
CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 1

CIS 501: Computer Architecture

Unit 6: Caches

Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania''
with'sources'that'included'University'of'Wisconsin'slides'

by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood'

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 2

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast on-chip SRAM
•  In contrast to off-chip, DRAM “main memory”

•  Average access time of a memory component
•  latencyavg = latencyhit + (%miss * latencymiss)
•  Hard to get low latencyhit and %miss in one structure

→ memory hierarchy
•  Cache ABCs (associativity, block size, capacity)
•  Performance optimizations

•  Prefetching & data restructuring
•  Handling writes

•  Write-back vs. write-through
•  Memory hierarchy

•  Smaller, faster, expensive → bigger, slower, cheaper

Core

D$

L2

Main
Memory

I$

Disk

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 3

Readings

•  MA:FSPTCM
•  Section 2.2
•  Sections 6.1, 6.2, 6.3.1

•  Paper:
•  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers”,
ISCA 1990

•  ISCA’s “most influential paper award” awarded 15 years later

Start-of-class Exercise

•  You’re a researcher
•  You frequently use books from the library
•  Your productivity is reduced while waiting for books

•  How do you:
•  Coordinate/organize/manage the books?

•  Fetch the books from the library when needed
•  How do you reduce overall waiting?

•  What techniques can you apply?
•  Consider both simple & more clever approaches

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 4

Analogy Partly Explained

•  You’re a processor designer
•  The processor frequently use data from the memory
•  The processor’s performance is reduced while waiting for data

•  How does the processor:
•  Coordinate/organize/manage the data

•  Fetch the data from the memory when needed
•  How do you reduce overall memory latency?

•  What techniques can you apply?
•  Consider both simple & more clever approaches

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 5 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 6

Motivation

•  Processor can compute only as fast as memory
•  A 3Ghz processor can execute an “add” operation in 0.33ns
•  Today’s “main memory” latency is more than 33ns
•  Naïve implementation:

•  loads/stores can be 100x slower than other operations

•  Unobtainable goal:
•  Memory that operates at processor speeds
•  Memory as large as needed for all running programs
•  Memory that is cost effective

•  Can’t achieve all of these goals at once
•  Example: latency of an SRAM is at least: sqrt(number of bits)

Memories (SRAM & DRAM)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 7 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 8

Types of Memory
•  Static RAM (SRAM)

•  6 or 8 transistors per bit
•  Two inverters (4 transistors) + transistors for reading/writing

•  Optimized for speed (first) and density (second)
•  Fast (sub-nanosecond latencies for small SRAM)

•  Speed roughly proportional to its area (~ sqrt(number of bits))
•  Mixes well with standard processor logic

•  Dynamic RAM (DRAM)
•  1 transistor + 1 capacitor per bit
•  Optimized for density (in terms of cost per bit)
•  Slow (>30ns internal access, ~50ns pin-to-pin)
•  Different fabrication steps (does not mix well with logic)

•  Nonvolatile storage: Magnetic disk, Flash RAM

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 9

Memory & Storage Technologies
•  Cost - what can $200 buy (2009)?

•  SRAM: 16MB
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)

•  Latency
•  SRAM: <1 to 2ns (on chip)
•  DRAM: ~50ns – 100x or more slower than SRAM
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

•  Bandwidth
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz)
•  DRAM: ~25GB/s
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 10

Memory Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 11

The “Memory Wall”

•  Processors get faster more quickly than memory (note log scale)
•  Processor speed improvement: 35% to 55%
•  Memory latency improvement: 7%

Copyright Elsevier Scientific 2003

Log scale

+35 to 55%

+7%

The Memory Hierarchy

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 12

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 13

Known From the Beginning

 “Ideally, one would desire an infinitely large memory
capacity such that any particular word would be
immediately available … We are forced to recognize the
possibility of constructing a hierarchy of memories, each
of which has a greater capacity than the preceding but
which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical design of an

electronic computing instrument”
 IAS memo 1946

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 14

Big Observation: Locality & Caching

•  Locality of memory references
•  Empirical property of real-world programs, few exceptions

•  Temporal locality
•  Recently referenced data is likely to be referenced again soon
•  Reactive: “cache” recently used data in small, fast memory

•  Spatial locality
•  More likely to reference data near recently referenced data
•  Proactive: “cache” large chunks of data to include nearby data

•  Both properties hold for data and instructions

•  Cache: “Hashtable” of recently used blocks of data
•  In hardware, finite-sized, transparent to software

Spatial and Temporal Locality Example

•  Which memory accesses demonstrate spatial locality?
•  Which memory accesses demonstrate temporal locality?

