# CIS 501: Computer Architecture

# Unit 3: Technology & Energy

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

This Unit: Technology & Energy

• Implications of transistor scaling (Moore's Law)

• Fabrication (manufacturing) & cost

Technology basis

Energy & power

• Transistors & wires

#### 2

# Readings

- MA:FSPTCM
  - Section 1.1 (technology)
  - Section 9.1 (power & energy)
- Paper
  - G. Moore, "Cramming More Components onto Integrated Circuits"

# Review: Simple Datapath



- How are instruction executed?
  - Fetch instruction (Program counter into instruction memory)
  - Read registers
  - Calculate values (adds, subtracts, address generation, etc.)
  - Access memory (optional)
  - Calculate next program counter (PC)
  - Repeat

#### Clock period = longest delay through datapath

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

#### Recall: Processor Performance

- Programs consist of simple operations (instructions)
  - Add two numbers, fetch data value from memory, etc.
- Program runtime = "seconds per program" =

(instructions/program) \* (cycles/instruction) \* (seconds/cycle)

- Instructions per program: "dynamic instruction count"
  - Runtime count of instructions executed by the program
  - Determined by program, compiler, instruction set architecture (ISA)
- Cycles per instruction: "CPI" (typical range: 2 to 0.5)
  - On average, how many cycles does an instruction take to execute?
  - · Determined by program, compiler, ISA, micro-architecture
- Seconds per cycle: clock period, length of each cycle
  - Inverse metric: cycles per second (Hertz) or cycles per ns (Ghz)
  - Determined by micro-architecture, **technology parameters**
- This unit: transistors & semiconductor technology

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

5

drain

# **Technology & Fabrication**

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

c

# Semiconductor Technology



- Basic technology element: MOSFET
  - Solid-state component acts like electrical switch
  - MOS: metal-oxide-semiconductor
    - Conductor, insulator, semi-conductor
- **FET**: field-effect transistor
  - Channel conducts source-drain only when voltage applied to gate
- **Channel length**: characteristic parameter (short → fast)
  - Aka "feature size" or "technology"
  - Currently: 0.022 micron (μm), 22 nanometers (nm)
  - Continued miniaturization (scaling) known as "Moore's Law"
    - Won't last forever, physical limits approaching (or are they?)

## **Transistors and Wires**



©IBM

From slides © Krste Asanović, MIT



CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

# **Manufacturing Steps**



CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

10

# **Manufacturing Steps**

- Multi-step photo-/electro-chemical process
  - More steps, higher unit cost
- + Fixed cost mass production (\$1 million+ for "mask set")



# Manufacturing Defects

# Correct:

• Under-/over-doping • Over-/under-dissolved insulator

Defective:

Mask mis-alignment

Defects can arise



• Particle contaminants



- Try to minimize defects
  - Process margins
  - Design rules
    - Minimal transistor size, separation



- Or, tolerate defects
  - Redundant or "spare" memory cells
  - Can substantially improve yield

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

12

# **Cost Implications of Defects**

- Chips built in multi-step chemical processes on wafers
  - Cost / wafer is constant, f(wafer size, number of steps)
- Chip (die) cost is related to area
  - Larger chips means fewer of them
- Cost is **more than** linear in area
  - · Why? random defects
  - Larger chip, more chance of defect

• Result: lower "yield" (fewer working chips)



Wafer yield: % wafer that is chipsDie yield: % chips that work



Yield is increasingly non-binary - fast vs slow chips

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

13

### Manufacturing Cost

- Chip cost vs system cost
  - Cost of memory, storage, display, battery, etc.
- Cost vs price
  - Relationship complicated; microprocessors not commodities
  - Specialization, compatibility, different cost/performance/power
  - · Economies of scale
- **Unit costs**: die manufacturing, testing, packaging, burn-in
  - Die cost based on area & defect rate (yield)
  - Package cost related to heat dissipation & number of pins
- **Fixed costs**: design & verification, fab cost
  - Amortized over "proliferations", e.g., Core i3, i5, i7 variants
  - Building new "fab" costs billions of dollars today
  - Both getting worse; trend toward "foundry" & "fabless" models

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

14

# A Transistor Analogy: Computing with Air

- Use air pressure to encode values
  - High pressure represents a "1" (blow)
  - Low pressure represents a "0" (suck)
- Valve can allow or disallow the flow of air
  - Two types of valves



