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This Unit: Caches 
•  “Cache”: hardware managed 

•  Hardware automatically retrieves missing data 
•  Built from fast on-chip SRAM 
•  In contrast to off-chip, DRAM “main memory” 

•  Average access time of a memory component 
•  latencyavg = latencyhit + (%miss * latencymiss) 
•  Hard to get low latencyhit and %miss in one structure 

→ memory hierarchy 
•  Cache ABCs (associativity, block size, capacity) 
•  Performance optimizations 

•  Prefetching & data restructuring 
•  Handling writes 

•  Write-back vs. write-through 
•  Memory hierarchy 

•  Smaller, faster, expensive → bigger, slower, cheaper 

Core 

D$ 

L2 

Main 
Memory 

I$ 

Disk 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Caches 3 

Readings 

•  MA:FSPTCM 
•  Section 2.2 
•  Sections 6.1, 6.2, 6.3.1 

•  Paper: 
•  Jouppi, “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch Buffers”, 
ISCA 1990 

•  ISCA’s “most influential paper award” awarded 15 years later 

Start-of-class Exercise 

•  You’re a researcher 
•  You frequently use books from the library 
•  Your productivity is reduced while waiting for books 

•  How do you: 
•  Coordinate/organize/manage the books? 

•  Fetch the books from the library when needed 
•  How do you reduce overall waiting? 

•  What techniques can you apply? 
•  Consider both simple & more clever approaches 
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Analogy Partly Explained 

•  You’re a processor designer 
•  The processor frequently use data from the memory 
•  The processor’s performance is reduced while waiting for data 

•  How does the processor: 
•  Coordinate/organize/manage the data 

•  Fetch the data from the memory when needed 
•  How do you reduce overall memory latency? 

•  What techniques can you apply? 
•  Consider both simple & more clever approaches   

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Caches 5 CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Caches 6 

Motivation 

•  Processor can compute only as fast as memory 
•  A 3Ghz processor can execute an “add” operation in 0.33ns 
•  Today’s “main memory” latency is more than 33ns 
•  Naïve implementation:  

•  loads/stores can be 100x slower than other operations 

•  Unobtainable goal: 
•  Memory that operates at processor speeds 
•  Memory as large as needed for all running programs 
•  Memory that is cost effective 

•  Can’t achieve all of these goals at once 
•  Example: latency of an SRAM is at least: sqrt(number of bits)  

Memories (SRAM & DRAM) 
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Types of Memory 
•  Static RAM (SRAM) 

•  6 or 8 transistors per bit 
•  Two inverters (4 transistors) + transistors for reading/writing 

•  Optimized for speed (first) and density (second) 
•  Fast (sub-nanosecond latencies for small SRAM) 

•  Speed roughly proportional to its area (~ sqrt(number of bits)) 
•  Mixes well with standard processor logic 

•  Dynamic RAM (DRAM) 
•  1 transistor + 1 capacitor per bit 
•  Optimized for density (in terms of cost per bit) 
•  Slow (>30ns internal access, ~50ns pin-to-pin)  
•  Different fabrication steps (does not mix well with logic) 

•  Nonvolatile storage: Magnetic disk, Flash RAM 
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Memory & Storage Technologies 
•  Cost - what can $200 buy (2009)? 

•  SRAM: 16MB 
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM 
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM 
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)  

•  Latency  
•  SRAM: <1 to 2ns (on chip) 
•  DRAM: ~50ns – 100x or more slower than SRAM 
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM  
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM) 

•  Bandwidth 
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz) 
•  DRAM: ~25GB/s 
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM 
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only  
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Memory Technology Trends 

Cost 

Access Time 
Copyright Elsevier Scientific 2003 
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The “Memory Wall” 

•  Processors get faster more quickly than memory (note log scale) 
•  Processor speed improvement: 35% to 55% 
•  Memory latency improvement: 7% 

Copyright Elsevier Scientific 2003 

Log scale 

+35 to 55% 

+7% 

The Memory Hierarchy 
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Known From the Beginning 

 “Ideally, one would desire an infinitely large memory 
capacity such that any particular word would be 
immediately available … We are forced to recognize the 
possibility of constructing a hierarchy of memories, each 
of which has a greater capacity than the preceding but 
which is less quickly accessible.” 

