,f1 -> f2   // A is in f0
    ldf  [Y+r1] -> f3
    addf f2,f3 -> f4
    stf  f4 -> [Z+r1]
    addi r1,4 -> r1
    bhti r1,4096,L1
```

- Instruction-level parallelism (ILP) - fine grained
 - Loop unrolling with static scheduling –or– dynamic scheduling
 - Wide-issue superscalar (non-)scaling limits benefits

- Thread-level parallelism (TLP) - coarse grained
 - Multicore

- Can we do some “medium grained” parallelism?
Data-Level Parallelism

- **Data-level parallelism (DLP)**
 - Single operation repeated on multiple data elements
 - SIMD (Single-Instruction, Multiple-Data)
 - Less general than ILP: parallel insns are all same operation
 - Exploit with vectors

- Old idea: Cray-1 supercomputer from late 1970s
 - Eight 64-entry x 64-bit floating point “vector registers”
 - 4096 bits (0.5KB) in each register! 4KB for vector register file
 - Special vector instructions to perform vector operations
 - Load vector, store vector (wide memory operation)
 - Vector+Vector or Vector+Scalar
 - addition, subtraction, multiply, etc.
 - In Cray-1, each instruction specifies 64 operations!
 - ALUs were expensive, so one operation per cycle (not parallel)

Example Vector ISA Extensions (SIMD)

- Extend ISA with floating point (FP) vector storage ...
 - **Vector register**: fixed-size array of 32- or 64- bit FP elements
 - **Vector length**: For example: 4, 8, 16, 64, ...
- ... and example operations for vector length of 4
 - Load vector: `ldf.v [X+r1] -> v1`
 - `ldf [X+r1+0] -> v1_0`
 - `ldf [X+r1+1] -> v1_1`
 - `ldf [X+r1+2] -> v1_2`
 - `ldf [X+r1+3] -> v1_3`
 - Add two vectors: `addf.vv v1,v2 -> v3`
 - `addf v1_i,v2_i -> v3_i` (where i is 0,1,2,3)
 - Add vector to scalar: `addf.vs v1,f2,v3`
 - `addf v1_i,f2 -> v3_i` (where i is 0,1,2,3)
- Today’s vectors: short (128 or 256 bits), but fully parallel
Example Use of Vectors – 4-wide

- Operations
 - Load vector: \texttt{ldf.v [X+r1] \rightarrow v1}
 - Multiply vector to scalar: \texttt{mulf.vs v1,f0 \rightarrow v3}
 - Add two vectors: \texttt{addf.vv v1,v2 \rightarrow v3}
 - Store vector: \texttt{stf.v v1 \rightarrow [X+r1]}

- Performance?
 - Best case: 4x speedup
 - But, vector instructions don’t always have single-cycle throughput
 - Execution width (implementation) vs vector width (ISA)

Vector Datapath & Implementation

- Vector insn. are just like normal insn... only “wider”
 - Single instruction fetch (no extra N^2 checks)
 - Wide register read & write (not multiple ports)
 - Wide execute: replicate floating point unit (same as superscalar)
 - Wide bypass (avoid N^2 bypass problem)
 - Wide cache read & write (single cache tag check)

- Execution width (implementation) vs vector width (ISA)
 - Example: Pentium 4 and “Core 1” executes vector ops at half width
 - “Core 2” executes them at full width

- Because they are just instructions...
 - ...superscalar execution of vector instructions
 - Multiple n-wide vector instructions per cycle
Intel’s SSE2/SSE3/SSE4/AVX...