# **Pressure Inverter**



CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

# Pressure Inverter (Low to High)



CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

18

# **Pressure Inverter**



# Pressure Inverter (High to Low)



17

# **Analogy Explained**

- Pressure differential → electrical potential (voltage)
  - Air molecules → electrons
  - Pressure (molecules per volume) → voltage
  - High pressure → high voltage
  - Low pressure → low voltage
- Air flow → electrical current
  - Pipes → wires
  - Air only flows from high to low pressure
  - Electrons only flow from high to low voltage
  - Flow only occurs when changing from 1 to 0 or 0 to 1
- Valve → transistor
  - The transistor: one of the century's most important inventions

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

21

power (1)

ground (0)

input

p-transistor

output

("node")

n-transistor

23

# Complementary MOS (CMOS)

- Voltages as values
  - Power (V<sub>DD</sub>) = "1", Ground = "0"
- Two kinds of MOSFETs
  - N-transistors
    - Conduct when gate voltage is 1
    - Good at passing 0s
  - P-transistors
    - Conduct when gate voltage is 0
    - Good at passing 1s

#### CMOS

- Complementary n-/p- networks form boolean logic (i.e., gates)
- And some non-gate elements too (important example: RAMs)

#### **Transistors as Switches**

- Two types
  - N-type
  - P-type
- Properties
  - Solid state (no moving parts)
  - Reliable (low failure rate)
  - Small (45nm channel length)
  - Fast (<0.1ns switch latency)



CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

22

### **Basic CMOS Logic Gate**

- **Inverter**: NOT gate
  - One p-transistor, one n-transistor
  - Basic operation
  - Input = 0
    - P-transistor closed, n-transistor open
    - Power charges output (1)
  - Input = 1
    - P-transistor open, n-transistor closed
    - Output discharges to ground (0)



# Another CMOS Gate Example



#### Resistance



# Technology Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
  - Resistance (R) \ ~ length / cross-section area
    - Slows rate of charge flow
  - Capacitance (C) ~ length \* area / distance-to-other-plate
    - Stores charge
  - Voltage (V)
    - · Electrical pressure
  - Threshold Voltage (V<sub>t</sub>)
    - Voltage at which a transistor turns "on"
    - Property of transistor based on fabrication technology
  - Switching time ~ to (R \* C) / (V V<sub>t</sub>)
- Two kinds of electrical components
  - CMOS transistors (gates, sources, drains)
  - Wires

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

26

# Capacitance



# Transistor Geometry: Width



- Transistor width, set by designer for each transistor
- Wider transistors:
  - **Lower resistance** of channel (increases drive strength) good!
  - But, increases capacitance of gate/source/drain bad!
- Result: set width to balance these conflicting effects

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

29

#### Wire Geometry



- Transistors 1-dimensional for design purposes: width
- Wires 4-dimensional: length, width, height, "pitch"
  - Longer wires have more resistance (slower)
  - "Thinner" wires have more resistance (slower)
  - Closer wire spacing ("pitch") increases capacitance (slower)

From slides © Krste Asanovic, MIT

#### Transistor Geometry: Length & Scaling



- Transistor length: characteristic of "process generation"
  - "22nm" refers to the transistor gate length
- Each process generation shrinks transistor length by 1.4x
  - "Moore's law" -> roughly 2x improvement transistor density
  - Roughly linear improvement in switching speeds (lower resistance)

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

30

# Increasing Problem: Wire Delay

- RC Delay of wires
  - **Resistance** proportional to: resistivity \* length / (cross section)
    - Wires with smaller cross section have higher resistance
    - Resistivity (type of metal, copper vs aluminum)
  - Capacitance proportional to length
    - And wire spacing (closer wires have large capacitance)
    - Permittivity or "dielectric constant" (of material between wires)
- Result: delay of a wire is quadratic in length
  - Insert "inverter" repeaters for long wires
  - Why? To bring it back to linear delay... but repeaters still add delay
- Long wires are getting relatively slow to transistors
  - And relatively longer time to cross relatively larger chips