Burks, Goldstine, VonNeumann  
“Preliminary discussion of the logical design of an 

electronic computing instrument” 
 IAS memo 1946  
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Big Observation: Locality & Caching 

•  Locality of memory references 
•  Empirical property of real-world programs, few exceptions 

•  Temporal locality 
•  Recently referenced data is likely to be referenced again soon 
•  Reactive: “cache” recently used data in small, fast memory 

•  Spatial locality 
•  More likely to reference data near recently referenced data 
•  Proactive: “cache” large chunks of data to include nearby data 

•  Both properties hold for data and instructions 

•  Cache: “Hashtable” of recently used blocks of data 
•  In hardware, finite-sized, transparent to software 

Spatial and Temporal Locality Example 

•  Which memory accesses demonstrate spatial locality? 
•  Which memory accesses demonstrate temporal locality? 
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int sum = 0; 
int x[1000]; 

for(int c = 0; c < 1000; c++) { 
  sum += c; 

  x[c] = 0; 
} 

Library Analogy 

•  Consider books in a library 

•  Library has lots of books, but it is slow to access 
•  Far away (time to walk to the library) 
•  Big (time to walk within the library) 

•  How can you avoid these latencies? 
•  Check out books, take them home with you 

•  Put them on desk, on bookshelf, etc. 
•  But desks & bookshelves have limited capacity 

•  Keep recently used books around (temporal locality) 
•  Grab books on related topic at the same time (spatial locality) 
•  Guess what books you’ll need in the future (prefetching)  
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Library Analogy Explained 

•  Registers ↔ books on your desk 
•  Actively being used, small capacity 

•  Caches ↔ bookshelves 
•  Moderate capacity, pretty fast to access 

•  Main memory ↔ library 
•  Big, holds almost all data, but slow 

•  Disk (virtual memory) ↔ inter-library loan 
•  Very slow, but hopefully really uncommon 
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Exploiting Locality: Memory Hierarchy 

•  Hierarchy of memory components 
•  Upper components 

•  Fast ↔ Small ↔ Expensive 
•  Lower components 

•  Slow ↔ Big ↔ Cheap 

•  Connected by “buses” 
•  Which also have latency and bandwidth issues 

•  Most frequently accessed data in M1 
•  M1 + next most frequently accessed in M2, etc. 
•  Move data up-down hierarchy 

•  Optimize average access time 
•  latencyavg=latencyhit + (%miss*latencymiss) 
•  Attack each component 

CPU 

M1 

M2 

M3 

M4 
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Concrete Memory Hierarchy 
•  0th level: Registers 
•  1st level: Primary caches 

•  Split instruction (I$) and data (D$) 
•  Typically 8KB to 64KB each 

•  2nd level: 2nd and 3rd cache (L2, L3) 
•  On-chip, typically made of SRAM 
•  2nd level typically ~256KB to 512KB  
•  “Last level cache” typically 4MB to 16MB 

•  3rd level: main memory 
•  Made of DRAM (“Dynamic” RAM) 
•  Typically 1GB to 4GB for desktops/laptops 

•  Servers can have 100s of GB  

•  4th level: disk (swap and files) 
•  Uses magnetic disks or flash drives 

Processor 

D$ 

L2, L3 

Main 
Memory 

I$ 

Disk 

Compiler 
Managed 

Hardware 
Managed 

Software 
Managed 
(by OS) 

Regs 
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Evolution of Cache Hierarchies 

Intel 486 

8KB 
I/D$ 

1.5MB L2 

L3 tags 

64KB D$ 
64KB I$ 

Intel Core i7 (quad core) 

•  Chips today are 30–70% cache by area 

8MB L3 
(shared) 

256KB L2 
(private) 



Caches 
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Analogy to a Software Hashtable 

•  What is a “hash table”? 
•  What is it used for? 
•  How does it work? 

•  Short answer: 
•  Maps a “key” to a “value” 

•  Constant time lookup/insert 
•  Have a table of some size, say N, of “buckets” 
•  Take a “key” value, apply a hash function to it 
•  Insert and lookup a “key” at “hash(key) modulo N” 

•  Need to store the “key” and “value” in each bucket 
•  Need to check to make sure the “key” matches 

•  Need to handle conflicts/overflows somehow (chaining, re-hashing) 
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Hardware Cache Organization 

•  Cache is a hardware hashtable 
•  The setup 

•  32-bit ISA  → 4B words/addresses, 232 B address space 

•  Logical cache organization 
•  4KB, organized as 1K 4B blocks 
•  Each block can hold a 4-byte word 

•  Physical cache implementation 
•  1K (1024 bit) by 4B SRAM 
•  Called data array 
•  10-bit address input 
•  32-bit data input/output 

10 10
24

 

data 

32 

32 

addr 
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Looking Up A Block 

•  Q: which 10 of the 32 address bits to use? 
•  A: bits [11:2] 

•  2 least significant (LS) bits [1:0] are the offset bits 
•  Locate byte within word 
•  Don’t need these to locate word 

•  Next 10 LS bits [11:2] are the index bits 
•  These locate the word 
•  Nothing says index must be these bits 
•  But these work best in practice 

•  Why? (think about it) 

[11:2] 

data 11:2 addr 
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Knowing that You Found It 