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 15

int sum = 0;
int x[1000];

for(int c = 0; c < 1000; c++) {
 sum += c;

 x[c] = 0;
}

Library Analogy

•  Consider books in a library

•  Library has lots of books, but it is slow to access
•  Far away (time to walk to the library)
•  Big (time to walk within the library)

•  How can you avoid these latencies?
•  Check out books, take them home with you

•  Put them on desk, on bookshelf, etc.
•  But desks & bookshelves have limited capacity

•  Keep recently used books around (temporal locality)
•  Grab books on related topic at the same time (spatial locality)
•  Guess what books you’ll need in the future (prefetching)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 16

Library Analogy Explained

•  Registers ↔ books on your desk
•  Actively being used, small capacity

•  Caches ↔ bookshelves
•  Moderate capacity, pretty fast to access

•  Main memory ↔ library
•  Big, holds almost all data, but slow

•  Disk (virtual memory) ↔ inter-library loan
•  Very slow, but hopefully really uncommon

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 17 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 18

Exploiting Locality: Memory Hierarchy

•  Hierarchy of memory components
•  Upper components

•  Fast ↔ Small ↔ Expensive
•  Lower components

•  Slow ↔ Big ↔ Cheap

•  Connected by “buses”
•  Which also have latency and bandwidth issues

•  Most frequently accessed data in M1
•  M1 + next most frequently accessed in M2, etc.
•  Move data up-down hierarchy

•  Optimize average access time
•  latencyavg=latencyhit + (%miss*latencymiss)
•  Attack each component

CPU

M1

M2

M3

M4

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 19

Concrete Memory Hierarchy
•  0th level: Registers
•  1st level: Primary caches

•  Split instruction (I$) and data (D$)
•  Typically 8KB to 64KB each

•  2nd level: 2nd and 3rd cache (L2, L3)
•  On-chip, typically made of SRAM
•  2nd level typically ~256KB to 512KB
•  “Last level cache” typically 4MB to 16MB

•  3rd level: main memory
•  Made of DRAM (“Dynamic” RAM)
•  Typically 1GB to 4GB for desktops/laptops

•  Servers can have 100s of GB

•  4th level: disk (swap and files)
•  Uses magnetic disks or flash drives

Processor

D$

L2, L3

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

Regs

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 20

Evolution of Cache Hierarchies

Intel 486

8KB
I/D$

1.5MB L2

L3 tags

64KB D$
64KB I$

Intel Core i7 (quad core)

•  Chips today are 30–70% cache by area

8MB L3
(shared)

256KB L2
(private)

Caches

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 21

Analogy to a Software Hashtable

•  What is a “hash table”?
•  What is it used for?
•  How does it work?

•  Short answer:
•  Maps a “key” to a “value”

•  Constant time lookup/insert
•  Have a table of some size, say N, of “buckets”
•  Take a “key” value, apply a hash function to it
•  Insert and lookup a “key” at “hash(key) modulo N”

•  Need to store the “key” and “value” in each bucket
•  Need to check to make sure the “key” matches

•  Need to handle conflicts/overflows somehow (chaining, re-hashing)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 22

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 23

Hardware Cache Organization

•  Cache is a hardware hashtable
•  The setup

•  32-bit ISA → 4B words/addresses, 232 B address space

•  Logical cache organization
•  4KB, organized as 1K 4B blocks
•  Each block can hold a 4-byte word

•  Physical cache implementation
•  1K (1024 bit) by 4B SRAM
•  Called data array
•  10-bit address input
•  32-bit data input/output

10 10
24

data

32

32

addr
CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 24

Looking Up A Block

•  Q: which 10 of the 32 address bits to use?
•  A: bits [11:2]

•  2 least significant (LS) bits [1:0] are the offset bits
•  Locate byte within word
•  Don’t need these to locate word

•  Next 10 LS bits [11:2] are the index bits
•  These locate the word
•  Nothing says index must be these bits
•  But these work best in practice

•  Why? (think about it)

[11:2]

data 11:2 addr

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 25

Knowing that You Found It

•  Each cache row corresponds to 220 blocks
•  How to know which if any is currently there?
•  Tag each cache word with remaining address bits [31:12]

•  Build separate and parallel tag array
•  1K by 21-bit SRAM
•  20-bit (next slide) tag + 1 valid bit

•  Lookup algorithm
•  Read tag indicated by index bits
•  If tag matches & valid bit set:

then: Hit → data is good
else: Miss → data is garbage, wait… ==

hit

[11:2]

data 11:2 31:12 addr

[31:12]

A Concrete Example

•  Lookup address x000C14B8!
•  Index = addr [11:2] = (addr >> 2) & x7FF = x12E!
•  Tag = addr [31:12] = (addr >> 12) = x000C1!