- **Intel SSE2 (Streaming SIMD Extensions 2)** - 2001
 - 16 128bit floating point registers (\texttt{xmm0–xmm15})
 - Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)
 - Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
 - Or 1x64b or 1x32b FP (just normal scalar floating point)
 - Original SSE: only 8 registers, no packed integer support

- Other vector extensions
 - AMD 3DNow!: 64b (2x32b)
 - PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

- Looking forward for x86
 - Intel’s “Sandy Bridge” brings 256-bit vectors to x86
 - Intel’s “Xeon Phi” multicore will bring 512-bit vectors to x86

Other Vector Instructions

- These target specific domains: e.g., image processing, crypto
 - Vector reduction (sum all elements of a vector)
 - Geometry processing: 4x4 translation/rotation matrices
 - Saturating (non-overflowing) subword add/sub: image processing
 - Byte asymmetric operations: blending and composition in graphics
 - Byte shuffle/permute: crypto
 - Population (bit) count: crypto
 - Max/min/argmax/argmin: video codec
 - Absolute differences: video codec
 - Multiply-accumulate: digital-signal processing
 - Special instructions for AES encryption

- More advanced (but in Intel’s Xeon Phi)
 - Scatter/gather loads: indirect store (or load) from a vector of pointers
 - Vector mask: predication (conditional execution) of specific elements
Using Vectors in Your Code

• Write in assembly
 • Ugh

• Use “intrinsic” functions and data types
 • For example: _mm_mul_ps() and “__m128” datatype

• Use vector data types
 • typedef double v2df __attribute__ ((vector_size (16)));

• Use a library someone else wrote
 • Let them do the hard work
 • Matrix and linear algebra packages

• Let the compiler do it (automatic vectorization, with feedback)
 • GCC’s “-ftree-vectorize” option, -ftree-vectorizer-verbose=n
 • Limited impact for C/C++ code (old, hard problem)

Recap: Vectors for Exploiting DLP

• Vectors are an efficient way of capturing parallelism
 • Data-level parallelism
 • Avoid the N^2 problems of superscalar
 • Avoid the difficult fetch problem of superscalar
 • Area efficient, power efficient

• The catch?
 • Need code that is “vector-izable”
 • Need to modify program (unlike dynamic-scheduled superscalar)
 • Requires some help from the programmer

• Looking forward: Intel “Xeon Phi” (aka Larrabee) vectors
 • More flexible (vector “masks”, scatter, gather) and wider
 • Should be easier to exploit, more bang for the buck
Graphics Processing Units (GPU)

- Killer app for parallelism: graphics (3D games)
- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until recently, programmed through graphics API
 - GPU in every desktop, laptop, mobile device
 - massive volume and potential impact

GPUs and SIMD/Vector Data Parallelism

- How do GPUs have such high peak FLOPS & FLOPS/Joule?
 - Exploit massive data parallelism – focus on total throughput
 - Remove hardware structures that accelerate single threads
 - Specialized for graphs: e.g., data-types & dedicated texture units
- "SIMT" execution model
 - Single instruction multiple threads
 - Similar to both "vectors" and "SIMD"
 - A key difference: better support for conditional control flow
- Program it with CUDA or OpenCL
 - Extensions to C
 - Perform a “shader task” (a snippet of scalar computation) over many elements
 - Internally, GPU uses scatter/gather and vector mask operations
“CPU-style” cores

- Fetch/Decode
- ALU (Execute)
- Execution Context
- Data cache (a big one)
- Out-of-order control logic
- Fancy branch predictor
- Memory pre-fetcher

Slimming down

Idea #1:
Remove components that help a single instruction stream run fast

Add ALUs

Idea #2:
Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing

Stalls!
Stalls occur when a core cannot run the next instruction because of a dependency on a previous operation.

Texture access latency = 100’s to 1000’s of cycles

We’ve removed the fancy caches and logic that helps avoid stalls.
But we have **LOTS** of independent fragments.

Idea #3:
Interleave processing of many fragments on a single core to avoid stalls caused by high latency operations.

My chip!

- 16 cores
- 8 mul-add ALUs per core (128 total)
- 16 simultaneous instruction streams
- 64 concurrent (but interleaved) instruction streams
- 512 concurrent fragments
- = 256 GFLOPs (@ 1GHz)
My “enthusiast” chip!

32 cores, 16 ALUs per core (512 total) = 1 TFLOP (@ 1 GHz)

Summary: three key ideas

1. Use many “slimmed down cores” to run in parallel

2. Pack cores full of ALUs (by sharing instruction stream across groups of fragments)
 - Option 1: Explicit SIMD vector instructions
 - Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of many groups of fragments
Data Parallelism Summary

- Data Level Parallelism
 - “medium-grained” parallelism between ILP and TLP
 - Still one flow of execution (unlike TLP)
 - Compiler/programmer must explicitly express it (unlike ILP)

- Hardware support: new “wide” instructions (SIMD)
 - Wide registers, perform multiple operations in parallel

- Trends
 - More advanced and specialized instructions

- GPUs
 - Embrace data parallelism via “SIMT” execution model
 - Becoming more programmable all the time

- Today’s chips exploit parallelism at all levels: ILP, DLP, TLP