•  Each cache row corresponds to 220 blocks 
•  How to know which if any is currently there? 
•  Tag each cache word with remaining address bits [31:12] 

•  Build separate and parallel tag array 
•  1K by 21-bit SRAM 
•  20-bit (next slide) tag + 1 valid bit 

•  Lookup algorithm 
•  Read tag indicated by index bits 
•  If tag matches & valid bit set:  

then: Hit → data is good 
else: Miss → data is garbage, wait… == 

hit 

[11:2] 

data 11:2 31:12 addr 

[31:12] 

A Concrete Example 

•  Lookup address x000C14B8!
•  Index = addr [11:2] = (addr >> 2) & x7FF = x12E!
•  Tag = addr [31:12] = (addr >> 12) = x000C1!
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== 

hit data 11:2 31:12 addr 

[31:12] 

1 C 0 0 

0000 0000 0000 1100 0001 00 0100 1011 10 

1 0000 0000 0000 1100 0001 
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Calculating Tag Overhead 

•  “32KB cache” means cache holds 32KB of data 
•  Called capacity 
•  Tag storage is considered overhead 

•  Tag overhead of 32KB cache with 1024 32B frames 
•  32B frames → 5-bit offset 
•  1024 frames → 10-bit index 
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags 
•  ~6% overhead 

•  What about 64-bit addresses? 
•  Tag increases to 49 bits, ~20% overhead (worst case) 
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Handling a Cache Miss 

•  What if requested data isn’t in the cache? 
•  How does it get in there? 

•  Cache controller: finite state machine 
•  Remembers miss address 
•  Accesses next level of memory 
•  Waits for response 
•  Writes data/tag into proper locations 

•  All of this happens on the fill path 
•  Sometimes called backside 

28 
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Cache Examples 
•  4-bit addresses → 16B memory 

•  Simpler cache diagrams than 32-bits 

•  8B cache, 2B blocks 
•  Figure out number of sets: 4 (capacity / block-size) 
•  Figure out how address splits into offset/index/tag bits 

•  Offset: least-significant log2(block-size) = log2(2) = 1 → 0000  
•  Index: next log2(number-of-sets) = log2(4) = 2 → 0000  
•  Tag: rest = 4 – 1 – 2 = 1 → 0000 

1 bit tag (1 bit) index (2 bits) 

4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 
Set Tag 0 1 

00 0 A B 

01 0 C D 

10 0 E F 

11 0 G H 

1 bit tag (1 bit) index (2 bits) Main memory 

4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 
Set Tag 0 1 

00 0 A B 

01 0 C D 

10 0 E F 

11 0 G H 

1 bit tag (1 bit) index (2 bits) Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 
Set Tag 0 1 

00 0 A B 

01 0 C D 

10 0 E F 

11 1 P Q 

1 bit tag (1 bit) index (2 bits) Main memory 

Load: 1110  Miss 
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Cache Misses and Pipeline Stalls 

•  I$ and D$ misses stall pipeline just like data hazards 
•  Stall logic driven by miss signal 

•  Cache “logically” re-evaluates hit/miss every cycle 
•  Block is filled → miss signal de-asserts → pipeline restarts 

I$ Regfile 
D$ 

a 

d 

+ 
4 

nop nop 
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Cache Performance Equation 

•  For a cache 
•  Access: read or write to cache 
•  Hit: desired data found in cache 
•  Miss: desired data not found in cache 

•  Must get from another component 
•  No notion of “miss” in register file 

•  Fill: action of placing data into cache 

•  %miss (miss-rate): #misses / #accesses 
•  thit: time to read data from (write data to) cache 
•  tmiss: time to read data into cache 

•  Performance metric: average access time 
tavg = thit + (%miss * tmiss) 

Cache 

thit 

tmiss 

%miss 
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CPI Calculation with Cache Misses 

•  Parameters 
•  Simple pipeline with base CPI of 1 
•  Instruction mix: 30% loads/stores 
•  I$: %miss = 2%, tmiss = 10 cycles 
•  D$: %miss = 10%, tmiss = 10 cycles 

•  What is new CPI? 
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 
•  CPID$ = %load/store*%missD$*tmissD$ = 0.3 * 0.1*10 cycles = 0.3 cycle 
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5 

Calculations: Book versus Lecture Notes 
•  My calculation equation: 

•  latencyavg = latencyhit + (%miss * latencymiss_additional) 
•  The book uses a different equation: 

•  latencyavg = (latencyhit *  %hit ) + (latencymiss_total * (1 - %hit)) 
•  These are actually the same: 