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 26

==

hit data 11:2 31:12 addr

[31:12]

1 C 0 0

0000 0000 0000 1100 0001 00 0100 1011 10

1 0000 0000 0000 1100 0001

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 27

Calculating Tag Overhead

•  “32KB cache” means cache holds 32KB of data
•  Called capacity
•  Tag storage is considered overhead

•  Tag overhead of 32KB cache with 1024 32B frames
•  32B frames → 5-bit offset
•  1024 frames → 10-bit index
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag
•  (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags
•  ~6% overhead

•  What about 64-bit addresses?
•  Tag increases to 49 bits, ~20% overhead (worst case)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches

Handling a Cache Miss

•  What if requested data isn’t in the cache?
•  How does it get in there?

•  Cache controller: finite state machine
•  Remembers miss address
•  Accesses next level of memory
•  Waits for response
•  Writes data/tag into proper locations

•  All of this happens on the fill path
•  Sometimes called backside

28

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 29

Cache Examples
•  4-bit addresses → 16B memory

•  Simpler cache diagrams than 32-bits

•  8B cache, 2B blocks
•  Figure out number of sets: 4 (capacity / block-size)
•  Figure out how address splits into offset/index/tag bits

•  Offset: least-significant log2(block-size) = log2(2) = 1 → 0000
•  Index: next log2(number-of-sets) = log2(4) = 2 → 0000
•  Tag: rest = 4 – 1 – 2 = 1 → 0000

1 bit tag (1 bit) index (2 bits)

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 30

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 0 G H

1 bit tag (1 bit) index (2 bits) Main memory

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 31

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 0 G H

1 bit tag (1 bit) index (2 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 32

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 1 P Q

1 bit tag (1 bit) index (2 bits) Main memory

Load: 1110 Miss

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 33

Cache Misses and Pipeline Stalls

•  I$ and D$ misses stall pipeline just like data hazards
•  Stall logic driven by miss signal

•  Cache “logically” re-evaluates hit/miss every cycle
•  Block is filled → miss signal de-asserts → pipeline restarts

I$ Regfile
D$

a

d

+
4

nop nop

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 34

Cache Performance Equation

•  For a cache
•  Access: read or write to cache
•  Hit: desired data found in cache
•  Miss: desired data not found in cache

•  Must get from another component
•  No notion of “miss” in register file

•  Fill: action of placing data into cache

•  %miss (miss-rate): #misses / #accesses
•  thit: time to read data from (write data to) cache
•  tmiss: time to read data into cache

•  Performance metric: average access time
tavg = thit + (%miss * tmiss)

Cache

thit

tmiss

%miss

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 35

CPI Calculation with Cache Misses

•  Parameters
•  Simple pipeline with base CPI of 1
•  Instruction mix: 30% loads/stores
•  I$: %miss = 2%, tmiss = 10 cycles
•  D$: %miss = 10%, tmiss = 10 cycles

•  What is new CPI?
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
•  CPID$ = %load/store*%missD$*tmissD$ = 0.3 * 0.1*10 cycles = 0.3 cycle
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5

Calculations: Book versus Lecture Notes
•  My calculation equation:

•  latencyavg = latencyhit + (%miss * latencymiss_additional)
•  The book uses a different equation:

•  latencyavg = (latencyhit * %hit) + (latencymiss_total * (1 - %hit))
•  These are actually the same:

•  latencymiss_total = latencymiss_additional + latencyhit
•  %hit = 1 - %miss, so: latencyavg =
•  = (latencyhit * %hit) + (latencymiss_total * (1 - %hit))
•  = (latencyhit * (1 - %miss)) + (latencymiss_total * %miss)
•  = latencyhit + latencyhit * (- %miss) + (latencymiss_total * %miss)
•  = latencyhit + (%miss * -1 * (latencyhit - latencymiss_total))
•  = latencyhit + (%miss * (latencymiss_total - latencyhit))
•  = latencyhit + (%miss * (latencymiss_total - latencyhit))
•  = latencyhit + (%miss * latencymiss_additional)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 36