# **Technology Scaling Trends**

33

35

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

#### Moore's Effect #1: Transistor Count

- Linear shrink in each dimension
  - 180nm, 130nm, 90nm, 65nm, 45nm, 32nm, 22nm, ...
  - Each generation is a 1.414 linear shrink
    - Shrink each dimension (2D)
  - Results in 2x more transistors (1.414\*1.414) per area
- Generally reduces cost per transistor
- More transistors can increase performance
  - Job of a computer architect: use the ever-increasing number of transistors
  - Today, desktop/laptop processor chips have ~1 billion transistors

### Moore's Law: Technology Scaling



- Moore's Law: aka "technology scaling"
  - Continued miniaturization (esp. reduction in channel length)
  - + Improves switching speed, power/transistor, area(cost)/transistor
  - Reduces transistor reliability
  - Literally: DRAM density (transistors/area) doubles every 18 months
  - Public interpretation: performance doubles every 18 months
    - Not quite right, but helps performance in several ways...

•

34

#### Moore's Effect #2: RC Delay

- First-order: speed scales proportional to gate length
  - Has provided much of the performance gains in the past
- Scaling helps wire and gate delays in some ways...
  - + Transistors become shorter (Resistance↓), narrower (Capacitance↓)
  - + Wires become shorter (Length↓ → Resistance↓)
  - + Wire "surface areas" become smaller (Capacitance  $\downarrow$  )
- Hurts in others...
  - Transistors become narrower (Resistance↑)
  - Gate insulator thickness becomes smaller (Capacitance↑)
  - Wires becomes thinner (Resistance↑)
- What to do?
  - Take the good, use wire/transistor sizing to counter the bad
  - Exploit new materials: Aluminum → Copper, metal gate, high-K

#### Moore's Effect #3: Cost

- Mixed impact on unit integrated circuit cost
  - + Either lower cost for same functionality...
  - + Or same cost for more functionality
  - Difficult to achieve high yields
- Increases startup cost
  - More expensive fabrication equipment
  - Takes longer to design, verify, and test chips
- Process variation across chip increasing
  - · Some transistors slow, some fast
  - · Increasingly active research area: dealing with this problem

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

37

#### CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

38

#### Moore's Law in the Future

- Won't last forever, approaching physical limits
  - "If something must eventually stop, it can't go on forever"
  - But betting against it has proved foolish in the past
  - Perhaps will "slow" rather than stop abruptly
- Transistor count will likely continue to scale
  - "Die stacking" is on the cusp of becoming main stream
  - Uses the third dimension to increase transistor count
- But transistor performance scaling?
  - Running into physical limits
  - Example: gate oxide is less than 10 silicon atoms thick!
    - · Can't decrease it much further
  - Power is becoming the limiting factor

#### Moore's Effect #4: Psychological

- Moore's Curve: common interpretation of Moore's Law
  - "CPU performance doubles every 18 months"
  - Self fulfilling prophecy: 2X every 18 months is ~1% per week
    - Q: Would you add a feature that improved performance 20% if it would delay the chip 8 months?
  - Processors under Moore's Curve (arrive too late) fail spectacularly
    - E.g., Intel's Itanium, Sun's Millennium

**Power & Energy** 

# Power/Energy Are Increasingly Important

- Battery life for mobile devices
  - Laptops, phones, cameras
- Tolerable temperature for devices without active cooling
  - Power means temperature, active cooling means cost
  - No room for a fan in a cell phone, no market for a hot cell phone
- Electric bill for compute/data centers
  - Pay for power twice: once in, once out (to cool)
- Environmental concerns
  - "Computers" account for growing fraction of energy consumption

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

# Recall: Tech. Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
  - Resistance (R) —\/// ~ length / cross-section area
    - Slows rate of charge flow
  - Capacitance (C) ~ length \* area / distance-to-other-plate
    - Stores charge
  - Voltage (V)
    - Electrical pressure
  - Threshold Voltage (V<sub>+</sub>)
    - Voltage at which a transistor turns "on"
    - Property of transistor based on fabrication technology
  - Switching time ~ to (R \* C) / (V V<sub>t</sub>)

#### **Energy & Power**

- Energy: measured in Joules or Watt-seconds
  - Total amount of energy stored/used
  - Battery life, electric bill, environmental impact
  - Instructions per Joule (car analogy: miles per gallon)
- Power: energy per unit time (measured in Watts)
  - Related to "performance" (which is also a "per unit time" metric)
  - Power impacts power supply and cooling requirements (cost)
    - Power-density (Watt/mm<sup>2</sup>): important related metric
  - Peak power vs average power
    - E.g., camera, power "spikes" when you actually take a picture
  - Joules per second (car analogy: gallons per hour)
- Two sources:
  - Dynamic power: active switching of transistors
  - **Static power**: leakage of transistors even while inactive