•  latencymiss_total  = latencymiss_additional + latencyhit  
•  %hit = 1 - %miss, so: latencyavg = 
•  = (latencyhit * %hit ) + (latencymiss_total * (1 - %hit)) 
•  = (latencyhit *  (1 - %miss)) + (latencymiss_total * %miss) 
•  = latencyhit + latencyhit * (- %miss) + (latencymiss_total * %miss) 
•  = latencyhit + (%miss * -1 * (latencyhit - latencymiss_total)) 
•  = latencyhit + (%miss * (latencymiss_total - latencyhit)) 
•  = latencyhit + (%miss * (latencymiss_total - latencyhit)) 
•  = latencyhit + (%miss * latencymiss_additional) 
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Measuring Cache Performance 

•  Ultimate metric is tavg 
•  Cache capacity and circuits roughly determines thit 
•  Lower-level memory structures determine tmiss 

•  Measure %miss 

•  Hardware performance counters  
•  Simulation 
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Capacity and Performance 
•  Simplest way to reduce %miss: increase capacity 

+  Miss rate decreases monotonically 
•  “Working set”: insns/data program is actively using 
•  Diminishing returns 

–  However thit increases 
•  Latency grows with cache size 

•  tavg ? 

•  Given capacity, manipulate %miss by changing organization 

Cache Capacity 

%miss 
“working set” size 
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Block Size 

•  Given capacity, manipulate %miss by changing organization 
•  One option: increase block size 

•  Exploit spatial locality 
•  Notice index/offset bits change 
•  Tag remain the same 

•  Ramifications 
+  Reduce %miss  (up to a point) 
+  Reduce tag overhead (why?) 
–  Potentially useless data transfer 
–  Premature replacement of useful data 
–  Fragmentation 

0 

1 

510 

511 

2 

[5:0] [31:15] 

data 

[14:6] 

address 

= 

hit? 

<< 

512*512bit 
SRAM 

9-bit 

block size↑ 
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Larger Blocks to Lower Tag Overhead 

•  Tag overhead of 32KB cache with 1024 32B frames 
•  32B frames → 5-bit offset 
•  1024 frames → 10-bit index 
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags 
•  ~6% overhead 

•  Tag overhead of 32KB cache with 512 64B frames 
•  64B frames → 6-bit offset 
•  512 frames → 9-bit index 
•  32-bit address – 6-bit offset – 9-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags 
+  ~3% overhead 



4-bit Address, 8B Cache, 4B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 
Set Tag 00 01 10 11 

0 0 A B C D 

1 0 E F G H 

2 bit tag (1 bit) index (1 bits) Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 4B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 
Set Tag 00 01 10 11 

0 0 A B C D 

1 1 M N P Q 

2 bit tag (1 bit) index (1 bits) Main memory 

Load: 1110  Miss 
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Effect of Block Size on Miss Rate 
•  Two effects on miss rate 

+  Spatial prefetching (good) 
•  For blocks with adjacent addresses 
•  Turns miss/miss into miss/hit pairs 

–  Interference (bad) 
•  For blocks with non-adjacent 

addresses (but in adjacent frames) 
•  Turns hits into misses by disallowing 

simultaneous residence 
•  Consider entire cache as one big block 

•  Both effects always present  
•  Spatial “prefetching” dominates initially 

•  Depends on size of the cache 
•  Reasonable block sizes are 32B–128B 

•  But also increases traffic 
•  More data moved, not all used 

Block Size 

%miss 
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Cache Conflicts 

•  Consider two frequently-accessed variables… 
•  What if their addresses have the same “index” bits? 

•  Such addresses “conflict” in the cache 
•  Can’t hold both in the cache at once…  
•  Can results in lots of misses (bad!) 

•  Conflicts increase cache miss rate 
•  Worse, result in non-robust performance 
•  Small program change ->  

changes memory layout -> 
changes cache mapping of variables -> 
dramatically increase/decrease conflicts 

•  How can we mitigate conflicts? == 

hit 

[11:2] 

data 11:2 31:12 addr 

[31:12] 
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Associativity 
•  Set-associativity 

•  Block can reside in one of few frames 
•  Frame groups called sets 
•  Each frame in set called a way 
•  This is 2-way set-associative (SA) 
•  1-way → direct-mapped (DM) 
•  1-set → fully-associative (FA) 

+  Reduces conflicts 
–  Increases latencyhit:  

•  additional tag match & muxing == 

hit 

[10:2] 

data 10:2 31:11 addr 

[31:11] 

4B 

== 

4B 

associativity↑ 
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Associativity 

•  Lookup algorithm 
•  Use index bits to find set 
•  Read data/tags in all frames in parallel 
•  Any (match and valid bit), Hit 

•  Notice tag/index/offset bits 
•  Only 9-bit index (versus 10-bit  

for direct mapped) 

== 

hit 

[10:2] 

data 10:2 31:11 addr 

[31:11] 

4B 

== 

4B 

associativity↑ 
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Associativity and Performance 
•  Higher associative caches  

+  Have better (lower) %miss 

•  Diminishing returns 
–  However thit increases 

•  The more associative, the slower 
•  What about tavg? 