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 37

Measuring Cache Performance

•  Ultimate metric is tavg
•  Cache capacity and circuits roughly determines thit
•  Lower-level memory structures determine tmiss

•  Measure %miss

•  Hardware performance counters
•  Simulation

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 38

Capacity and Performance
•  Simplest way to reduce %miss: increase capacity

+  Miss rate decreases monotonically
•  “Working set”: insns/data program is actively using
•  Diminishing returns

–  However thit increases
•  Latency grows with cache size

•  tavg ?

•  Given capacity, manipulate %miss by changing organization

Cache Capacity

%miss
“working set” size

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 39

Block Size

•  Given capacity, manipulate %miss by changing organization
•  One option: increase block size

•  Exploit spatial locality
•  Notice index/offset bits change
•  Tag remain the same

•  Ramifications
+  Reduce %miss (up to a point)
+  Reduce tag overhead (why?)
–  Potentially useless data transfer
–  Premature replacement of useful data
–  Fragmentation

0

1

510

511

2

[5:0] [31:15]

data

[14:6]

address

=

hit?

<<

512*512bit
SRAM

9-bit

block size↑

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 40

Larger Blocks to Lower Tag Overhead

•  Tag overhead of 32KB cache with 1024 32B frames
•  32B frames → 5-bit offset
•  1024 frames → 10-bit index
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag
•  (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags
•  ~6% overhead

•  Tag overhead of 32KB cache with 512 64B frames
•  64B frames → 6-bit offset
•  512 frames → 9-bit index
•  32-bit address – 6-bit offset – 9-bit index = 17-bit tag
•  (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags
+  ~3% overhead

4-bit Address, 8B Cache, 4B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 41

Data
Set Tag 00 01 10 11

0 0 A B C D

1 0 E F G H

2 bit tag (1 bit) index (1 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 4B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 42

Data
Set Tag 00 01 10 11

0 0 A B C D

1 1 M N P Q

2 bit tag (1 bit) index (1 bits) Main memory

Load: 1110 Miss

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 43

Effect of Block Size on Miss Rate
•  Two effects on miss rate

+  Spatial prefetching (good)
•  For blocks with adjacent addresses
•  Turns miss/miss into miss/hit pairs

–  Interference (bad)
•  For blocks with non-adjacent

addresses (but in adjacent frames)
•  Turns hits into misses by disallowing

simultaneous residence
•  Consider entire cache as one big block

•  Both effects always present
•  Spatial “prefetching” dominates initially

•  Depends on size of the cache
•  Reasonable block sizes are 32B–128B

•  But also increases traffic
•  More data moved, not all used

Block Size

%miss

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 44

Cache Conflicts

•  Consider two frequently-accessed variables…
•  What if their addresses have the same “index” bits?

•  Such addresses “conflict” in the cache
•  Can’t hold both in the cache at once…
•  Can results in lots of misses (bad!)

•  Conflicts increase cache miss rate
•  Worse, result in non-robust performance
•  Small program change ->

changes memory layout ->
changes cache mapping of variables ->
dramatically increase/decrease conflicts

•  How can we mitigate conflicts? ==

hit

[11:2]

data 11:2 31:12 addr

[31:12]

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 45

Associativity
•  Set-associativity

•  Block can reside in one of few frames
•  Frame groups called sets
•  Each frame in set called a way
•  This is 2-way set-associative (SA)
•  1-way → direct-mapped (DM)
•  1-set → fully-associative (FA)

+  Reduces conflicts
–  Increases latencyhit:

•  additional tag match & muxing ==

hit

[10:2]

data 10:2 31:11 addr

[31:11]

4B

==

4B

associativity↑

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 46

Associativity

•  Lookup algorithm
•  Use index bits to find set
•  Read data/tags in all frames in parallel
•  Any (match and valid bit), Hit

•  Notice tag/index/offset bits
•  Only 9-bit index (versus 10-bit

for direct mapped)

==

hit

[10:2]

data 10:2 31:11 addr

[31:11]

4B

==

4B

associativity↑

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 47

Associativity and Performance
•  Higher associative caches

+  Have better (lower) %miss

•  Diminishing returns
–  However thit increases

•  The more associative, the slower
•  What about tavg?

