This Unit: Technology \& Energy

- Technology basis
- Fabrication (manufacturing) \& cost
- Transistors \& wires
- Implications of transistor scaling (Moore's Law)
- Energy \& power

Unit 3: Technology \& Energy

Slides developed by Milo Martin \& Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood

Readings

- MA:FSPTCM
- Section 1.1 (technology)
- Section 9.1 (power \& energy)
- Paper
- G. Moore, "Cramming More Components onto Integrated Circuits"

Review: Simple Datapath

- How are instruction executed?
- Fetch instruction (Program counter into instruction memory)
- Read registers
- Calculate values (adds, subtracts, address generation, etc.)
- Access memory (optional)
- Calculate next program counter (PC)
- Repeat
- Clock period = longest delay through datapath

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Recall: Processor Performance

- Programs consist of simple operations (instructions)
- Add two numbers, fetch data value from memory, etc.
- Program runtime = "seconds per program" =
(instructions/program) * (cycles/instruction) * (seconds/cycle)
- Instructions per program: "dynamic instruction count"
- Runtime count of instructions executed by the program
- Determined by program, compiler, instruction set architecture (ISA)
- Cycles per instruction: "CPI" (typical range: 2 to 0.5)
- On average, how many cycles does an instruction take to execute?
- Determined by program, compiler, ISA, micro-architecture
- Seconds per cycle: clock period, length of each cycle
- Inverse metric: cycles per second (Hertz) or cycles per ns (Ghz)
- Determined by micro-architecture, technology parameters
- This unit: transistors \& semiconductor technology

Semiconductor Technology

- Basic technology element: MOSFET
- Solid-state component acts like electrical switch
- MOS: metal-oxide-semiconductor
- Conductor, insulator, semi-conductor
- FET: field-effect transistor
- Channel conducts source \rightarrow drain only when voltage applied to gate
- Channel length: characteristic parameter (short \rightarrow fast)
- Aka "feature size" or "technology"
- Currently: 0.022 micron ($\mu \mathrm{m}$), 22 nanometers (nm)
- Continued miniaturization (scaling) known as "Moore's Law" - Won't last forever, physical limits approaching (or are they?)

Technology \& Fabrication

Transistors and Wires

Intel
Pentium M
Wafer

Manufacturing Steps

- Multi-step photo-/electro-chemical process
- More steps, higher unit cost
+ Fixed cost mass production (\$1 million+ for "mask set")

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Manufacturing Steps

Manufacturing Defects

Correct:

Defective:

Defective:

- Defects can arise
- Under-/over-doping
- Over-/under-dissolved insulator
- Mask mis-alignment
- Particle contaminants
- Try to minimize defects
- Process margins
- Design rules
- Minimal transistor size, separation
- Or, tolerate defects
- Redundant or "spare" memory cells
- Can substantially improve yield CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Cost Implications of Defects

- Chips built in multi-step chemical processes on wafers
- Cost / wafer is constant, f (wafer size, number of steps)
- Chip (die) cost is related to area
- Larger chips means fewer of them
- Cost is more than linear in area
- Why? random defects
- Larger chip, more chance of defect
- Result: lower "yield" (fewer working chips)

- Wafer yield: \% wafer that is chips
- Die yield: \% chips that work

- Yield is increasingly non-binary - fast vs slow chips CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Transistor Switching Speed

Manufacturing Cost

- Chip cost vs system cost
- Cost of memory, storage, display, battery, etc.

- Cost vs price

- Relationship complicated; microprocessors not commodities
- Specialization, compatibility, different cost/performance/power
- Economies of scale
- Unit costs: die manufacturing, testing, packaging, burn-in
- Die cost based on area \& defect rate (yield)
- Package cost related to heat dissipation \& number of pins
- Fixed costs: design \& verification, fab cost
- Amortized over "proliferations", e.g., Core i3, i5, i7 variants
- Building new "fab" costs billions of dollars today
- Both getting worse; trend toward "foundry" \& "fabless" models

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

A Transistor Analogy: Computing with Air

- Use air pressure to encode values
- High pressure represents a "1" (blow)
- Low pressure represents a "0" (suck)
- Valve can allow or disallow the flow of air
- Two types of valves

Pressure Inverter

Pressure Inverter (Low to High)

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Pressure Inverter (High to Low)

Analogy Explained

- Pressure differential \rightarrow electrical potential (voltage)
- Air molecules \rightarrow electrons
- Pressure (molecules per volume) \rightarrow voltage
- High pressure \rightarrow high voltage
- Low pressure \rightarrow low voltage
- Air flow \rightarrow electrical current
- Pipes \rightarrow wires
- Air only flows from high to low pressure
- Electrons only flow from high to low voltage
- Flow only occurs when changing from 1 to 0 or 0 to 1
- Valve \rightarrow transistor
- The transistor: one of the century's most important inventions