•  Block-size and number of sets should be powers of two 
•  Makes indexing easier (just rip bits out of the address) 

•  3-way set-associativity? No problem 

Associativity 

%miss ~5 
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Miss Handling & Replacement Policies 
•  Set-associative caches present 

a new design choice 
•  On cache miss, which block in 

set to replace (kick out)? 

•  Add LRU field to each set 
•  “Least recently used” 
•  LRU data is encoded “way” 

•  Each access updates LRU bits 

•  Psudeo-LRU used for larger 
associativity caches 

512 

513 

1023 

data 

<< 

address 

= 

hit? 

0 

1 

511 

= W
E

 

data from memory 

[4:0] [31:15] [14:5] 
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Replacement Policies 
•  Set-associative caches present a new design choice 

•  On cache miss, which block in set to replace (kick out)? 

•  Some options 
•  Random 
•  FIFO (first-in first-out) 
•  LRU (least recently used) 

•  Fits with temporal locality, LRU = least likely to be used in future 
•  NMRU (not most recently used)  

•  An easier to implement approximation of LRU 
•  Is LRU for 2-way set-associative caches 

•  Belady’s: replace block that will be used furthest in future 
•  Unachievable optimum 

4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Way 0 LRU Way 1 
Data Data 

Set Tag 0 1 Tag 0 1 

0 00 A B 0 01 E F 

1 00 C D 1 01 G H 

1 bit tag (2 bit) index (1 bits) Main memory 

4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Way 0 LRU Way 1 
Data Data 

Set Tag 0 1 Tag 0 1 

0 00 A B 0 01 E F 

1 00 C D 1 01 G H 

1 bit tag (2 bit) index (1 bits) Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Way 0 LRU Way 1 
Data Data 

Set Tag 0 1 Tag 0 1 

0 00 A B 0 01 E F 

1 00 C D 0 11 P Q 

1 bit tag (2 bit) index (1 bits) Main memory 

Load: 1110  Miss 

LRU updated on each access 
(not just misses) 



Implementing Set-
Associative Caches 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Caches 53 CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Caches 54 

Option#1: Parallel Tag Access 

•  Data and tags actually physically separate 
•  Split into two different memory structures 

•  Option#1: read both structures in parallel: 

data 

<< 

= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

Four blocks transferred  

•  Tag match first, then access only one data block 
•  Advantages: lower power, fewer wires 
•  Disadvantages: slower 
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Option#2: Serial Tag Access 

<< 

= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

4-bit 

Only one block transferred  

Core 

Data 
Tags 

Serial 

Data 

Parallel 

data 

Core 

Tags 
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Best of Both? Way Prediction 
•  Predict “way” of block 

•  Just a “hint” 
•  Use the index plus some tag bits 
•  Table of n-bit entries for 2n associative cache 
•  Update on mis-prediction or replacement 

•  Advantages 
•  Fast 
•  Low-power 

•  Disadvantage 
•  More “misses” 

<< 
= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

4-bit 

Way 
Predictor 

= 

data hit 
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Highly Associative Caches 

•  How to implement full (or at least high) associativity? 
•  This way is terribly inefficient 
•  Matching each tag is needed, but not reading out each tag 

== 

hit 
data 

addr 

== == == == 

offset tag 

no index bits 
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Highly Associative Caches with “CAMs” 
•  CAM: content addressable memory 

•  Array of words with built-in comparators 
•  No separate “decoder” logic 
•  Input is value to match (tag) 
•  Generates 1-hot encoding of matching slot 

•  Fully associative cache 
•  Tags as CAM, data as RAM 
•  Effective but somewhat expensive 

•  But cheaper than any other way 
•  Used for high (16-/32-way) associativity 
–  No good way to build 1024-way associativity 
+  No real need for it, either 

•  CAMs are used elsewhere, too… hit data addr 

== 
== 

== 
== 
== 

Cache Optimizations 
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Classifying Misses: 3C Model 
•  Divide cache misses into three categories 

•  Compulsory (cold): never seen this address before 
•  Would miss even in infinite cache 

•  Capacity: miss caused because cache is too small 
•  Would miss even in fully associative cache 
•  Identify? Consecutive accesses to block separated by access to 

at least N other distinct blocks (N is number of frames in cache) 
•  Conflict: miss caused because cache associativity is too low 

•  Identify? All other misses 
•  (Coherence): miss due to external invalidations 

•  Only in shared memory multiprocessors (later) 

•  Calculated by multiple simulations 
•  Simulate infinite cache, fully-associative cache, normal cache 
•  Subtract to find each count  
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Miss Rate: ABC 
•  Why do we care about 3C miss model? 

