CIS 371
Computer Organization and Design

Unit 15: Putting It All Together:
Anatomy of the XBox 360 Game Console

This Unit: Putting It All Together

- Anatomy of a game console
- Microsoft XBox 360
- Focus mostly on CPU chip
- Briefly talk about system
 - Graphics processing unit (GPU)
 - I/O and other devices

Sources

- Application-customized CPU design: The Microsoft Xbox 360 CPU story, Brown, IBM, Dec 2005
- Microprocessor Report
 - IBM Speeds XBox 360 to Market, Krewell, Oct 31, 2005
 - Powering Next-Gen Game Consoles, Krewell, July 18, 2005

What is Computer Architecture?

The role of a computer architect:

“Technology”
- Logic Gates
- SRAM
- DRAM
- Circuit Techniques
- Packaging
- Magnetic Storage
- Flash Memory

Goals
- Function
- Performance
- Reliability
- Cost/Manufacturability
- Energy Efficiency
- Time to Market

Plans
- Design
- Manufacturing

Computer
- PCs
- Servers
- PDAs
- Mobile Phones
- Supercomputers
- Game Consoles
- Embedded
Microsoft XBox Game Console History

- XBox
 - First game console by Microsoft, released in 2001, $299
 - Glorified PC
 - 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics)
 - Ran modified version of Windows OS
 - ~25 million sold

- XBox 360
 - Second generation, released in 2005, $299-$399
 - All-new custom hardware
 - 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)
 - ATI graphics chip (custom design for XBox 360)
 - 50+ million sold

Microsoft Turns to IBM for XBox 360

- Microsoft is mostly a software company
 - Turned to IBM & ATI for XBox 360 design
 - Sony & Nintendo also turned to IBM (for PS3 & Wii, respectively)

- Design principles of XBox 360 [Andrews & Baker]
 - Value for 5-7 years
 - \(\rightarrow \) big performance increase over last generation
 - Support anti-aliased high-definition video (720*1280*4 @ 30+ fps)
 - \(\rightarrow \) extremely high pixel fill rate (goal: 100+ million pixels/s)
 - Flexible to suit dynamic range of games
 - \(\rightarrow \) balance hardware, homogenous resources
 - Programmability (easy to program)
 - \(\rightarrow \) listened to software developers

More on Games Workload

- Graphics, graphics, graphics
 - Special highly-parallel graphics processing unit (GPU)
 - Much like on PCs today

- But general-purpose, too
 - "The high-level game code is generally a database management problem, with plenty of object-oriented code and pointer manipulation. Such a workload needs a large L2 and high integer performance." [Andrews & Baker]

- Wanted only a modest number of modest, fast cores
 - Not one big core
 - Not dozens of small cores (leave that to the GPU)
 - Quote from Seymour Cray

XBox 360 System from 30,000 Feet

[Diagram of XBox 360 system architecture with labels: South Bridge, CPU, Parent, Daughter, UMAA System RAM]
XBox 360 System

- CPU with three cores
- Memory: 512 MB DDRAM
- I/O chip
- GPU
- Blu-ray interface
- EDRAM
- 16 Mbyte L2 cache
- DVD (SATA) and HDD port (SATA)
- Front controllers (2 USB)
- Wireless controllers
- MJ ports (2 USB)
- Rear panel USB
- Ethernet
- IR
- Audio out
- Flash
- System control

XBox 360 “Xenon” Processor

- ISA: 64-bit PowerPC chip
 - RISC ISA
 - Like MIPS, but with condition codes
- Fixed-length 32-bit instructions
- 32 64-bit general purpose registers (GPRs)
- ISA Extended with VMX-128 operations
 - 128 registers, 128-bits each
 - Packed “vector” operations
 - Example: four 32-bit floating point numbers
 - One instruction: VR1 * VR2 → VR3
 - Four single-precision operations
 - Also supports conversion to Microsoft DirectX data formats
 - Similar to Altivec (and Intel’s MMX, SSE, SSE2, etc.)
 - Works great for 3D graphics kernels and compression

XBox 360 “Xenon” Chip (IBM)

- 165 million transistors
- IBM's 90nm process
- Three cores
 - 3.2 Ghz
 - Two-way superscalar
 - Two-way multithreaded
- Shared 1MB cache

XBox 360 System

- CPU: Core 0, Core 1, Core 2
- Memory: 512 MB DDRAM
- I/O chip
- DVD (SATA) and HDD port (SATA)
- Front controllers (2 USB)
- Wireless controllers
- MJ ports (2 USB)
- Rear panel USB
- Ethernet
- IR
- Audio out
- Flash
- System control

XBox 360 “Xenon” Processor

- Peak performance: ~75 gigaflops
 - Gigaflop = 1 billion floating points operations per second
- Pipelined superscalar processor
 - 3.2 Ghz operation
 - Superscalar: two-way issue
 - VMX-128 instructions (four single-precision operations at a time)
 - Hardware multithreading: two threads per processor
 - Three processor cores per chip
- Result:
 - 3.2 * 2 * 4 * 3 = ~77 gigaflops
"Xenon" Processor Pipeline

- Four-instruction fetch
- Two-instruction "dispatch"
- Five functional units
- "VMX128" execution "decoupled" from other units
 - 14-cycle VMX dot-product
- Branch predictor:
 - "4K" G-share predictor
 - Unclear if 4KB or 4K 2-bit counters
 - Per thread

XBox 360 Memory Hierarchy

- 128B cache blocks throughout
- 32KB 2-way set-associative instruction cache (per core)
- 32KB 4-way set-associative data cache (per core)
 - Write-through, lots of store buffering
 - Parity
- 1MB 8-way set-associative second-level cache (per chip)
 - Special "skip L2" prefetch instruction
 - MESI cache coherence
 - Error Correcting Codes (ECC)
- 512MB GDDR3 DRAM, dual memory controllers
 - Total of 22.4 GB/s of memory bandwidth
- Direct path to GPU (not supported in current PCs)

Xenon Multicore Interconnect

XBox 360 System
XBox Graphics Subsystem

- **10.8 GB/s FSB bandwidth link each way**
- **22.4 GB/s DRAM bandwidth**
- **28.8 GB/s link bandwidth**

Graphics “Parent” Die (ATI)

- 232 million transistors
- 500 MHz
- 48 unified shader ALUs
 - Mini-cores for graphics

Graphics “Parent” Die (ATI)

- 232 million transistors
- 500 MHz
- 48 unified shader ALUs
 - Mini-cores for graphics

GPU “daughter” die (NEC)

- 100 million transistors
- 10MB eDRAM
 - “Embedded”
- NEC Electronics
- Anti-aliasing
 - Render at 4x resolution, then sample
- Z-buffering
 - Track the “depth” of pixels
- 256GB/s internal bandwidth

Putting It All Together

- Unit 0: Abstraction and design goals
- Unit 1: ISAs
- Unit 2/3: Digital logic & single-cycle datapath
- Unit 4: Arithmetic
- Unit 5/6: Pipelining & performance
- Unit 7/8: Caches & virtual memory
- Unit 9: Superscalar
- Unit 10: Lab hints
- Unit 11: Static & Dynamic Scheduling
- Unit 12: Multicore
- Unit 13/14: Vectors/Power