Complementary MOS (CMOS)

- Voltages as values
- Power $\left(V_{D D}\right)=" 1 "$, Ground $=" 0 "$
- Two kinds of MOSFETs
- \mathbb{N}-transistors
- Conduct when gate voltage is 1
- Good at passing 0s
- P-transistors
- Conduct when gate voltage is 0
- Good at passing 1s

- CMOS
- Complementary n-/p- networks form boolean logic (i.e., gates)
- And some non-gate elements too (important example: RAMs)

Transistors as Switches

- Two types
- N-type
- P-type
- Properties
- Solid state (no moving parts)
- Reliable (low failure rate)
- Small (45nm channel length)
- Fast (<0.1ns switch latency)

Basic CMOS Logic Gate

- Inverter: NOT gate
- One p-transistor, one n-transistor
- Basic operation
- Input = 0
- P-transistor closed, n-transistor open
- Power charges output (1)
- Input = 1
- P-transistor open, n-transistor closed
- Output discharges to ground (0)

Another CMOS Gate Example

- What is this? Look at truth table
- $0,0 \rightarrow 1$
- $0,1 \rightarrow 1$
- $1,0 \rightarrow 1$
- $1,1 \rightarrow 0$
- Result: NAND (NOT AND)
- NAND is "universal"
- What function is this?

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Resistance

- Channel resistance
- Wire resistance
- Negligible for short wires
- Linear in length for long wires

Technology Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
- Resistance (R) -W ~ length / cross-section area - Slows rate of charge flow
- Capacitance (C) $-\vdash \sim$ length * area / distance-to-other-plate
- Stores charge
- Voltage (V)
- Electrical pressure
- Threshold Voltage ($\mathbf{V}_{\boldsymbol{t}}$)
- Voltage at which a transistor turns "on"
- Property of transistor based on fabrication technology
- Switching time \sim to $\left(R^{*} C\right) /\left(V-V_{t}\right)$
- Two kinds of electrical components
- CMOS transistors (gates, sources, drains)
- Wires

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Capacitance

- Gate capacitance
- Source/drain capacitance
- Wire capacitance
- Negligible for short wires
- Linear in length for long wires

Transistor Geometry: Width

- Transistor width, set by designer for each transistor
- Wider transistors:
- Lower resistance of channel (increases drive strength) - good!
- But, increases capacitance of gate/source/drain - bad!
- Result: set width to balance these conflicting effects

Wire Geometry

- Transistors 1-dimensional for design purposes: width
- Wires 4-dimensional: length, width, height, "pitch"
- Longer wires have more resistance (slower)
- "Thinner" wires have more resistance (slower)
- Closer wire spacing ("pitch") increases capacitance (slower)

Transistor Geometry: Length \& Scaling

- Transistor length: characteristic of "process generation"
- "22nm" refers to the transistor gate length
- Each process generation shrinks transistor length by $1.4 x$
- "Moore's law" -> roughly $2 x$ improvement transistor density
- Roughly linear improvement in switching speeds (lower resistance)

Increasing Problem: Wire Delay

- RC Delay of wires
- Resistance proportional to: resistivity * length / (cross section)
- Wires with smaller cross section have higher resistance
- Resistivity (type of metal, copper vs aluminum)
- Capacitance proportional to length
- And wire spacing (closer wires have large capacitance)
- Permittivity or "dielectric constant" (of material between wires)
- Result: delay of a wire is quadratic in length
- Insert "inverter" repeaters for long wires
- Why? To bring it back to linear delay... but repeaters still add delay
- Long wires are getting relatively slow to transistors
- And relatively longer time to cross relatively larger chips

Moore's Law: Technology Scaling

- Moore's Law: aka "technology scaling"
- Continued miniaturization (esp. reduction in channel length)
+ Improves switching speed, power/transistor, area(cost)/transistor
- Reduces transistor reliability
- Literally: DRAM density (transistors/area) doubles every 18 months
- Public interpretation: performance doubles every 18 months
- Not quite right, but helps performance in several ways...