•  So that we know what to do to eliminate misses 
•  If you don’t have conflict misses, increasing associativity won’t help 

•  Associativity 
+  Decreases conflict misses 
–  Increases latencyhit 

•  Block size 
–  Increases conflict/capacity misses (fewer frames) 
+  Decreases compulsory/capacity misses (spatial locality) 
•  No significant effect on latencyhit 

•  Capacity  
+  Decreases capacity misses 

–  Increases latencyhit 
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Reducing Conflict Misses: Victim Buffer 

•  Conflict misses: not enough associativity 
•  High-associativity is expensive, but also rarely needed 

•  3 blocks mapping to same 2-way set 

•  Victim buffer (VB): small fully-associative cache 
•  Sits on I$/D$ miss path 
•  Small so very fast (e.g., 8 entries) 
•  Blocks kicked out of I$/D$ placed in VB 
•  On miss, check VB: hit? Place block back in I$/D$ 
•  8 extra ways, shared among all sets 

+ Only a few sets will need it at any given time 
+  Very effective in practice 

I$/D$ 

L2 

VB 
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Overlapping Misses: Lockup Free Cache 
•  Lockup free: allows other accesses while miss is pending 

•  Consider: Load [r1] -> r2;   Load [r3] -> r4;    Add r2, r4 -> r5 

•  Handle misses in parallel 
•  Allows “overlapping” misses 
•  “memory-level parallelism” 

•  Implementation: miss status holding register (MSHR) 
•  Remember: miss address, chosen frame, requesting instruction 
•  When miss returns know where to put block, who to inform 
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Prefetching 
•  Bring data into cache proactively/speculatively 

•  If successful, reduces number of caches misses 

•  Key: anticipate upcoming miss addresses accurately 
•  Can do in software or hardware 

•  Simple hardware prefetching: next block prefetching 
•  Miss on address X → anticipate miss on X+block-size 
+  Works for insns: sequential execution 
+  Works for data: arrays 

•  Table-driven hardware prefetching 
•  Use predictor to detect strides, common patterns 

•  Effectiveness determined by: 
•  Timeliness: initiate prefetches sufficiently in advance 
•  Coverage: prefetch for as many misses as possible 
•  Accuracy: don’t pollute with unnecessary data 

I$/D$ 

L2 

prefetch logic 
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Software Prefetching 

•  Use a special “prefetch” instruction 
•  Tells the hardware to bring in data, doesn’t actually read it 
•  Just a hint  

•  Inserted by programmer or compiler 
•  Example 

int tree_add(tree_t* t) { 
  if (t == NULL) return 0; 
  __builtin_prefetch(t->left); 
  return t->val + tree_add(t->right) + tree_add(t->left); 
} 

•  20% performance improvement for large trees (>1M nodes) 
•  But ~15% slowdown for small trees (<1K nodes)  

•  Multiple prefetches bring multiple blocks in parallel 
•  More “memory-level” parallelism (MLP) 
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Software Restructuring: Data 

•  Capacity misses: poor spatial or temporal locality 
•  Several code restructuring techniques to improve both 

•  Loop blocking (break into cache-sized chunks), loop fusion 
–  Compiler must know that restructuring preserves semantics 

•  Loop interchange: spatial locality 
•  Example: row-major matrix: X[i][j] followed by X[i][j+1] 
•  Poor code: X[I][j] followed by X[i+1][j] 

for (j = 0; j<NCOLS; j++) 
  for (i = 0; i<NROWS; i++) 
     sum += X[i][j];    

•  Better code 
for (i = 0; i<NROWS; i++) 
   for (j = 0; j<NCOLS; j++) 
     sum += X[i][j]; 
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Software Restructuring: Data 
•  Loop blocking: temporal locality 

•  Poor code 
for (k=0; k<NUM_ITERATIONS; k++) 
   for (i=0; i<NUM_ELEMS; i++) 
      X[i] = f(X[i]);   // say 

•  Better code 
•  Cut array into CACHE_SIZE chunks 
•  Run all phases on one chunk, proceed to next chunk 
for (i=0; i<NUM_ELEMS; i+=CACHE_SIZE) 
   for (k=0; k<NUM_ITERATIONS; k++) 
      for (j=0; j<CACHE_SIZE; j++) 
         X[i+j] = f(X[i+j]); 

–  Assumes you know CACHE_SIZE, do you? 
•  Loop fusion: similar, but for multiple consecutive loops 
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Software Restructuring: Code 
•  Compiler an layout code for temporal and spatial locality 

•  If (a) { code1; } else { code2; } code3; 
•  But, code2 case never happens (say, error condition) 

•  Fewer taken branches, too 

Better 
locality 

Better 
locality 



What About Stores? 
Handling Cache Writes 
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Handling Cache Writes 
•  When to propagate new value to (lower level) memory? 