•  Block-size and number of sets should be powers of two
•  Makes indexing easier (just rip bits out of the address)

•  3-way set-associativity? No problem

Associativity

%miss ~5

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 48

Miss Handling & Replacement Policies
•  Set-associative caches present

a new design choice
•  On cache miss, which block in

set to replace (kick out)?

•  Add LRU field to each set
•  “Least recently used”
•  LRU data is encoded “way”

•  Each access updates LRU bits

•  Psudeo-LRU used for larger
associativity caches

512

513

1023

data

<<

address

=

hit?

0

1

511

= W
E

data from memory

[4:0] [31:15] [14:5]

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 49

Replacement Policies
•  Set-associative caches present a new design choice

•  On cache miss, which block in set to replace (kick out)?

•  Some options
•  Random
•  FIFO (first-in first-out)
•  LRU (least recently used)

•  Fits with temporal locality, LRU = least likely to be used in future
•  NMRU (not most recently used)

•  An easier to implement approximation of LRU
•  Is LRU for 2-way set-associative caches

•  Belady’s: replace block that will be used furthest in future
•  Unachievable optimum

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 50

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 1 01 G H

1 bit tag (2 bit) index (1 bits) Main memory

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 51

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 1 01 G H

1 bit tag (2 bit) index (1 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 52

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 0 11 P Q

1 bit tag (2 bit) index (1 bits) Main memory

Load: 1110 Miss

LRU updated on each access
(not just misses)

Implementing Set-
Associative Caches

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 53 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 54

Option#1: Parallel Tag Access

•  Data and tags actually physically separate
•  Split into two different memory structures

•  Option#1: read both structures in parallel:

data

<<

= = = =

offset tag 2-bit index

2-bit

2-bit

Four blocks transferred

•  Tag match first, then access only one data block
•  Advantages: lower power, fewer wires
•  Disadvantages: slower

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 55

Option#2: Serial Tag Access

<<

= = = =

offset tag 2-bit index

2-bit

2-bit

4-bit

Only one block transferred

Core

Data
Tags

Serial

Data

Parallel

data

Core

Tags

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 56

Best of Both? Way Prediction
•  Predict “way” of block

•  Just a “hint”
•  Use the index plus some tag bits
•  Table of n-bit entries for 2n associative cache
•  Update on mis-prediction or replacement

•  Advantages
•  Fast
•  Low-power

•  Disadvantage
•  More “misses”

<<
= = = =

offset tag 2-bit index

2-bit

2-bit

4-bit

Way
Predictor

=

data hit

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 57

Highly Associative Caches

•  How to implement full (or at least high) associativity?
•  This way is terribly inefficient
•  Matching each tag is needed, but not reading out each tag

==

hit
data

addr

== == == ==

offset tag

no index bits

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 58

Highly Associative Caches with “CAMs”
•  CAM: content addressable memory

•  Array of words with built-in comparators
•  No separate “decoder” logic
•  Input is value to match (tag)
•  Generates 1-hot encoding of matching slot

•  Fully associative cache
•  Tags as CAM, data as RAM
•  Effective but somewhat expensive

•  But cheaper than any other way
•  Used for high (16-/32-way) associativity
–  No good way to build 1024-way associativity
+  No real need for it, either

•  CAMs are used elsewhere, too… hit data addr

==
==

==
==
==

Cache Optimizations

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 59 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 60

Classifying Misses: 3C Model
•  Divide cache misses into three categories

•  Compulsory (cold): never seen this address before
•  Would miss even in infinite cache

•  Capacity: miss caused because cache is too small
•  Would miss even in fully associative cache
•  Identify? Consecutive accesses to block separated by access to

at least N other distinct blocks (N is number of frames in cache)
•  Conflict: miss caused because cache associativity is too low

•  Identify? All other misses
•  (Coherence): miss due to external invalidations

•  Only in shared memory multiprocessors (later)

•  Calculated by multiple simulations
•  Simulate infinite cache, fully-associative cache, normal cache
•  Subtract to find each count

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 61

Miss Rate: ABC
•  Why do we care about 3C miss model?