Moore's Effect \#2: RC Delay

- First-order: speed scales proportional to gate length
- Has provided much of the performance gains in the past
- Scaling helps wire and gate delays in some ways...
+ Transistors become shorter (Resistance \downarrow), narrower (Capacitance \downarrow)
+ Wires become shorter (Length $\downarrow \rightarrow$ Resistance \downarrow)
+ Wire "surface areas" become smaller (Capacitance \downarrow)
- Hurts in others...
- Transistors become narrower (Resistance \uparrow)
- Gate insulator thickness becomes smaller (Capacitance \uparrow)
- Wires becomes thinner (Resistance \uparrow)
- What to do?
- Take the good, use wire/transistor sizing to counter the bad
- Exploit new materials: Aluminum \rightarrow Copper, metal gate, high-K

Moore's Effect \#3: Cost

- Mixed impact on unit integrated circuit cost
+ Either lower cost for same functionality...
+ Or same cost for more functionality
- Difficult to achieve high yields
- Increases startup cost
- More expensive fabrication equipment
- Takes longer to design, verify, and test chips
- Process variation across chip increasing
- Some transistors slow, some fast
- Increasingly active research area: dealing with this problem

Moore's Effect \#4: Psychological

- Moore's Curve: common interpretation of Moore's Law
- "CPU performance doubles every 18 months"
- Self fulfilling prophecy: 2 X every 18 months is $\sim 1 \%$ per week
- Q: Would you add a feature that improved performance 20% if it would delay the chip 8 months?
- Processors under Moore's Curve (arrive too late) fail spectacularly - E.g., Intel's Itanium, Sun's Millennium

Moore's Law in the Future

- Won't last forever, approaching physical limits
- "If something must eventually stop, it can't go on forever"
- But betting against it has proved foolish in the past
- Perhaps will "slow" rather than stop abruptly
- Transistor count will likely continue to scale
- "Die stacking" is on the cusp of becoming main stream
- Uses the third dimension to increase transistor count
- But transistor performance scaling?
- Running into physical limits
- Example: gate oxide is less than 10 silicon atoms thick!
- Can't decrease it much further
- Power is becoming the limiting factor

Power/Energy Are Increasingly Important

- Battery life for mobile devices
- Laptops, phones, cameras
- Tolerable temperature for devices without active cooling
- Power means temperature, active cooling means cost
- No room for a fan in a cell phone, no market for a hot cell phone
- Electric bill for compute/data centers
- Pay for power twice: once in, once out (to cool)
- Environmental concerns
- "Computers" account for growing fraction of energy consumption

Recall: Tech. Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
- Resistance (R) - W ~ ~ length / cross-section area
- Slows rate of charge flow
- Capacitance (C) $-\Vdash \sim$ length * area / distance-to-other-plate
- Stores charge
- Voltage (V)
- Electrical pressure
- Threshold Voltage ($\mathrm{V}_{\boldsymbol{t}}$)
- Voltage at which a transistor turns "on"
- Property of transistor based on fabrication technology
- Switching time \sim to $\left(R^{*} \mathbf{C}\right) /\left(\mathbf{V}-\mathbf{V}_{\boldsymbol{t}}\right)$

Energy \& Power

- Energy: measured in Joules or Watt-seconds
- Total amount of energy stored/used
- Battery life, electric bill, environmental impact
- Instructions per Joule (car analogy: miles per gallon)
- Power: energy per unit time (measured in Watts)
- Related to "performance" (which is also a "per unit time" metric)
- Power impacts power supply and cooling requirements (cost)
- Power-density (Watt/mm²): important related metric
- Peak power vs average power
- E.g., camera, power "spikes" when you actually take a picture
- Joules per second (car analogy: gallons per hour)
- Two sources:
- Dynamic power: active switching of transistors
- Static power: leakage of transistors even while inactive

Dynamic Power

- Dynamic power ($\mathbf{P}_{\text {dynamic }}$): aka switching or active power
- Energy to switch a gate (0 to 1,1 to 0)
- Each gate has capacitance (C)
- Charge stored is $\propto \mathrm{C} * \mathrm{~V}$
- Energy to charge/discharge a capacitor is \propto to C * V ${ }^{2}$
- Time to charge/discharge a capacitor is \propto to V
- Result: frequency \sim to V
- $\mathbf{P}_{\text {dynamic }} \approx \mathbf{N} * \mathbf{C} * \mathbf{V}^{2} * \mathbf{f} * \mathbf{A}$
- N : number of transistors
- C: capacitance per transistor (size of transistors)
- V : voltage (supply voltage for gate)

- f: frequency (transistor switching freq. is \propto to clock freq.)
- A: activity factor (not all transistors may switch this cycle)