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

42

#### **Dynamic Power**

- Dynamic power (P<sub>dynamic</sub>): aka switching or active power
  - Energy to switch a gate (0 to 1, 1 to 0)
  - Each gate has capacitance (C)

    - Energy to charge/discharge a capacitor is 

      to C \* V<sup>2</sup>
    - - Result: frequency ~ to V
  - $P_{dynamic} \approx N * C * V^2 * f * A$ 
    - N: number of transistors
    - C: capacitance per transistor (size of transistors)
    - V: voltage (supply voltage for gate)
    - f: frequency (transistor switching freq. is ∞ to clock freq.)
    - A: activity factor (not all transistors may switch this cycle)

# **Reducing Dynamic Power**

- Target each component: P<sub>dynamic</sub> ≈ N \* C \* V<sup>2</sup> \* f \* A
- Reduce number of transistors (N)
  - Use fewer transistors/gates
- Reduce capacitance (C)
  - Smaller transistors (Moore's law)
- Reduce voltage (V)
  - Quadratic reduction in energy consumption!
  - But also slows transistors (transistor speed is ~ to V)
- Reduce frequency (f)
  - Slower clock frequency (reduces power but not energy) Why?
- Reduce activity (A)
  - "Clock gating" disable clocks to unused parts of chip
  - Don't switch gates unnecessarily

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

45

### **Reducing Static Power**

- Target each component: P<sub>static</sub> ≈ N \* V \* e<sup>-Vt</sup>
- Reduce number of transistors (N)
  - Use fewer transistors/gates
- **Disable transistors** (also targets N)
  - "Power gating" disable power to unused parts (long latency to power up)
  - Power down units (or entire cores) not being used
- Reduce voltage (V)
  - Linear reduction in static energy consumption
  - But also slows transistors (transistor speed is ~ to V)
- **Dual V**<sub>t</sub> use a mixture of high and low V<sub>t</sub> transistors
  - Use slow, low-leak transistors in SRAM arrays
  - · Requires extra fabrication steps (cost)
- Low-leakage transistors
  - High-K/Metal-Gates in Intel's 45nm process, "tri-gate" in Intel's 22nm
- Reducing frequency can hurt energy efficiency due to leakage power

#### Static Power

- Static power (P<sub>static</sub>): aka idle or leakage power
  - Transistors don't turn off all the way
  - Transistors "leak"
    - Analogy: leaky valve
  - $P_{\text{static}} \approx N * V * e^{-V_t}$
  - N: number of transistors
  - V: voltage
  - **V**<sub>t</sub> (threshold voltage): voltage at which transistor conducts (begins to switch)
- Switching speed vs leakage trade-off
- The lower the V<sub>+</sub>:
  - Faster transistors (linear)
    - Transistor speed 

      to V − V<sub>t</sub>
  - Leakier transistors (exponential)