•  So that we know what to do to eliminate misses
•  If you don’t have conflict misses, increasing associativity won’t help

•  Associativity
+  Decreases conflict misses
–  Increases latencyhit

•  Block size
–  Increases conflict/capacity misses (fewer frames)
+  Decreases compulsory/capacity misses (spatial locality)
•  No significant effect on latencyhit

•  Capacity
+  Decreases capacity misses

–  Increases latencyhit

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 62

Reducing Conflict Misses: Victim Buffer

•  Conflict misses: not enough associativity
•  High-associativity is expensive, but also rarely needed

•  3 blocks mapping to same 2-way set

•  Victim buffer (VB): small fully-associative cache
•  Sits on I$/D$ miss path
•  Small so very fast (e.g., 8 entries)
•  Blocks kicked out of I$/D$ placed in VB
•  On miss, check VB: hit? Place block back in I$/D$
•  8 extra ways, shared among all sets

+ Only a few sets will need it at any given time
+  Very effective in practice

I$/D$

L2

VB

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 63

Overlapping Misses: Lockup Free Cache
•  Lockup free: allows other accesses while miss is pending

•  Consider: Load [r1] -> r2; Load [r3] -> r4; Add r2, r4 -> r5

•  Handle misses in parallel
•  Allows “overlapping” misses
•  “memory-level parallelism”

•  Implementation: miss status holding register (MSHR)
•  Remember: miss address, chosen frame, requesting instruction
•  When miss returns know where to put block, who to inform

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 64

Prefetching
•  Bring data into cache proactively/speculatively

•  If successful, reduces number of caches misses

•  Key: anticipate upcoming miss addresses accurately
•  Can do in software or hardware

•  Simple hardware prefetching: next block prefetching
•  Miss on address X → anticipate miss on X+block-size
+  Works for insns: sequential execution
+  Works for data: arrays

•  Table-driven hardware prefetching
•  Use predictor to detect strides, common patterns

•  Effectiveness determined by:
•  Timeliness: initiate prefetches sufficiently in advance
•  Coverage: prefetch for as many misses as possible
•  Accuracy: don’t pollute with unnecessary data

I$/D$

L2

prefetch logic

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 65

Software Prefetching

•  Use a special “prefetch” instruction
•  Tells the hardware to bring in data, doesn’t actually read it
•  Just a hint

•  Inserted by programmer or compiler
•  Example

int tree_add(tree_t* t) {
 if (t == NULL) return 0;
 __builtin_prefetch(t->left);
 return t->val + tree_add(t->right) + tree_add(t->left);
}

•  20% performance improvement for large trees (>1M nodes)
•  But ~15% slowdown for small trees (<1K nodes)

•  Multiple prefetches bring multiple blocks in parallel
•  More “memory-level” parallelism (MLP)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 66

Software Restructuring: Data

•  Capacity misses: poor spatial or temporal locality
•  Several code restructuring techniques to improve both

•  Loop blocking (break into cache-sized chunks), loop fusion
–  Compiler must know that restructuring preserves semantics

•  Loop interchange: spatial locality
•  Example: row-major matrix: X[i][j] followed by X[i][j+1]
•  Poor code: X[I][j] followed by X[i+1][j]

for (j = 0; j<NCOLS; j++)
 for (i = 0; i<NROWS; i++)
 sum += X[i][j];

•  Better code
for (i = 0; i<NROWS; i++)
 for (j = 0; j<NCOLS; j++)
 sum += X[i][j];

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 67

Software Restructuring: Data
•  Loop blocking: temporal locality

•  Poor code
for (k=0; k<NUM_ITERATIONS; k++)
 for (i=0; i<NUM_ELEMS; i++)
 X[i] = f(X[i]); // say

•  Better code
•  Cut array into CACHE_SIZE chunks
•  Run all phases on one chunk, proceed to next chunk
for (i=0; i<NUM_ELEMS; i+=CACHE_SIZE)
 for (k=0; k<NUM_ITERATIONS; k++)
 for (j=0; j<CACHE_SIZE; j++)
 X[i+j] = f(X[i+j]);

–  Assumes you know CACHE_SIZE, do you?
•  Loop fusion: similar, but for multiple consecutive loops

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 68

Software Restructuring: Code
•  Compiler an layout code for temporal and spatial locality

•  If (a) { code1; } else { code2; } code3;
•  But, code2 case never happens (say, error condition)

•  Fewer taken branches, too

Better
locality

Better
locality

What About Stores?
Handling Cache Writes

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 69 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 70

Handling Cache Writes
•  When to propagate new value to (lower level) memory?