•  Option #1: Write-through: immediately 
•  On hit, update cache 
•  Immediately send the write to the next level 

•  Option #2: Write-back: when block is replaced 
•  Requires additional “dirty” bit per block 

•  Replace clean block: no extra traffic 
•  Replace dirty block: extra “writeback” of block 

+  Writeback-buffer (WBB):  
•  Hide latency of writeback (keep off critical path) 
•  Step#1: Send “fill” request to next-level 
•  Step#2: While waiting, write dirty block to buffer 
•  Step#3: When new blocks arrives, put it into cache 
•  Step#4: Write buffer contents to next-level 

2 
1 

4 

$ 

Next-level-$ 

WBB 

3 
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Write Propagation Comparison 
•  Write-through 

–  Creates additional traffic 
•  Consider repeated write hits 

–  Next level must handle small writes (1, 2, 4, 8-bytes) 
+  No need for dirty bits in cache 
+  No need to handle “writeback” operations 

•  Simplifies miss handling (no write-back buffer) 
•  Sometimes used for L1 caches (for example, by IBM) 
•  Usually write-non-allocate: on write miss, just write to next level 

•  Write-back 
+  Key advantage: uses less bandwidth 
•  Reverse of other pros/cons above 
•  Used by Intel, (AMD), and many ARM cores   
•  Second-level and beyond are generally write-back caches 
•  Usually write-allocate: on write miss, fill block from next level 
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Write Misses and Store Buffers 
•  Read miss? 

•  Load can’t go on without the data, it must stall 

•  Write miss? 
•  Technically, no instruction is waiting for data, why stall? 

•  Store buffer: a small buffer 
•  Stores put address/value to store buffer, keep going 
•  Store buffer writes stores to D$ in the background 
•  Loads must search store buffer (in addition to D$) 
+  Eliminates stalls on write misses (mostly) 
–  Creates some problems (later) 

•  Store buffer vs. writeback-buffer 
•  Store buffer: “in front” of D$, for hiding store misses 
•  Writeback buffer: “behind” D$, for hiding writebacks 

Cache 

Next-level 
cache 

WBB 

SB 

Processor 



Cache Hierarchies 
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Concrete Memory Hierarchy 
•  0th level: Registers 
•  1st level: Primary caches 

•  Split instruction (I$) and data (D$) 
•  Typically 8KB to 64KB each 

•  2nd level: 2nd and 3rd cache (L2, L3) 
•  On-chip, typically made of SRAM 
•  2nd level typically ~256KB to 512KB  
•  “Last level cache” typically 4MB to 16MB 

•  3rd level: main memory 
•  Made of DRAM (“Dynamic” RAM) 
•  Typically 1GB to 4GB for desktops/laptops 

•  Servers can have 100s of GB  

•  4th level: disk (swap and files) 
•  Uses magnetic disks or flash drives 

Processor 

D$ 

L2, L3 

Main 
Memory 

I$ 

Disk 

Compiler 
Managed 

Hardware 
Managed 

Software 
Managed 
(by OS) 

Regs 
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Designing a Cache Hierarchy 
•  For any memory component: thit vs. %miss tradeoff 

•  Upper components (I$, D$) emphasize low thit 
•  Frequent access → thit important 
•  tmiss is not bad → %miss less important 
•  Lower capacity and lower associativity (to reduce thit)  
•  Small-medium block-size (to reduce conflicts) 
•  Split instruction & data cache to allow simultaneous access 

•  Moving down (L2, L3) emphasis turns to %miss 
•  Infrequent access → thit less important 
•  tmiss is bad → %miss important 
•  High capacity, associativity, and block size (to reduce %miss) 
•  Unified insn & data caching to dynamic allocate capacity 

•  Each core:  
•  32KB insn & 32KB data, 8-way set-associative, 64-byte blocks 
•  256KB second-level cache, 8-way set-associative, 64-byte blocks 

•  8MB shared cache, 16-way set-associative 
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Example Cache Hierarchy: Core i7 

8KB 
I/D$ 

1.5MB L2 

64KB D$ 
64KB I$ 

8MB L3 
(shared) 

256KB L2 
(per-core) 
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Split vs. Unified Caches 

•  Split I$/D$: insns and data in different caches 
•  To minimize structural hazards and thit 
•  Larger unified I$/D$ would be slow, 2nd port even slower 
•  Optimize I$ to fetch multiple instructions, no writes 
•  Why is 486 I/D$ unified? 