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy



46

# **Continuation of Moore's Law**

| P856                   | P858                                                           | Px60                                                                                | P1262                                                                                                                                | P1264                                                                                                                                                                                               | P1266                                                                                                                                                                                                                                          | P1268                                                                                                                                                                                                                                                                           | P1270                                                                                                                                                                                                                                                                                                                                              |
|------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1997                   | 1999                                                           | 2001                                                                                | 2003                                                                                                                                 | 2005                                                                                                                                                                                                | 2007                                                                                                                                                                                                                                           | 2009                                                                                                                                                                                                                                                                            | 2011                                                                                                                                                                                                                                                                                                                                               |
| <b>0.25</b> μ <b>m</b> | <b>0.18</b> μm                                                 | <b>0.13</b> μm                                                                      | 90 nm                                                                                                                                | 65 nm                                                                                                                                                                                               | 45 nm                                                                                                                                                                                                                                          | 32 nm                                                                                                                                                                                                                                                                           | 22 nm                                                                                                                                                                                                                                                                                                                                              |
| 200                    | 200                                                            | 200/300                                                                             | 300                                                                                                                                  | 300                                                                                                                                                                                                 | 300                                                                                                                                                                                                                                            | 300                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                |
| Al                     | Al                                                             | Cu                                                                                  | Cu                                                                                                                                   | Cu                                                                                                                                                                                                  | Cu                                                                                                                                                                                                                                             | Cu                                                                                                                                                                                                                                                                              | ?                                                                                                                                                                                                                                                                                                                                                  |
| Si                     | Si                                                             | Si                                                                                  | Strained<br>Si                                                                                                                       | Strained<br>Si                                                                                                                                                                                      | Strained<br>Si                                                                                                                                                                                                                                 | Strained<br>Si                                                                                                                                                                                                                                                                  | Strained<br>Si                                                                                                                                                                                                                                                                                                                                     |
| SiO <sub>2</sub>       | SiO <sub>2</sub>                                               | SiO <sub>2</sub>                                                                    | SiO <sub>2</sub>                                                                                                                     | SiO <sub>2</sub>                                                                                                                                                                                    | High-k                                                                                                                                                                                                                                         | High-k                                                                                                                                                                                                                                                                          | High-k                                                                                                                                                                                                                                                                                                                                             |
| Poly-<br>silicon       | Poly-<br>silicon                                               | Poly-<br>silicon                                                                    | Poly-<br>silicon                                                                                                                     | Poly-<br>silicon                                                                                                                                                                                    | Metal                                                                                                                                                                                                                                          | Metal                                                                                                                                                                                                                                                                           | Metal                                                                                                                                                                                                                                                                                                                                              |
|                        | 1997<br>0.25μm<br>200<br>Al<br>Si<br>SiO <sub>2</sub><br>Poly- | 1997 1999 0.25μm 0.18μm 200 200 Al Al Si Si SiO <sub>2</sub> SiO <sub>2</sub> Poly- | 1997 1999 2001 0.25μm 0.18μm 0.13μm 200 200 200/300 AI AI Cu Si Si Si SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> Poly- Poly- | 1997 1999 2001 2003  0.25μm 0.18μm 0.13μm 90 nm  200 200 200/300 300  AI AI Cu Cu Si Si Si Strained Si  SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> Poly- Poly- Poly- Poly- | 1997 1999 2001 2003 2005  0.25μm 0.18μm 0.13μm 90 nm 65 nm  200 200 200/300 300 300  Al Al Cu Cu Cu Si Si Si Strained Si Si SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> Poly- Poly- Poly- Poly- Poly- | 1997 1999 2001 2003 2005 2007  0.25μm 0.18μm 0.13μm 90 nm 65 nm 45 nm  200 200 200/300 300 300 300  Al Al Cu Cu Cu Cu Si Si Si Strained Si Si Si Strained Si Si SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> High-k  Poly- Poly- Poly- Poly- Poly- Motel | 1997 1999 2001 2003 2005 2007 2009  0.25μm 0.18μm 0.13μm 90 nm 65 nm 45 nm 32 nm  200 200 200/300 300 300 300 300  Al Al Cu Cu Cu Cu Cu Cu Strained Si Si Si Si Strained Strained Si Si Si SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> SiO <sub>2</sub> High-k High-k Poly- Poly- Poly- Poly- Motal Metal |

Intel found a solution for High-k and metal gate

Introduction targeted at this time





### Dynamic Voltage/Frequency Scaling

- Dynamically trade-off power for performance
  - Change the voltage and frequency at runtime
  - Under control of operating system
- Recall:  $P_{dynamic} \approx N * C * V^2 * f * A$ 
  - Because frequency  $\infty$  to  $V V_t$ ...
  - $P_{dynamic} \propto \text{to } V^2(V V_t) \approx V^3$
- Reduce both voltage and frequency linearly
  - Cubic decrease in dynamic power
  - Linear decrease in performance (actually sub-linear)
    - Thus, only about quadratic in energy
  - Linear decrease in static power
    - Thus, static energy can become dominant
- Newer chips can adjust frequency on a per-core basis