•  Option #1: Write-through: immediately
•  On hit, update cache
•  Immediately send the write to the next level

•  Option #2: Write-back: when block is replaced
•  Requires additional “dirty” bit per block

•  Replace clean block: no extra traffic
•  Replace dirty block: extra “writeback” of block

+  Writeback-buffer (WBB):
•  Hide latency of writeback (keep off critical path)
•  Step#1: Send “fill” request to next-level
•  Step#2: While waiting, write dirty block to buffer
•  Step#3: When new blocks arrives, put it into cache
•  Step#4: Write buffer contents to next-level

2
1

4

$

Next-level-$

WBB

3

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 71

Write Propagation Comparison
•  Write-through

–  Creates additional traffic
•  Consider repeated write hits

–  Next level must handle small writes (1, 2, 4, 8-bytes)
+  No need for dirty bits in cache
+  No need to handle “writeback” operations

•  Simplifies miss handling (no write-back buffer)
•  Sometimes used for L1 caches (for example, by IBM)
•  Usually write-non-allocate: on write miss, just write to next level

•  Write-back
+  Key advantage: uses less bandwidth
•  Reverse of other pros/cons above
•  Used by Intel, (AMD), and many ARM cores
•  Second-level and beyond are generally write-back caches
•  Usually write-allocate: on write miss, fill block from next level

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 72

Write Misses and Store Buffers
•  Read miss?

•  Load can’t go on without the data, it must stall

•  Write miss?
•  Technically, no instruction is waiting for data, why stall?

•  Store buffer: a small buffer
•  Stores put address/value to store buffer, keep going
•  Store buffer writes stores to D$ in the background
•  Loads must search store buffer (in addition to D$)
+  Eliminates stalls on write misses (mostly)
–  Creates some problems (later)

•  Store buffer vs. writeback-buffer
•  Store buffer: “in front” of D$, for hiding store misses
•  Writeback buffer: “behind” D$, for hiding writebacks

Cache

Next-level
cache

WBB

SB

Processor

Cache Hierarchies

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 73 CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 74

Concrete Memory Hierarchy
•  0th level: Registers
•  1st level: Primary caches

•  Split instruction (I$) and data (D$)
•  Typically 8KB to 64KB each

•  2nd level: 2nd and 3rd cache (L2, L3)
•  On-chip, typically made of SRAM
•  2nd level typically ~256KB to 512KB
•  “Last level cache” typically 4MB to 16MB

•  3rd level: main memory
•  Made of DRAM (“Dynamic” RAM)
•  Typically 1GB to 4GB for desktops/laptops

•  Servers can have 100s of GB

•  4th level: disk (swap and files)
•  Uses magnetic disks or flash drives

Processor

D$

L2, L3

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

Regs

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 75

Designing a Cache Hierarchy
•  For any memory component: thit vs. %miss tradeoff

•  Upper components (I$, D$) emphasize low thit
•  Frequent access → thit important
•  tmiss is not bad → %miss less important
•  Lower capacity and lower associativity (to reduce thit)
•  Small-medium block-size (to reduce conflicts)
•  Split instruction & data cache to allow simultaneous access

•  Moving down (L2, L3) emphasis turns to %miss
•  Infrequent access → thit less important
•  tmiss is bad → %miss important
•  High capacity, associativity, and block size (to reduce %miss)
•  Unified insn & data caching to dynamic allocate capacity

•  Each core:
•  32KB insn & 32KB data, 8-way set-associative, 64-byte blocks
•  256KB second-level cache, 8-way set-associative, 64-byte blocks

•  8MB shared cache, 16-way set-associative
CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 76

Example Cache Hierarchy: Core i7

8KB
I/D$

1.5MB L2

64KB D$
64KB I$

8MB L3
(shared)

256KB L2
(per-core)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 77

Split vs. Unified Caches

•  Split I$/D$: insns and data in different caches
•  To minimize structural hazards and thit
•  Larger unified I$/D$ would be slow, 2nd port even slower
•  Optimize I$ to fetch multiple instructions, no writes
•  Why is 486 I/D$ unified?