Reducing Dynamic Power

- Target each component: $\mathbf{P}_{\text {dynamic }} \approx \mathbf{N} * \mathbf{C} * \mathbf{V}^{2} * \mathbf{f} * \mathbf{A}$
- Reduce number of transistors (N)
- Use fewer transistors/gates
- Reduce capacitance (C)
- Smaller transistors (Moore's law)
- Reduce voltage (V)
- Quadratic reduction in energy consumption!
- But also slows transistors (transistor speed is \sim to V)
- Reduce frequency (f)
- Slower clock frequency (reduces power but not energy) Why?
- Reduce activity (A)
- "Clock gating" disable clocks to unused parts of chip
- Don't switch gates unnecessarily

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Reducing Static Power

- Target each component: $\mathbf{P}_{\text {static }} \approx \mathbf{N} * \mathbf{V} * \mathbf{e}^{-\mathbf{V t}}$
- Reduce number of transistors (N)
- Use fewer transistors/gates
- Disable transistors (also targets N)
- "Power gating" disable power to unused parts (long latency to power up)
- Power down units (or entire cores) not being used
- Reduce voltage (V)
- Linear reduction in static energy consumption
- But also slows transistors (transistor speed is \sim to V)
- Dual $\mathbf{V}_{\mathbf{t}}$ - use a mixture of high and low V_{t} transistors
- Use slow, low-leak transistors in SRAM arrays
- Requires extra fabrication steps (cost)
- Low-leakage transistors
- High-K/Metal-Gates in Intel's 45nm process, "tri-gate" in Intel's 22 nm
- Reducing frequency can hurt energy efficiency due to leakage power

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Static Power

- Static power $\left(P_{\text {static }}\right)$: aka idle or leakage power
- Transistors don't turn off all the way
- Transistors "leak"
- Analogy: leaky valve
- $\mathbf{P}_{\text {static }} \approx \mathbf{N} * \mathbf{V} * \mathbf{e}^{-\mathbf{V}_{\mathbf{t}}}$
- N : number of transistors
- V: voltage
- V_{t} (threshold voltage): voltage at which transistor conducts (begins to switch)
- Switching speed vs leakage trade-off
- The lower the \mathbf{V}_{t} :
- Faster transistors (linear)
- Transistor speed \propto to $V-V_{t}$

- Leakier transistors (exponential)

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy
46

Continuation of Moore's Law								
Procas Name	P856	P958	Pr60	P1282	P1264	P1266	P1268	
Ist Production	1997	1999	2001	2003	2005	2007	2009	2011
citacess	${ }^{0.254 m}$	0.18,m	0.13,	${ }^{90 \mathrm{~nm}}$	${ }^{65} \mathrm{~mm}$	45 mm	${ }^{32 \mathrm{~mm}}$	22 mm
Weitior size	200	200	200800	300	300	300	300	300
meorcomect	${ }^{\text {Al }}$	${ }^{\text {Al }}$	${ }^{\text {cu }}$	${ }^{4}$	${ }^{\text {a }}$	${ }^{4}$	cu	
nol	si	si	si	${ }_{\text {ckiche }}$	sid	stremed	Sind	
Vodilocet	SiO_{2}	sio_{2}	SiO_{2}	SiO_{2}	SiO_{2}	Hight	Highk	Hish-4
Cate electrode	${ }_{\text {Polve }}^{\substack{\text { Pilicon }}}$	${ }_{\text {Poly }}^{\text {Palcon }}$	${ }_{\text {Polv- }}^{\text {Policon }}$	Poily	${ }_{\text {Polve- }}$	Weald	Metal	neta
Introcution targeqed at this time								
Intel found a solution for High-k and metal gate								

Gate dielectric today is only a few molecular layers thick

Dynamic Voltage/Frequency Scaling

- Dynamically trade-off power for performance
- Change the voltage and frequency at runtime
- Under control of operating system
- Recall: $P_{\text {dynamic }} \approx \mathrm{N} * \mathrm{C} * \mathbf{V}^{2} * \mathbf{f} * \mathrm{~A}$
- Because frequency \propto to $\mathrm{V}-\mathrm{V}_{\mathrm{t}} \ldots$
- $\mathrm{P}_{\text {dynamic }} \propto$ to $\mathbf{V}^{2}\left(\mathbf{V}-\mathbf{V}_{\mathbf{t}}\right) \approx \mathbf{V}^{3}$
- Reduce both voltage and frequency linearly
- Cubic decrease in dynamic power
- Linear decrease in performance (actually sub-linear)
- Thus, only about quadratic in energy
- Linear decrease in static power
- Thus, static energy can become dominant
- Newer chips can adjust frequency on a per-core basis