51

# **Dynamic Voltage/Frequency Scaling**

|            | Mobile PentiumIII<br>" <b>SpeedStep</b> " | Transmeta 5400<br>"LongRun" | Intel X-Scale<br>(StrongARM2) |
|------------|-------------------------------------------|-----------------------------|-------------------------------|
| f (MHz)    | 300-1000 (step=50)                        | 200-700 (step=33)           | 50-800 (step=50)              |
| V (V)      | 0.9-1.7 (step=0.1)                        | 1.1-1.6V (cont)             | 0.7-1.65 (cont)               |
| High-speed | 3400MIPS @ 34W                            | 1600MIPS @ 2W               | 800MIPS @ 0.9W                |
| Low-power  | 1100MIPS @ 4.5W                           | 300MIPS @ 0.25W             | 62MIPS @ 0.01W                |

- Dynamic voltage/frequency scaling
  - Favors parallelism
- Example: Intel Xscale
  - 1 GHz  $\rightarrow$  200 MHz reduces energy used by 30x
    - But around 5x slower
  - 5 x 200 MHz in parallel, use 1/6th the energy
  - Power is driving the trend toward multi-core

#### Moore's Effect on Power

- + Moore's Law reduces power/transistor...
  - Reduced sizes and surface areas reduce capacitance (C)
- ...but increases power density and total power
  - By increasing transistors/area and total transistors
  - Faster transistors → higher frequency → more power
  - Hotter transistors leak more (thermal runaway)
- What to do? Reduce voltage (V)
  - + Reduces dynamic power quadratically, static power linearly
    - Already happening: Intel 486 (5V) → Core2 (1.3V)
  - Trade-off: reducing V means either...
    - Keeping V<sub>t</sub> the same and reducing frequency (f)
    - Lowering V<sub>t</sub> and increasing leakage exponentially
  - Use techniques like high-K and dual-V<sub>T</sub>
- The end of voltage scaling & "dark silicon"

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

53

#### Processor Power Breakdown

- Power breakdown for IBM POWER4
  - Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
  - Big power components are L2, data cache, scheduler, clock, I/O
  - Implications on "complicated" versus "simple" cores





#### Trends in Power

|                 | 386  | 486  | Pentium | Pentium II | Pentium4 | Core2 | Core i7 |
|-----------------|------|------|---------|------------|----------|-------|---------|
| Year            | 1985 | 1989 | 1993    | 1998       | 2001     | 2006  | 2009    |
| Technode (nm)   | 1500 | 800  | 350     | 180        | 130      | 65    | 45      |
| Transistors (M) | 0.3  | 1.2  | 3.1     | 5.5        | 42       | 291   | 731     |
| Voltage (V)     | 5    | 5    | 3.3     | 2.9        | 1.7      | 1.3   | 1.2     |
| Clock (MHz)     | 16   | 25   | 66      | 200        | 1500     | 3000  | 3300    |
| Power (W)       | 1    | 5    | 16      | 35         | 80       | 75    | 130     |
| Peak MIPS       | 6    | 25   | 132     | 600        | 4500     | 24000 | 52800   |
| MIPS/W          | 6    | 5    | 8       | 17         | 56       | 320   | 406     |

- Supply voltage decreasing over time
  - But "voltage scaling" is perhaps reaching its limits
- Emphasis on power starting around 2000
  - · Resulting in slower frequency increases
  - Also note number of cores increasing (2 in Core 2, 4 in Core i7)

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

54

# Implications on Software

- Software-controlled dynamic voltage/frequency scaling
  - Example: video decoding
    - Too high a clock frequency wasted energy (battery life)
    - Too low a clock frequency quality of video suffers
  - "Race to sleep" versus "slow and steady" approaches
- Managing low-power modes
  - Don't want to "wake up" the processor every millisecond
- Tuning software
  - Faster algorithms can be converted to lower-power algorithms
  - Via dynamic voltage/frequency scaling
- Exploiting parallelism & heterogeneous cores
  - NVIDIA Tegra 3: 5 cores (4 "normal" cores & 1 "low power" core)
- Specialized hardware accelerators

# **Summary**

**Technology Summary** 

- Has a first-order impact on computer architecture
  - Performance (transistor delay, wire delay)
  - Cost (die area & defects)
  - Changing rapidly
- Most significant trends for architects
  - More and more transistors
    - What to do with them? → integration → **parallelism**
  - Logic is improving faster than memory & cross-chip wires
    - "Memory wall" → caches, more integration
- Power and energy

57

- Voltage vs frequency, parallelism, special-purpose hardware
- This unit: a quick overview, just scratching the surface

CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy

58

Rest of

course