CIS 501
Introduction to Computer Architecture

Class Project

Proposal and Final Report

- Proposal (< 500 words)
 - Names of group members
 - Brief description of idea
 - What you plan to measure and how

- Final report (~4000 words)
 - Brief description of idea
 - Brief description of your implementation
 - Description of your experimental configuration
 - Presentation and analysis of results
 - Like a mini conference paper (you’ve read some)

Mini-Research Course Project

- What?
 - Investigate a research idea covered in class, in paper, or in head
- Who?
 - You and one or two other people
- When?
 - Proposal: Friday, Nov 18 (submit PDF via blackboard)
 - Final report: Friday, Dec 9 (last day of classes)
- Tools?
 - Simplescalar and Simics
- How much?
 - 20% of your final grade

Simulation Tools

- SimpleScalar
 - User-level programs
 - Functional simulation: sim-<function>, sim-cache, sim-DLX
 - Simulates instruction-by-instruction
 - Fast, but impossible to evaluate some ideas

- Timing simulation: sim-R10K
 - Simulates cycle-by-cycle
 - Accurate, only way to measure some things, but slow

- Simics
 - Full-system simulation (program + OS)
 - Can run any program
 - Few timing
Finding Ideas

- Research ideas described in class
 - E.g., runahead execution, dynamic cache resizing, etc.

- Ideas found in recent research papers
 - ACM digital library: http://www.acm.org/dl
 - Recent MICRO conferences: http://www.microarch.org/

- At most two groups may work on same idea
 - First-come, first-served
 - E-mail us with a general topic as soon as you know it

Ideas: Cache Design

- Implement new cache organization in cache.c
 - Examples
 - Multi-lateral cache [Rivers+, ICPP’96]
 - Dynamically resizing cache [Albonesi, ISCA’98, Yang+, HPCA’02]
 - Cache with dynamically varying block sizes [Johnson+, MICRO’97]
 - Trace cache [Rotenberg+, MICRO’95]
 - Distance associative cache [Chishti+, MICRO’03]
 - Fully-associative software managed L2 [Hallnor+, ISCA’00]
 - Way prediction [Powell, MICRO’01]
 - Measure effect of capacity, associativity, block size
 - Functional simulation: measure $\%_{miss}$, calculate t_{avg}
 - Timing simulation: better measurements
 - Can probably plug cache.c right in

Ideas: Branch Prediction Algorithms

- Implement new branch predictor in bpred.c
 - Investigate effects of table size, history length, etc.
 - Compare with other predictors
 - Examples:
 - Agree [Sprangle+, ISCA’97]
 - YAGS [Eden+, MICRO’98]
 - Perceptron [Jimenez, HPCA’01]
 - Interesting: predictors for more than one branch at a time
 - Can be done with functional simulation

Ideas: Prefetching

- Implement prefetching algorithm in cache.c (or outside)
 - Instructions or data
 - Examples
 - Call-graph prefetching for insns [Annavaram+, HPCA’01]
 - Dependence-based prefetching for pointers [Roth+, ASPLOS’98]
 - Context-based prefetching for pointers [Cooksey+, ASPLOS’02]
 - Jump-pointer prefetching [Roth+, ISCA’99]
 - Dead-block prefetching [Lai+, ISCA’01]
 - Stream-buffers [Jouppi]
 - In-memory prefetching [Solihin, ISCA’02]
 - Functional simulation: study prefetch coverage and accuracy
 - Timing simulation: study prefetch timing
 - Not necessary if coverage/accuracy work thorough enough
Ideas: Value Prediction

- Value prediction: rather than wait for load values, predict
 - Still have to execute to verify prediction
 - Functional simulation: prediction accuracy
 - How many values can you guess right?
 - Timing simulation: speculation effectiveness
 - How much gain/loss correct/wrong speculation?
- Examples
 - Load value locality [Lipasti+, ASPLOS'96]
 - Predictability of data values [Sazeides+, MICRO'97]

Ideas: Instruction Reuse

- Instruction reuse: opposite of value predictions
 - Remember prior computations and reuse, don’t repeat
 - Like common sub-expression elimination in hardware
 - Functional simulation: reusability and repition
 - Timing simulation: effectiveness of reuse (easier than VP)
- Examples
 - Dynamic instruction reuse [Sodani+, ISCA'97]
 - Analysis of instruction repition [Sodani+, ASPLOS'98]
 - Register integration [Petric+, MICRO'02]
Other Ideas

- Ask me if interested
 - Speculative scheduling
 - Power modeling
 - Multiprocessing
 - Multithreading
 - Buses and memory hierarchy

- Or if you have your own idea...