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

High-k Dielectric reduces leakage substandally

Benefits compared to current process technologies

	High-k vs. SiO_{2}	Benefit
Capacitance	60% greater	Much faster transistors
Gate dielectric leakage	$>100 x$ reduction	Far cooler

Dynamic Voltage/Frequency Scaling

	Mobile PentiumIII "SpeedStep"	Transmeta 5400 "LongRun"	Intel X-Scale (StrongARM2)
$\mathrm{f}(\mathrm{MHz})$	$300-1000(\mathrm{step}=50)$	$200-700($ step=33)	$50-800($ step $=50)$
$\mathrm{V}(\mathrm{V})$	$0.9-1.7$ (step=0.1)	$1.1-1.6 \mathrm{~V}$ (cont)	$0.7-1.65$ (cont)
High-speed	3400 MIPS @ 34W	1600 MIPS @ 2W	800 MIPS @ 0.9W
Low-power	1100 MIPS @ 4.5W	300 MIPS @ 0.25W	62 MIPS @ 0.01W

- Dynamic voltage/frequency scaling
- Favors parallelism
- Example: Intel Xscale
- $1 \mathrm{GHz} \rightarrow 200 \mathrm{MHz}$ reduces energy used by 30 x
- But around $5 x$ slower
- $5 \times 200 \mathrm{MHz}$ in parallel, use 1/6th the energy
- Power is driving the trend toward multi-core

Moore's Effect on Power

+ Moore's Law reduces power/transistor...
- Reduced sizes and surface areas reduce capacitance (C)
- ...but increases power density and total power
- By increasing transistors/area and total transistors
- Faster transistors \rightarrow higher frequency \rightarrow more power
- Hotter transistors leak more (thermal runaway)
- What to do? Reduce voltage (V)
+ Reduces dynamic power quadratically, static power linearly - Already happening: Intel 486 (5V) \rightarrow Core2 (1.3V)
- Trade-off: reducing V means either...
- Keeping V_{t} the same and reducing frequency (f)
- Lowering V_{t} and increasing leakage exponentially
- Use techniques like high-K and dual- V_{T}
- The end of voltage scaling \& "dark silicon"

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Processor Power Breakdown

- Power breakdown for IBM POWER4
- Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
- Big power components are L2, data cache, scheduler, clock, I/O
- Implications on "complicated" versus "simple" cores

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Trends in Power

	386	486	Pentium	Pentium II	Pentium4	Core2	Core i7
Year	1985	1989	1993	1998	2001	2006	2009
Technode (nm)	1500	800	350	180	130	65	45
Transistors (M)	0.3	1.2	3.1	5.5	42	291	731
Voltage (V)	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{3 . 3}$	$\mathbf{2 . 9}$	$\mathbf{1 . 7}$	$\mathbf{1 . 3}$	$\mathbf{1 . 2}$
Clock (MHz)	16	25	66	200	1500	3000	3300
Power (W)	1	5	16	35	$\mathbf{8 0}$	$\mathbf{7 5}$	$\mathbf{1 3 0}$
Peak MIPS	6	25	132	600	4500	24000	52800
MIPS/W	6	5	8	17	56	320	406

- Supply voltage decreasing over time
- But "voltage scaling" is perhaps reaching its limits
- Emphasis on power starting around 2000
- Resulting in slower frequency increases
- Also note number of cores increasing (2 in Core 2, 4 in Core i7) CIS 501: Comp. Arch. | Prof. Milo Martin | Technology \& Energy

Implications on Software

- Software-controlled dynamic voltage/frequency scaling
- Example: video decoding
- Too high a clock frequency - wasted energy (battery life)
- Too low a clock frequency - quality of video suffers
- "Race to sleep" versus "slow and steady" approaches
- Managing low-power modes
- Don't want to "wake up" the processor every millisecond
- Tuning software
- Faster algorithms can be converted to lower-power algorithms
- Via dynamic voltage/frequency scaling
- Exploiting parallelism \& heterogeneous cores
- NVIDIA Tegra 3: 5 cores (4 "normal" cores \& 1 "low power" core)
- Specialized hardware accelerators

Technology Summary

- Has a first-order impact on computer architecture
- Performance (transistor delay, wire delay)
- Cost (die area \& defects)
- Changing rapidly
- Most significant trends for architects
- More and more transistors
- What to do with them? \rightarrow integration \rightarrow parallelism \quad Rest of
- Logic is improving faster than memory \& cross-chip wires
- "Memory wall" \rightarrow caches, more integration
- Power and energy
- Voltage vs frequency, parallelism, special-purpose hardware
- This unit: a quick overview, just scratching the surface