•  Unified L2, L3: insns and data together
•  To minimize %miss
+  Fewer capacity misses: unused insn capacity can be used for data
–  More conflict misses: insn/data conflicts

•  A much smaller effect in large caches
•  Insn/data structural hazards are rare: simultaneous I$/D$ miss
•  Go even further: unify L2, L3 of multiple cores in a multi-core

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 78

Hierarchy: Inclusion versus Exclusion

•  Inclusion
•  Bring block from memory into L2 then L1

•  A block in the L1 is always in the L2
•  If block evicted from L2, must also evict it from L1

•  Why? more on this when we talk about multicore

•  Exclusion
•  Bring block from memory into L1 but not L2

•  Move block to L2 on L1 eviction
•  L2 becomes a large victim cache

•  Block is either in L1 or L2 (never both)
•  Good if L2 is small relative to L1

•  Example: AMD’s Duron 64KB L1s, 64KB L2

•  Non-inclusion
•  No guarantees

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 79

Memory Performance Equation

•  For memory component M
•  Access: read or write to M
•  Hit: desired data found in M
•  Miss: desired data not found in M

•  Must get from another (slower) component
•  Fill: action of placing data in M

•  %miss (miss-rate): #misses / #accesses
•  thit: time to read data from (write data to) M
•  tmiss: time to read data into M

•  Performance metric
•  tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

M

thit

tmiss

%miss

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 80

Hierarchy Performance

tavg
tavg-M1

thit-M1 + (%miss-M1*tmiss-M1)
thit-M1 + (%miss-M1*tavg-M2)
thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-M2)))
thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-M3)))
…

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 81

Performance Calculation

•  In a pipelined processor, I$/D$ thit is “built in” (effectively 0)

•  Parameters
•  Base pipeline CPI = 1
•  Instruction mix: 30% loads/stores
•  I$: %miss = 2%, tmiss = 10 cycles
•  D$: %miss = 10%, tmiss = 10 cycles

•  What is new CPI?
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
•  CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 82

Performance Calculation (Revisited)

•  Parameters
•  Base pipeline CPI = 1

•  In this case, already incorporates thit

•  I$: %miss = 2% of instructions, tmiss = 10 cycles
•  D$: %miss = 3% of instructions, tmiss = 10 cycles

•  What is new CPI?
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
•  CPID$ = %missD$*tmissD$ = 0.03*10 cycles = 0.3 cycle
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 83

Miss Rates: per “access” vs “instruction”

•  Miss rates can be expressed two ways:
•  Misses per “instruction” (or instructions per miss), -or-
•  Misses per “cache access” (or accesses per miss)

•  For first-level caches, use instruction mix to convert
•  If memory ops are 1/3rd of instructions..
•  2% of instructions miss (1 in 50) is 6% of “accesses” miss (1 in 17)

•  What about second-level caches?
•  Misses per “instruction” still straight-forward (“global” miss rate)
•  Misses per “access” is trickier (“local” miss rate)

•  Depends on number of accesses (which depends on L1 rate)

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 84

Multilevel Performance Calculation

•  Parameters
•  30% of instructions are memory operations
•  L1: thit = 1 cycles (included in CPI of 1), %miss = 5% of accesses
•  L2: thit = 10 cycles, %miss = 20% of L2 accesses
•  Main memory: thit = 50 cycles

•  Calculate CPI
•  CPI = 1 + 30% * 5% * tmissD$
•  tmissD$ = tavgL2 = thitL2+(%missL2*thitMem)= 10 + (20%*50) = 20 cycles
•  Thus, CPI = 1 + 30% * 5% * 20 = 1.3 CPI

•  Alternate CPI calculation:
•  What % of instructions miss in L1 cache? 30%*5% = 1.5%
•  What % of instructions miss in L2 cache? 20%*1.5% = 0.3% of insn
•  CPI = 1 + (1.5% * 10) + (0.3% * 50) = 1 + 0.15 + 0.15 = 1.3 CPI

CIS 501: Comp. Arch. | Prof. Milo Martin | Caches 85

Summary
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast on-chip SRAM
•  In contrast to off-chip, DRAM “main memory”

•  Average access time of a memory component
•  latencyavg = latencyhit + (%miss * latencymiss)
•  Hard to get low latencyhit and %miss in one structure

→ memory hierarchy
•  Cache ABCs (associativity, block size, capacity)
•  Performance optimizations

•  Prefetching & data restructuring
•  Handling writes

•  Write-back vs. write-through
•  Memory hierarchy

•  Smaller, faster, expensive → bigger, slower, cheaper

Core

D$

L2

Main
Memory

I$

Disk