•  Unified L2, L3: insns and data together 
•  To minimize %miss 
+  Fewer capacity misses: unused insn capacity can be used for data 
–  More conflict misses: insn/data conflicts 

•  A much smaller effect in large caches 
•  Insn/data structural hazards are rare: simultaneous I$/D$ miss 
•  Go even further: unify L2, L3 of multiple cores in a multi-core 
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Hierarchy: Inclusion versus Exclusion 

•  Inclusion 
•  Bring block from memory into L2 then L1 

•  A block in the L1 is always in the L2 
•  If block evicted from L2, must also evict it from L1 

•  Why? more on this when we talk about multicore 

•  Exclusion 
•  Bring block from memory into L1 but not L2 

•  Move block to L2 on L1 eviction 
•  L2 becomes a large victim cache 

•  Block is either in L1 or L2 (never both) 
•  Good if L2 is small relative to L1 

•  Example: AMD’s Duron 64KB L1s, 64KB L2 

•  Non-inclusion 
•  No guarantees 
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Memory Performance Equation 

•  For memory component M 
•  Access: read or write to M 
•  Hit: desired data found in M 
•  Miss: desired data not found in M 

•  Must get from another (slower) component 
•  Fill: action of placing data in M 

•  %miss (miss-rate): #misses / #accesses 
•  thit: time to read data from (write data to) M 
•  tmiss: time to read data into M 

•  Performance metric 
•  tavg: average access time 

tavg = thit + (%miss * tmiss) 

CPU 

M 

thit 

tmiss 

%miss 
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Hierarchy Performance 

tavg  
tavg-M1 

thit-M1 + (%miss-M1*tmiss-M1) 
thit-M1 + (%miss-M1*tavg-M2) 
thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-M2))) 
thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-M3))) 
… 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 
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Performance Calculation 

•  In a pipelined processor, I$/D$ thit is “built in” (effectively 0) 

•  Parameters 
•  Base pipeline CPI = 1 
•  Instruction mix: 30% loads/stores 
•  I$: %miss = 2%, tmiss = 10 cycles 
•  D$: %miss = 10%, tmiss = 10 cycles 

•  What is new CPI? 
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 
•  CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle 
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5 
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Performance Calculation (Revisited) 

•  Parameters 
•  Base pipeline CPI = 1 

•  In this case, already incorporates thit 

•  I$: %miss = 2% of instructions, tmiss = 10 cycles 
•  D$: %miss = 3% of instructions, tmiss = 10 cycles 

•  What is new CPI? 
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 
•  CPID$ = %missD$*tmissD$ = 0.03*10 cycles = 0.3 cycle 
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5 
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Miss Rates: per “access” vs “instruction” 

•  Miss rates can be expressed two ways: 
•  Misses per “instruction” (or instructions per miss), -or- 
•  Misses per “cache access” (or accesses per miss) 

•  For first-level caches, use instruction mix to convert 
•  If memory ops are 1/3rd of instructions.. 
•  2% of instructions miss (1 in 50) is 6% of “accesses” miss (1 in 17) 

•  What about second-level caches? 
•  Misses per “instruction” still straight-forward (“global” miss rate) 
•  Misses per “access” is trickier (“local” miss rate) 

•  Depends on number of accesses (which depends on L1 rate) 
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Multilevel Performance Calculation 

•  Parameters 
•  30% of instructions are memory operations 
•  L1: thit = 1 cycles (included in CPI of 1), %miss = 5% of accesses 
•  L2: thit = 10 cycles, %miss = 20% of L2 accesses 
•  Main memory: thit = 50 cycles 

•  Calculate CPI 
•  CPI = 1 + 30% * 5% * tmissD$  
•  tmissD$ = tavgL2 = thitL2+(%missL2*thitMem )= 10 + (20%*50) = 20 cycles 
•  Thus, CPI = 1 + 30% * 5% * 20 = 1.3 CPI 

•  Alternate CPI calculation: 
•  What % of instructions miss in L1 cache? 30%*5% = 1.5% 
•  What % of instructions miss in L2 cache? 20%*1.5% = 0.3% of insn 
•  CPI = 1 + (1.5% * 10) + (0.3% * 50) = 1 + 0.15 + 0.15 = 1.3 CPI  
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Summary 
•  “Cache”: hardware managed 

•  Hardware automatically retrieves missing data 
•  Built from fast on-chip SRAM 
•  In contrast to off-chip, DRAM “main memory” 

•  Average access time of a memory component 
•  latencyavg = latencyhit + (%miss * latencymiss) 
•  Hard to get low latencyhit and %miss in one structure 

→ memory hierarchy 
•  Cache ABCs (associativity, block size, capacity) 
•  Performance optimizations 

•  Prefetching & data restructuring 
•  Handling writes 

•  Write-back vs. write-through 
•  Memory hierarchy 

•  Smaller, faster, expensive → bigger, slower, cheaper 

Core 

D$ 

L2 

Main 
Memory 

I$ 

Disk 


